CN110020410A - 一种观赏海棠花色的苗期预测方法 - Google Patents

一种观赏海棠花色的苗期预测方法 Download PDF

Info

Publication number
CN110020410A
CN110020410A CN201910353044.5A CN201910353044A CN110020410A CN 110020410 A CN110020410 A CN 110020410A CN 201910353044 A CN201910353044 A CN 201910353044A CN 110020410 A CN110020410 A CN 110020410A
Authority
CN
China
Prior art keywords
pattern
leaf
color
fruit tree
admiring fruit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910353044.5A
Other languages
English (en)
Other versions
CN110020410B (zh
Inventor
周婷
江皓
范俊俊
张龙
饶辉
孙艳艳
张往祥
汪贵斌
曹福亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201910353044.5A priority Critical patent/CN110020410B/zh
Publication of CN110020410A publication Critical patent/CN110020410A/zh
Application granted granted Critical
Publication of CN110020410B publication Critical patent/CN110020410B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/60Flowers; Ornamental plants
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • General Business, Economics & Management (AREA)
  • Pure & Applied Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Mathematical Physics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Computational Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Development Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Software Systems (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Algebra (AREA)
  • Evolutionary Biology (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)

Abstract

本发明公开了一种观赏海棠花色的苗期预测方法,涉及植物育种领域。该观赏海棠花色的苗期预测方法包括:建立观赏海棠的花色与叶色的色彩关系模型;通过色彩关系模型于苗期预测观赏海棠的花色。该方法通过建立的花色与叶色色彩关系模型,可有效发掘花色与叶色的显著相关关系,实现观赏海棠苗期花色的预测,从而可显著缩短了其花色育种的进程,提高育种效率。

Description

一种观赏海棠花色的苗期预测方法
技术领域
本发明涉及植物育种领域,且特别涉及一种观赏海棠花色的苗期 预测方法。
背景技术
花色,是观赏植物最重要、最直观的观赏性状之一,花色育种一 直以来都是园林植物育种的重要方向。现阶段,观赏植物花色育种方 法多为在杂交育种的基础上,开展野外观测与调查,于盛花期筛选出 花色艳丽的品种进行进一步培育。
以上基于盛花期花色观测,并筛选出优良花色单株的育种方式直 观、客观,非常适合于生长周期较短的观赏植物,如草本类等。对于 生长周期较长的观赏植物,如木本类观赏植物(观赏海棠)而言,由 于其生长周期漫长,一般最快3-4年左右才能进入始花期,这一传统 方法即严重阻碍了其花色育种的进程。
发明内容
本发明的目的在于提供一种观赏海棠花色的苗期预测方法,该方 法通过研究花色与叶色之间的相关关系,实现观赏海棠花色的苗期预 测,从而可加快其花色育种的进程,进而可提高育种效率。
本发明解决其技术问题是采用以下技术方案来实现的。
本发明提出一种观赏海棠花色的苗期预测方法,其包括:
建立观赏海棠的花色与叶色的色彩关系模型;
通过色彩关系模型于苗期预测观赏海棠的花色。
本发明实施例的观赏海棠花色的苗期预测方法的有益效果是:
本发明的实施例提供的观赏海棠花色的苗期预测方法包括:建立 观赏海棠的花色与叶色的色彩关系模型;通过色彩关系模型于苗期预 测观赏海棠的花色。该方法通过建立的花色与叶色色彩关系模型,有 效发掘了花色与叶色的显著相关关系,实现了观赏海棠苗期花色的预 测,显著缩短了其花色育种的进程,提高了育种效率。
附图说明
图1为观赏海棠花色(y)与叶色(x)赋值得分函数关系图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对 本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明 具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪 器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本发明实施例的观赏海棠花色的苗期预测方法进行具体 说明。
本发明的实施例提供了一种观赏海棠花色的苗期预测方法,其包 括:
建立观赏海棠的花色与叶色的色彩关系模型;
通过色彩关系模型于苗期预测观赏海棠的花色。
详细地,该方法通过研究花色与叶色之间的相关关系,实现观赏 海棠花色的苗期预测,从而可加快其花色育种的进程,进而可提高育 种效率。
进一步地,在本发明的较佳实施例中,在建立色彩关系模型之前 还包括:
记录多个观赏海棠种质在春季的不同时期的花色以及在春季不 同叶位的叶色。
进一步地,在本发明的较佳实施例中,观赏海棠种质的数量为 50~60个。作为优选的方案,可选取52个观赏海棠种质。当然,在 本发明的其他实施例中,选取的观赏海棠的种质数量还可以根据需求 进行选择与改进,本发明的实施例不做限定。
进一步地,在本发明的较佳实施例中,观赏海棠在春季的不同时 期的花色主要包括在4月份时,观赏海棠在小蕾期、大蕾期、盛花期 以及末花期的花色,花色为紫红色、粉色或白色;其中,小蕾期为花 蕾初现时期;大蕾期为花蕾膨大,且花蕊即将显露时期;盛花期为花 朵完全开放且柱头和花药新鲜,且色彩明艳时期;末花期为柱头和花 药干萎且色彩隐晦时期。
进一步地,在本发明的较佳实施例中,观赏海棠在春季不同叶位 的叶色主要包括在5月份,观赏海棠的上位叶、中位叶以及下位叶的 叶色,叶色为红色、红棕色或绿色;其中,上位叶为从最上部数第二 个叶片;中位叶为苗木总高1/2部位处的叶片;下位叶为从最下部往 上数第二个叶片。
进一步地,在本发明的较佳实施例中,建立观赏海棠的花色与叶 色的色彩关系模型具体包括:
构建四元数据矩阵,表达海棠花色(Wi Xi Yi Zi);其中,不同维 度花色类型评价方法为:Wi的含义为当小蕾期的花色分别为紫红色、 粉色和白色时,分别赋值为Wi=2,1,0;Xi的含义为当大蕾期的花 色分别为紫红色、粉色和白色时,分别赋值为Xi=2,1,0;Yi的含义为当盛花期的花色分别为紫红色、粉色和白色时,分别赋值为Yi=2, 1,0;Zi的含义为当末花期的花色分别为紫红色、粉色和白色时,分 别赋值为Zi=2,1,0;
根据四元变量重要性的大小,赋予四元数据不同的位权,其中, W<X<Y<Z,且位权赋值的方法表示为:(Wi Xi Yi Zi)=Wi×2(1-1) +Xi×2(2-1)+Yi×2(3-1)+Zi×2(4-1),分值的大小用于反映不同花期花色 的稳定性强弱。
进一步地,在本发明的较佳实施例中,建立观赏海棠的花色与叶 色的色彩关系模型具体还包括:
构建三元数据矩阵,表达海棠叶色(Xi Yi Zi);其中,不同维度 叶色类型评价方法为:Xi的含义为当上位叶的叶色分别为紫红色、红 棕色和绿色时,分别赋值为Xi=2,1,0;Yi的含义为当中位叶的叶 色分别为紫红色、红棕色和绿色时,分别赋值为Yi=2,1,0;Zi的 含义为当下位叶的叶色分别为紫红色、红棕色和绿色时,分别赋值为 Zi=2,1,0;
根据三元变量重要性的大小,赋予三元数据不同的位权,其中, X<Y<Z;位权赋值方法表示为:(Xi Yi Zi)=Xi×2(1-1)+Yi×2(2-1)+Zi×2(3-1),分值的大小用于反映海棠上位叶、中位叶以及下位叶叶色的 差异性。
进一步地,在本发明的较佳实施例中,建立观赏海棠的花色与叶 色的色彩关系模型具体还包括:
基于已构建的观赏海棠的花色的四元数据矩阵,将花色分为从 A→O,共15种花色类型,分别为表示为A(0000)、B(1000)、C (1100)、D(1110)、E(1111)、F(2000)、G(2000)、H(2100)、 I(2111)、J(2200)、K(2210)、L(2211)、M(2220)、N(2221) 以及O(2222);
结合赋值方法计算不同花色类型的得分;
基于已构建的观赏海棠的叶色的三元数据矩阵,将叶色分为从 A→J,共10种叶色类型,分别为:A(000)、B(100)、C(110)、 D(111)、E(200)、F(210)、G(211)、H(220)、I(221)、J(222);
结合赋值方法计算不同叶色类型得分;
结合调查获取的花与叶的色彩数据,对52个海棠种质的花叶类 型进行统计,共分为24个花叶色彩类型,即AA、BB、CA、FA、 GA、HA、IA、IB、II、JA、KF、LI、LJ、NE、NF、NH、NI、NJ、OE、OF、OG、OH、OI、OJ,并对各花叶类型的种质代号、数量、 占比进行统计;
通过对24个花叶色彩类型的赋值打分结果进行相关性分析。
进一步地,在本发明的较佳实施例中,相关性分析结果为花色得 分与叶色得分存在极显著相关性为r=0.77,p≤0.01,即花色稳定性与 不同叶位叶色的差异性存在极显著相关。
进一步地,在本发明的较佳实施例中,建立观赏海棠的花色与叶 色的色彩关系模型具体还包括:
构建观赏海棠花色y与叶色x赋值得分函数关系为 y=1.8233x+7.2987,R2=0.5905。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例
本实施例提供了一种观赏海棠花色的苗期预测方法,其包括:
S1:构建四元数据矩阵,表达海棠花色(Wi Xi Yi Zi);
不同维度花色类型评价方法为:①Wi的含义:当小蕾期的花色 分别为紫红色、粉色和白色时,分别赋值为Wi=2,1,0;
②Xi的含义:当大蕾期的花色分别为紫红色、粉色和白色时,分 别赋值为Xi=2,1,0;
③Yi的含义:当盛花期的花色分别为紫红色、粉色和白色时,分 别赋值为Yi=2,1,0;
④Zi的含义:当末花期的花色分别为紫红色、粉色和白色时, 分别赋值为Zi=2,1,0。
S2:根据四元变量重要性的大小,赋予四元数据不同的位权(W <X<Y<Z),位权赋值方法表示为:(Wi Xi Yi Zi)=Wi×2(1-1)+Xi× 2(2-1)+Yi×2(3-1)+Zi×2(4-1),该分值的大小反映了不同花期花色的稳 定性强弱。
S3:构建三元数据矩阵,表达海棠叶色(Xi Yi Zi);
不同维度叶色类型评价方法为:①Xi的含义:当上位叶的叶色分 别为紫红色、红棕色和绿色时,分别赋值为Xi=2,1,0;
②Yi的含义:当中位叶的叶色分别为紫红色、红棕色和绿色时, 分别赋值为Yi=2,1,0;
③Zi的含义:当下位叶的叶色分别为紫红色、红棕色和绿色时, 分别赋值为Zi=2,1,0。
S4:根据三元变量重要性的大小,赋予三元数据不同的位权(X <Y<Z)。位权赋值方法表示为:(Xi Yi Zi)=Xi×2(1-1)+Yi×2(2-1)+ Zi×2(3-1),该分值的大小反映了海棠上、中、下位叶叶色的差异性。
S5:基于已构建的海棠花色判读矩阵,将花色分为从A→O,共 15种花色类型,分别为:A(0000)、B(1000)、C(1100)、D(1110)、 E(1111)、F(2000)、G(2000)、H(2100)、I(2111)、J(2200)、 K(2210)、L(2211)、M(2220)、N(2221)、O(2222)。结合赋 值方法计算可知,不同花色类型得分在0~30之间。
A(0000)类型即表示从小蕾期到末花期花均为白色,其得分为 0分,O(2222)类型即表示从小蕾期到末花期花均属紫红色系,其 得分为30分。基于已构建的海棠叶色判读矩阵,将叶色分为从A→J, 共10种叶色类型,分别为:A(000)、B(100)、C(110)、D(111)、 E(200)、F(210)、G(211)、H(220)、I(221)、J(222)。结合 赋值方法计算可知,不同叶色类型得分在0~14之间,如,A(000) 类型即表示从上位叶到下位叶花均属绿色系,其得分为0分,J(222) 类型即表示从上位叶到下位叶叶均属红色系,其得分为14分。结合 调查获取的花与叶的色彩数据,对52个海棠种质的花叶类型进行统 计,共分为24个花叶色彩类型,即AA、BB、CA、FA、GA、HA、 IA、IB、II、JA、KF、LI、LJ、NE、NF、NH、NI、NJ、OE、OF、 OG、OH、OI、OJ,并对各花叶类型的种质代号、数量、占比进行统 计(表1)。
S6:通过对24个花叶色彩类型的赋值打分结果进行相关性分析 发现,花色得分与叶色得分存在极显著相关性(r=0.77,p≤0.01), 即花色稳定性与不同叶位叶色的差异性存在极显著相关。
S7:为进一步揭示花色与叶色之间的关系,通过构建观赏海棠花 色(y)与叶色(x)赋值得分函数关系(图1)可知,y=1.8233x+7.2987, R2=0.5905,当叶色得分为0、1时,花色得分在0~7,比例为22.7%, 即当海棠种质三个叶位均为绿色或上位叶为棕色(略带红)及中、下 位叶为绿色时,其花色一般在蕾期为白色或浅粉色,至末花期均褪为 白色,当叶色得分为6~14时,花色得分在15~30的比例为38.4%, 即当上、中位叶均为紫红色系时,其花色从蕾期至末花期为粉色或从 蕾期至盛花期为紫红色。
表1
下面具体以‘东哥’海棠花色与叶色为例,表2为‘东哥’海棠 不同时期花色色彩参数及赋值得分;表3为‘东哥’海棠不同叶位叶 色色彩参数及赋值得分。
表2.‘东哥’海棠不同时期花色色彩参数及赋值得分
表3.‘东哥’海棠不同叶位叶色色彩参数及赋值得分
实施例结果为‘东哥’海棠叶色上位叶、中位叶、下位叶均为绿 色,其花色为小蕾期粉色,大蕾期至末花期均褪为白色,这与本发明 方法预测结果相符。
综上所述,本发明实施例的提供的观赏海棠花色的苗期预测方 法,该方法通过研究花色与叶色之间的相关关系,实现观赏海棠花色 的苗期预测,从而可加快其花色育种的进程,进而可提高育种效率。
以上所描述的实施例是本发明一部分实施例,而不是全部的实施 例。本发明的实施例的详细描述并非旨在限制要求保护的本发明的范 围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例,都属于本发明保护的范围。

Claims (10)

1.一种观赏海棠花色的苗期预测方法,其特征在于,其包括:
建立观赏海棠的花色与叶色的色彩关系模型;
通过所述色彩关系模型于苗期实现对所述观赏海棠花色的预测。
2.根据权利要求1所述的观赏海棠花色的苗期预测方法,其特征在于,在建立所述色彩关系模型之前还包括:
记录多个观赏海棠种质在春季的不同时期的花色以及在春季不同叶位的叶色。
3.根据权利要求2所述的观赏海棠花色的苗期预测方法,其特征在于:
观赏海棠种质的数量为50~60个。
4.根据权利要求3所述的观赏海棠花色的苗期预测方法,其特征在于:
所述观赏海棠在春季的不同时期的花色主要包括在4月份时,所述观赏海棠在小蕾期、大蕾期、盛花期以及末花期的花色,花色为紫红色、粉色或白色;
其中,小蕾期为花蕾初现时期;大蕾期为花蕾膨大,且花蕊即将显露时期;盛花期为花朵完全开放且柱头和花药新鲜,且色彩明艳时期;末花期为柱头和花药干萎且色彩隐晦时期。
5.根据权利要求4所述的观赏海棠花色的苗期预测方法,其特征在于:
所述观赏海棠在春季不同叶位的叶色主要包括在5月份,所述观赏海棠的上位叶、中位叶以及下位叶的叶色,叶色为红色、红棕色或绿色;
其中,上位叶为从最上部数第二个叶片;中位叶为苗木总高1/2部位处的叶片;下位叶为从最下部往上数第二个叶片。
6.根据权利要求5所述的观赏海棠花色的苗期预测方法,其特征在于,建立所述观赏海棠的花色与叶色的所述色彩关系模型具体包括:
构建四元数据矩阵,表达海棠花色(Wi Xi Yi Zi);其中,不同维度花色类型评价方法为:Wi的含义为当所述小蕾期的花色分别为紫红色、粉色和白色时,分别赋值为Wi=2,1,0;Xi的含义为当所述大蕾期的花色分别为紫红色、粉色和白色时,分别赋值为Xi=2,1,0;Yi的含义为当所述盛花期的花色分别为紫红色、粉色和白色时,分别赋值为Yi=2,1,0;Zi的含义为当所述末花期的花色分别为紫红色、粉色和白色时,分别赋值为Zi=2,1,0;
根据四元变量重要性的大小,赋予四元数据不同的位权,其中,W<X<Y<Z,且位权赋值的方法表示为:(Wi Xi Yi Zi)=Wi×2(1-1)+Xi×2(2-1)+Yi×2(3-1)+Zi×2(4-1),分值的大小用于反映不同花期花色的稳定性强弱。
7.根据权利要求6所述的观赏海棠花色的苗期预测方法,其特征在于,建立所述观赏海棠的花色与叶色的所述色彩关系模型具体还包括:
构建三元数据矩阵,表达海棠叶色(Xi Yi Zi);其中,不同维度叶色类型评价方法为:Xi的含义为当所述上位叶的叶色分别为紫红色、红棕色和绿色时,分别赋值为Xi=2,1,0;Yi的含义为当所述中位叶的叶色分别为紫红色、红棕色和绿色时,分别赋值为Yi=2,1,0;Zi的含义为当所述下位叶的叶色分别为紫红色、红棕色和绿色时,分别赋值为Zi=2,1,0;
根据三元变量重要性的大小,赋予三元数据不同的位权,其中,X<Y<Z;位权赋值方法表示为:(Xi Yi Zi)=Xi×2(1-1)+Yi×2(2-1)+Zi×2(3-1),分值的大小用于反映海棠上位叶、中位叶以及下位叶叶色的差异性。
8.根据权利要求7所述的观赏海棠花色的苗期预测方法,其特征在于,建立所述观赏海棠的花色与叶色的所述色彩关系模型具体还包括:
基于已构建的所述观赏海棠的花色的所述四元数据矩阵,将花色分为从A→O,共15种花色类型,分别为表示为A(0000)、B(1000)、C(1100)、D(1110)、E(1111)、F(2000)、G(2000)、H(2100)、I(2111)、J(2200)、K(2210)、L(2211)、M(2220)、N(2221)以及O(2222);
结合赋值方法计算不同花色类型的得分;
基于已构建的所述观赏海棠的叶色的所述三元数据矩阵,将叶色分为从A→J,共10种叶色类型,分别为:A(000)、B(100)、C(110)、D(111)、E(200)、F(210)、G(211)、H(220)、I(221)、J(222);
结合赋值方法计算不同叶色类型得分;
结合调查获取的花与叶的色彩数据,对52个海棠种质的花叶类型进行统计,共分为24个花叶色彩类型,即AA、BB、CA、FA、GA、HA、IA、IB、II、JA、KF、LI、LJ、NE、NF、NH、NI、NJ、OE、OF、OG、OH、OI、OJ,并对各花叶类型的种质代号、数量、占比进行统计;
通过对24个花叶色彩类型的赋值打分结果进行相关性分析。
9.根据权利要求8所述的观赏海棠花色的苗期预测方法,其特征在于:
所述相关性分析结果为花色得分与叶色得分存在极显著相关性为r=0.77,p≤0.01,即花色稳定性与不同叶位叶色的差异性存在极显著相关。
10.根据权利要求9所述的观赏海棠花色的苗期预测方法,其特征在于,建立所述观赏海棠的花色与叶色的所述色彩关系模型具体还包括:
构建观赏海棠花色y与叶色x赋值得分函数关系为y=1.8233x+7.2987,R2=0.5905。
CN201910353044.5A 2019-04-29 2019-04-29 一种观赏海棠花色的苗期预测方法 Active CN110020410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910353044.5A CN110020410B (zh) 2019-04-29 2019-04-29 一种观赏海棠花色的苗期预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910353044.5A CN110020410B (zh) 2019-04-29 2019-04-29 一种观赏海棠花色的苗期预测方法

Publications (2)

Publication Number Publication Date
CN110020410A true CN110020410A (zh) 2019-07-16
CN110020410B CN110020410B (zh) 2023-09-26

Family

ID=67192795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910353044.5A Active CN110020410B (zh) 2019-04-29 2019-04-29 一种观赏海棠花色的苗期预测方法

Country Status (1)

Country Link
CN (1) CN110020410B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111480559A (zh) * 2020-04-20 2020-08-04 金陵科技学院 一种容器栽培蓝莓花色改变的方法
CN116267454A (zh) * 2023-02-02 2023-06-23 安徽农业大学 一种筛选不结球白菜耐寒品种的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120081755A1 (en) * 2010-09-30 2012-04-05 Xerox Corporation Cost-effective binary printer models for multi-color printers by improved reflectance modeling and patch clustering
CN108648244A (zh) * 2018-04-20 2018-10-12 牡丹江师范学院 一种基于色彩模式的秋色叶植物的叶色检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120081755A1 (en) * 2010-09-30 2012-04-05 Xerox Corporation Cost-effective binary printer models for multi-color printers by improved reflectance modeling and patch clustering
CN108648244A (zh) * 2018-04-20 2018-10-12 牡丹江师范学院 一种基于色彩模式的秋色叶植物的叶色检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111480559A (zh) * 2020-04-20 2020-08-04 金陵科技学院 一种容器栽培蓝莓花色改变的方法
CN116267454A (zh) * 2023-02-02 2023-06-23 安徽农业大学 一种筛选不结球白菜耐寒品种的方法
CN116267454B (zh) * 2023-02-02 2023-11-24 安徽农业大学 一种筛选不结球白菜耐寒品种的方法

Also Published As

Publication number Publication date
CN110020410B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
Cai et al. Induction, regeneration and characterization of tetraploids and variants in ‘Tapestry’caladium
Gerrath et al. Inflorescence morphology and development in the basal rosid lineage Vitales
CN110020410A (zh) 一种观赏海棠花色的苗期预测方法
Matzke Inflorescence patterns and sexual expression in Begonia semperflorens
Hilgenhof Passiflora subgenus Astrophea: Curiosities amongst the passionflowers
Anh et al. Evaluating agronomic characteristics of twelve local papaya (Carica papaya L.) varieties in Viet Nam
Paranthaman et al. Morphological characterization and in vitro callus induction in ashoka [Saraca asoca (Roxb.) de wilde.]-A vulnerable medicinal tree
Runkle et al. Growing the best Phalaenopsis
Buchholz The suspensor of Sciadopitys
Souza et al. Identification and selection of ornamental pineapple plants
Denisova et al. Conservation and study of the generic complex Chrysanthemum L. in the Southern Ural
CN110463691A (zh) 一种郁金香鲜切花保鲜液
dos Santos Lemos Filho et al. Floral biometrics and phenological characterization of flowering and fruiting of the passion fruit Passiflora trintae in southwestern Bahia, Brazil
CN110122136A (zh) 一种各色系茶树品种混合种植的方法及其应用
Runkle et al. The orchid grower
Dewi et al. Diversity of orchid types in the Oeluan Tourism Forest, Bijeli Village, Noemuti District, North Central Timor Regency
Azimi et al. Hybridization and assessment of new genotypes of Iris germanica
Ghimire et al. Embryo, seed coat and pericarp development in Abeliophyllum distichum Nakai (Oleaceae): a rare and endemic plant of Korea
JP6759487B2 (ja) 八重咲ペンタス植物、及びその育成方法
Kawane Floral biology of Commiphora wightii –a data deficient medicinal plant distributed in the arid zones of India
Duisenova et al. Introduction of perspective varieties of tulips in Mangystau for wide implementation of green construction in practice
Moreno-Camarena et al. Mesoamerican Cypripedium: Mycorrhizal Contributions to Promote Their Conservation as Critically Endangered Species. Plants 2022, 11, 1554
Nakata et al. Morphological study of the structure and development of longan inflorescence
Mostafa et al. Computer-generated conventional keys and descriptions of Gossypium species and cultivars (Malvaceae)
Silen July-stimulated flowering in Douglas-fir

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant