CN110011359A - A Parameter Identification Method of Grid-connected Inverter Under Finite Set Model Predictive Control - Google Patents
A Parameter Identification Method of Grid-connected Inverter Under Finite Set Model Predictive Control Download PDFInfo
- Publication number
- CN110011359A CN110011359A CN201910406793.XA CN201910406793A CN110011359A CN 110011359 A CN110011359 A CN 110011359A CN 201910406793 A CN201910406793 A CN 201910406793A CN 110011359 A CN110011359 A CN 110011359A
- Authority
- CN
- China
- Prior art keywords
- moment
- formula
- phase
- grid
- under
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000009471 action Effects 0.000 claims description 15
- 238000005070 sampling Methods 0.000 claims description 6
- 230000014509 gene expression Effects 0.000 claims description 5
- 238000005457 optimization Methods 0.000 claims description 4
- 230000003111 delayed effect Effects 0.000 claims 1
- 238000004364 calculation method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
本发明公开了一种有限集模型预测控制下的并网逆变器参数辨识方法,其步骤包括:在简化的模型预测控制方法下,构建双电压预测误差方程,获得滤波电感及其等效电阻真实值与参数标称值之间的关系,实时地对真实的电感与电阻进行辨识,构建准确的预测模型,从而改善并网电流的质量,提高有限集模型预测控制的鲁棒性。
The invention discloses a grid-connected inverter parameter identification method under finite set model prediction control. The relationship between the real value and the nominal value of the parameter can identify the real inductance and resistance in real time, and build an accurate prediction model, thereby improving the quality of the grid-connected current and improving the robustness of the finite set model predictive control.
Description
技术领域technical field
本发明属于并网逆变器控制技术领域,更具体地说是涉及一种在简化的模型预测控制下的参数辨识方法,用于改善逆变器并网电流波形质量,提高有限集模型预测控制下并网逆变器的参数鲁棒性。The invention belongs to the technical field of grid-connected inverter control, and more particularly relates to a parameter identification method under simplified model predictive control, which is used to improve the quality of the grid-connected current waveform of the inverter and the finite set model predictive control. Parameter robustness of down grid-connected inverters.
背景技术Background technique
模型预测控制(Model Predictive Control,MPC)是产生于20世纪70年代后期的一种计算机控制算法,它的概念直观、易于建模、无需精确模型和复杂控制参数设计,对克服工业控制过程中的非线性及不确定性等问题有非常好的效果,而且易于增加约束、动态响应快、鲁棒性强。Model Predictive Control (MPC) is a computer control algorithm that originated in the late 1970s. Its concept is intuitive, easy to model, and does not require accurate models and complex control parameter design. Problems such as nonlinearity and uncertainty have very good results, and it is easy to add constraints, fast dynamic response, and strong robustness.
鉴于其巨大优势,近十年中,MPC中的一种FCS-MPC在电力电子变换器、电机驱动、电力系统等相关领域得到了广泛的应用和发展,无法回避的是FCS-MPC在实际应用中面临众多的挑战,如在线计算量大,若计算超时,开关动作应用时,已不是该时刻最优开关动作,降低了预测控制的效果,而当存在建模误差,使得遵循传统FCS-MPC算法选择的最优开关函数组合,在其实施于三相逆变器时已丧失了最优性,导致系统被控量实际响应曲线与由FCS-MPC算法确定的最优响应曲线出现偏差,最终影响系统的控制性能。然而目前关于并网逆变器模型预测控制参数失配的辨识方法,均是基于传统的模型预测电流控制的,在原有的大量的计算基础上叠加了大量的辨识算法的计算,增大了计算超时的风险,且当前大多数参数辨识方案只对电感进行辨识,忽略了滤波电感的电阻失配,当电阻在较大范围内波动时,并网电流的稳态误差会增大,电流质量下降。In view of its huge advantages, FCS-MPC, one of MPCs, has been widely used and developed in power electronic converters, motor drives, power systems and other related fields in the past decade. There are many challenges, such as a large amount of online calculation, if the calculation times out, the switching action is not the optimal switching action at that moment, which reduces the effect of predictive control, and when there is a modeling error, it is necessary to follow the traditional FCS-MPC The optimal switching function combination selected by the algorithm has lost its optimality when it is implemented in the three-phase inverter, resulting in a deviation between the actual response curve of the system controlled variable and the optimal response curve determined by the FCS-MPC algorithm. affect the control performance of the system. However, the current identification methods for the mismatch of the model predictive control parameters of grid-connected inverters are all based on the traditional model predictive current control. The risk of timeout, and most of the current parameter identification schemes only identify the inductance, ignoring the resistance mismatch of the filter inductance, when the resistance fluctuates in a large range, the steady-state error of the grid-connected current will increase, and the current quality will decrease .
发明内容SUMMARY OF THE INVENTION
本发明是为避免上述现有技术所存在的不足,提供一种有限集模型预测控制下的并网逆变器参数辨识方法,以期通过引入两个预测电压误差方程,实时辨识电感及其寄生电阻,获得准确模型的同时降低预测控制的计算量,从而提高逆变器模型预测控制的参数鲁棒性,改善逆变器并网电流波形质量。In order to avoid the above-mentioned shortcomings of the prior art, the present invention provides a parameter identification method of a grid-connected inverter under the predictive control of a finite set model, in order to identify the inductance and its parasitic resistance in real time by introducing two prediction voltage error equations , to obtain an accurate model and reduce the calculation amount of the predictive control, thereby improving the parameter robustness of the inverter model predictive control and improving the quality of the inverter grid-connected current waveform.
本发明为解决技术问题采用如下技术方案:The present invention adopts the following technical scheme for solving the technical problem:
本发明一种有限集模型预测控制下的并网逆变器参数辨识方法的特点是,所述方法是按如下步骤进行的:The characteristics of a method for identifying parameters of a grid-connected inverter under the predictive control of a finite set model of the present invention are that the method is carried out according to the following steps:
步骤1:利用式(1)构建k时刻参数失配时,有限集模型预测控制下简化的并网逆变器的标称离散模型:Step 1: Use equation (1) to construct the nominal discrete model of the simplified grid-connected inverter under the finite set model predictive control when the parameters are mismatched at time k:
式(1)中,是k时刻两相αβ静止坐标系下并网逆变器的最优输出电压,eα,β k为k时刻两相αβ静止坐标系下的电网电压,r′为标称电阻,L′为标称电感;iα,β_ref k+1为k+1时刻两相αβ静止坐标系下的参考电流,iα,β k为k时刻两相αβ静止坐标系下的并网电流,Ts为采样时间间隔;In formula (1), is the optimal output voltage of the grid-connected inverter in the two-phase αβ static coordinate system at time k, e α, β k is the grid voltage in the two-phase αβ static coordinate system at time k, r′ is the nominal resistance, and L′ is Nominal inductance; i α, β_ref k+1 is the reference current in the two-phase αβ stationary coordinate system at time k+1, i α, β k is the grid-connected current in the two-phase αβ stationary coordinate system at time k, Ts is the sampling time interval;
利用式(2)构建k时刻实际参数运行时,有限集模型预测控制下简化的并网逆变器的真实离散模型:Use equation (2) to construct the real discrete model of the simplified grid-connected inverter under the finite set model predictive control when the actual parameters are running at time k:
式(2)中,Vα,β k是k时刻两相αβ静止坐标系下并网逆变器的实际输出电压,iα,β k+1为k+1时刻两相αβ静止坐标系下的实际电流,r为实际电阻,L为实际电感;In formula (2), V α, β k is the actual output voltage of the grid-connected inverter in the two-phase αβ stationary coordinate system at time k, i α, β k+1 is the two-phase αβ stationary coordinate system at the time k+1. The actual current, r is the actual resistance, L is the actual inductance;
由式(1)和式(2)分别获得k-1时刻两相αβ静止坐标系下并网逆变器的最优输出电压以及k-1时刻实际的两相αβ静止坐标系下并网逆变器的实际输出电压Vα,β k-1;The optimal output voltage of the grid-connected inverter in the two-phase αβ stationary coordinate system at time k-1 is obtained from equations (1) and (2) respectively and the actual output voltage V α,β k-1 of the grid-connected inverter in the actual two-phase αβ stationary coordinate system at time k-1 ;
步骤2:利用式(3)得到k-1时刻两相αβ静止坐标系下最优输出电压与实际电压之差ΔVα,β k-1:Step 2: Use equation (3) to obtain the difference ΔV α,β k-1 between the optimal output voltage and the actual voltage in the two-phase αβ stationary coordinate system at time k-1 :
式(3)中,iα,β_ref k为k时刻两相αβ静止坐标系下的参考电流,iα,β k-1为k-1时刻两相αβ静止坐标系下的并网电流;In formula (3), i α, β_ref k is the reference current in the two-phase αβ stationary coordinate system at time k, i α, β k-1 is the grid-connected current in the two-phase αβ stationary coordinate system at time k-1;
利用式(4)得到k-1时刻与k-2时刻两相αβ静止坐标系下的最优电压估计误差之差Δδα,β k-1:Using equation (4), the difference Δδ α,β k-1 of the optimal voltage estimation error in the two-phase αβ stationary coordinate system at time k-1 and time k-2 is obtained:
式(4)中,iα,β_ref k-1为k-1时刻两相αβ静止坐标系下的参考电流,iα,β k-2为k-2时刻两相αβ静止坐标系下的并网电流;In formula (4), i α, β_ref k-1 are the reference currents in the two-phase αβ stationary coordinate system at time k-1, and i α, β k-2 are the parallels in the two-phase αβ stationary coordinate system at the time k-2. network current;
利用式(5)构建k时刻两相αβ静止坐标系下实际电感L的辨识表达式Lα,β_est k:The identification expression L α,β_est k of the actual inductance L in the two-phase αβ stationary coordinate system at time k is constructed by formula (5):
步骤3:利用式(6)得到k时刻两相αβ静止坐标系下实际电阻r的估计式Rα,β_est k:Step 3: Use formula (6) to obtain the estimated formula R α,β_est k of the actual resistance r in the two-phase αβ stationary coordinate system at time k :
步骤4:利用式(7)所示的α轴电感估计式对实际电感L进行估计,得到k时刻的α轴电感估计值Lα_est k:Step 4: Use the α-axis inductance estimation formula shown in equation (7) to estimate the actual inductance L, and obtain the α-axis inductance estimated value L α_est k at time k :
式(7)中,Lα_est k-1为k-1时刻的α轴电感估计值,Δδα k-1为k-1时刻与k-2时刻的α轴最优电压估计误差之差,iαref k,iαref k-1分别为k时刻,k-1时刻的α轴参考电流,iα k,iα k-1,iα k-2分别为k时刻,k-1时刻,k-2时刻的α轴并网电流,Vα k-2,Vα k-1分别为k-2时刻,k-1时刻的α轴并网逆变器的输出电压;In formula (7), L α_est k-1 is the estimated value of the α-axis inductance at time k-1, Δδ α k-1 is the difference between the estimation errors of the optimal α-axis voltage at time k-1 and time k-2, i αref k , i αref k-1 are the α-axis reference currents at time k, time k-1, respectively, i α k , i α k-1 , i α k-2 are time k, time k-1, k- The α-axis grid-connected current at time 2, V α k-2 and V α k-1 are the output voltages of the α-axis grid-connected inverter at time k-2 and time k-1, respectively;
步骤5:利用式(8)对实际电阻r进行估计,得到k时刻的电阻估计值Rest k:Step 5: Use equation (8) to estimate the actual resistance r, and obtain the estimated resistance value R est k at time k :
式(8)中,θ为k-1时刻的电网相角,变量A=[1π/4,3π/4]∪[5π/4,7π/4],变量B=[0,1π/4]∪[3π/4,5π/4]∪[7π/4~π];In formula (8), θ is the grid phase angle at time k-1, variable A=[1π/4,3π/4]∪[5π/4,7π/4], variable B=[0,1π/4] ∪[3π/4,5π/4]∪[7π/4~π];
步骤6:将所述k时刻的α轴电感估计值Lα_est k作为标称电感L′,将所述k时刻的电阻估计值Rest k作为标称电阻r′并代入式(1)中,得到k时刻的标称离散模型;Step 6: take the estimated value of the α-axis inductance L α_est k at the time k as the nominal inductance L′, take the estimated resistance value R est k at the time k as the nominal resistance r′ and substitute it into the formula (1), Get the nominal discrete model at time k;
步骤7:将k替换为k+1后代入式(1)中,得到两步预测模型;Step 7: Substitute k with k+1 and enter into formula (1) to obtain a two-step prediction model;
步骤8:根据所述两步预测模型得到k+1时刻并网逆变器的最优输出电压;Step 8: Obtain the optimal output voltage of the grid-connected inverter at time k+1 according to the two-step prediction model;
步骤9:根据所述最优输出电压,利用价值函数寻优方法得到获得k+1时刻的并网逆变器开关管动作信号Sa k+1,Sb k+1,Sc k+1,并在延时一个周期后输出并网逆变器开关管动作信号Sa k+1,Sb k+1,Sc k+1,实现对并网逆变器在k+1时刻的开关动作;Step 9: According to the optimal output voltage, the value function optimization method is used to obtain the grid-connected inverter switch tube action signals S a k+1 , S b k+1 , S c k+1 at time k+1 , and output the switch tube action signals S a k+1 , S b k+1 , S c k+1 of the grid-connected inverter after a delay of one cycle to realize the switching of the grid-connected inverter at time k+1 action;
步骤10:在k+1时刻,将k+1赋值给k后,返回步骤1执行。Step 10: At time k+1, after assigning k+1 to k, return to step 1 for execution.
与已有技术相比,本发明有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:
1、本发明在简化的有限集模型预测控制的基础上,通过构建双电压误差方程,在辨识出电感的同时,辨识出了电感的寄生电阻,完全消除了参数失配,提高了并网电流的质量;降低了基于参数辨识的有限集模型预测控制的总体计算量,因而降低了一个周期内计算超时的风险。1. On the basis of the simplified finite set model predictive control, the present invention identifies the inductance and the parasitic resistance of the inductance by constructing a double voltage error equation, completely eliminating the parameter mismatch and improving the grid-connected current. It reduces the overall calculation amount of the finite set model predictive control based on parameter identification, thus reducing the risk of calculation timeout in one cycle.
2、本发明在步骤1中简化的有限集模型预测控制模型的基础上进行参数辨识,避免了在传统预测电流控制的基础上进行参数辨识造成的总体计算量的巨大,大大降低了总体的计算量,减轻了控制器的计算负担;2. The present invention performs parameter identification on the basis of the simplified finite set model predictive control model in step 1, which avoids the huge overall calculation amount caused by the parameter identification based on the traditional predictive current control, and greatly reduces the overall calculation It reduces the computational burden of the controller;
3、本发明在步骤2和步骤3中通过构建双电压误差方程,在辨识出电感的同时,辨识出了电感的寄生电阻,完全消除了参数的失配,提高了有限集模型预测控制的鲁棒性。3. In the present invention, by constructing a dual voltage error equation in steps 2 and 3, the parasitic resistance of the inductance is identified while the inductance is identified, the parameter mismatch is completely eliminated, and the robustness of the finite set model predictive control is improved. Awesome.
4、本发明在步骤4和步骤5中对步骤2和步骤3中的估计电感与估计电阻表达式的奇点问题进行了详细的分析,提出了简单有效的解决方案,避免了以往研究中的参数估计式奇点问题分析的复杂性。4. In the present invention, the singularity problem of the estimated inductance and estimated resistance expressions in steps 2 and 3 is analyzed in detail in steps 4 and 5, and a simple and effective solution is proposed, which avoids the problems in previous studies. The complexity of the analysis of the parameter-estimated singularity problem.
附图说明Description of drawings
图1为本发明中并网逆变器系统结构框图;Fig. 1 is the structural block diagram of the grid-connected inverter system in the present invention;
图2为本发明电感估计中奇点处理的原理图;Fig. 2 is the principle diagram of singularity processing in the inductance estimation of the present invention;
图3为本发明电阻估计中奇点处理的原理图;Fig. 3 is the principle diagram of singularity processing in the resistance estimation of the present invention;
图4为本发明加入参数辨识前后参数估计的效果图;Fig. 4 is the effect diagram of parameter estimation before and after adding parameter identification according to the present invention;
图5为本发明加入参数估计前后并网电流的效果图;Fig. 5 is the effect diagram of the grid-connected current before and after adding parameter estimation according to the present invention;
图6为本发明加入参数估计前并网电流的FFT分析图;Fig. 6 is the FFT analysis diagram of the grid-connected current before adding parameter estimation according to the present invention;
图7为本发明加入参数估计后并网电流的FFT分析图。FIG. 7 is an FFT analysis diagram of the grid-connected current after parameter estimation is added in the present invention.
具体实施方式Detailed ways
参见图1,本实施例中,一种在简化的有限集模型预测控制下的并网逆变器参数辨识方法是:构建简化的模型预测控制失配参数预测模型以及基于准确参数的实际模型,根据上述模型构建通过构建双电压误差方程,实时地对真实的电感与电阻进行辨识,构建准确的预测模型,计算最优输出电压,两步预测,最后通过价值函数寻优获得最优的逆变器开关管动作。具体的说,是按如下步骤进行:Referring to FIG. 1 , in this embodiment, a method for parameter identification of grid-connected inverters under simplified finite set model predictive control is to construct a simplified model predictive control mismatch parameter prediction model and an actual model based on accurate parameters, According to the above model construction, by constructing a dual voltage error equation, the real inductance and resistance are identified in real time, an accurate prediction model is constructed, the optimal output voltage is calculated, two-step prediction, and finally the optimal inverter is obtained through the optimization of the value function. switch tube action. Specifically, follow the steps below:
步骤1:利用式(1)构建k时刻参数失配时,有限集模型预测控制下并网逆变器的基于计算最优电压的标称离散模型:Step 1: Use equation (1) to construct a nominal discrete model based on calculating the optimal voltage of the grid-connected inverter under the finite set model predictive control when the parameters are mismatched at time k:
式(1)中,是k时刻两相αβ静止坐标系下并网逆变器的最优输出电压,eα,β k为k时刻两相αβ静止坐标系下的电网电压,r′为标称电阻,L′为标称电感;iα,β_ref k+1为k+1时刻两相αβ静止坐标系下的参考电流,iα,β k为k时刻两相αβ静止坐标系下的并网电流,Ts为采样时间间隔;In formula (1), is the optimal output voltage of the grid-connected inverter in the two-phase αβ static coordinate system at time k, e α, β k is the grid voltage in the two-phase αβ static coordinate system at time k, r′ is the nominal resistance, and L′ is Nominal inductance; i α, β_ref k+1 is the reference current in the two-phase αβ stationary coordinate system at time k+1, i α, β k is the grid-connected current in the two-phase αβ stationary coordinate system at time k, Ts is the sampling time interval;
利用式(2)构建k时刻实际参数运行时,有限集模型预测控制下的并网逆变器的基于计算最优电压真实离散模型:Using Equation (2) to construct a real discrete model based on calculating the optimal voltage of the grid-connected inverter under the finite set model predictive control when the actual parameters are running at time k:
式(2)中,Vα,β k是k时刻两相αβ静止坐标系下并网逆变器的实际输出电压,iα,β k+1为k+1时刻两相αβ静止坐标系下的实际电流,r为实际电阻,L为实际电感;In formula (2), V α, β k is the actual output voltage of the grid-connected inverter in the two-phase αβ stationary coordinate system at time k, i α, β k+1 is the two-phase αβ stationary coordinate system at the time k+1. The actual current, r is the actual resistance, L is the actual inductance;
由式(1)和式(2)分别获得k-1时刻计算的两相αβ静止坐标系下并网逆变器的最优输出电压以及k-1时刻实际的两相αβ静止坐标系下并网逆变器的实际输出电压Vα,β k-1,但实际输出电压Vα,β k-1可以由k-1时刻的逆变器开关动作以及逆变器直流电压直接获得;基于最优电压计算的预测模型仅仅需要1次最优电压的计算,相比传统预测电流模型的8次预测电流的计算,计算量大大降低,因此基于计算最优电压的简化的模型预测控制的参数辨识能大大降低总体的计算量。The optimal output voltage of the grid-connected inverter in the two-phase αβ stationary coordinate system calculated at time k-1 is obtained from equations (1) and (2) respectively And the actual output voltage V α, β k-1 of the grid-connected inverter in the actual two-phase αβ stationary coordinate system at the time k-1 , but the actual output voltage V α, β k-1 can be determined by the inverse of the time k-1. The switching action of the inverter and the DC voltage of the inverter are directly obtained; the prediction model based on the optimal voltage calculation only needs one calculation of the optimal voltage, which is greatly reduced compared to the 8 calculations of the predicted current of the traditional predicted current model. Therefore, the parameter identification of the simplified model predictive control based on calculating the optimal voltage can greatly reduce the overall calculation amount.
步骤2:将步骤1计算的逆变器最优输出电压与实际的输出电压Vα,β k-1作差:利用式(3)得到k-1时刻两相αβ静止坐标系下最优输出电压与实际电压之差:Step 2: Calculate the optimal output voltage of the inverter calculated in Step 1 Difference with the actual output voltage V α, β k-1 : Using equation (3), the difference between the optimal output voltage and the actual voltage in the two-phase αβ stationary coordinate system at time k-1 is obtained:
式(3)中,iα,β_ref k为k时刻两相αβ静止坐标系下的参考电流,iα,β k-1为k-1时刻两相αβ静止坐标系下的并网电流;In formula (3), i α, β_ref k is the reference current in the two-phase αβ stationary coordinate system at time k, i α, β k-1 is the grid-connected current in the two-phase αβ stationary coordinate system at time k-1;
进一步构建前后时刻最优电压估计误差之差:Δδα,β k-1=ΔVα,β k-1-ΔVα,β k-2,利用式(4)得到k-1时刻与k-2时刻两相αβ静止坐标系下的最优电压估计误差之差:Further construct the difference between the optimal voltage estimation errors before and after the time: Δδ α,β k-1 =ΔV α,β k-1 -ΔV α,β k-2 , use formula (4) to obtain the time k-1 and k-2 The difference between the optimal voltage estimation errors in the two-phase αβ stationary coordinate system at time:
式(4)中,iα,β_ref k-1为k-1时刻两相αβ静止坐标系下的参考电流,iα,β k-2为k-2时刻两相αβ静止坐标系下的并网电流;In formula (4), i α, β_ref k-1 are the reference currents in the two-phase αβ stationary coordinate system at time k-1, and i α, β k-2 are the parallels in the two-phase αβ stationary coordinate system at the time k-2. network current;
式(4)中,一般有:In formula (4), there are generally:
故忽略式(4)中的电阻项,得到式(6)所示的k时刻两相αβ静止坐标系下实际电感L的辨识表达式Lα,β_est k:Therefore, ignoring the resistance term in equation (4), the identification expression L α,β_est k of the actual inductance L in the two-phase αβ stationary coordinate system at time k shown in equation (6) is obtained:
步骤3:将步骤2中的式(6)代入电压误差表达式(3)中,得到如式(7)所示k-1时刻两相αβ静止坐标系下关于实际电阻r与标称电阻r′的关系式Jα,β,如式(7)所示:Step 3: Substitute the formula (6) in step 2 into the voltage error expression (3), and obtain the actual resistance r and the nominal resistance r in the two-phase αβ static coordinate system at the time k-1 as shown in the formula (7). The relational formula J α,β of ', as shown in formula (7):
由式(7)得到k时刻两相αβ静止坐标系下实际电阻r的估计式Rα,β_est k:The estimated formula R α,β_est k of the actual resistance r in the two-phase αβ stationary coordinate system at time k is obtained from equation (7):
步骤4:步骤2计算得到的电感计算式(6)计算时,分子项若为0,则估计值出现峰值,视为奇点,要得到平稳的估计值,必须避开奇点。对电感的奇点问题直接进行分析存在困难,根据逆变器开关矢量关系图2,可得到如式(9)所示的电压矢量关系式:Step 4: When calculating the inductance calculation formula (6) calculated in step 2, if the numerator term is 0, the estimated value has a peak value, which is regarded as a singular point. To obtain a stable estimated value, the singular point must be avoided. It is difficult to directly analyze the singularity of the inductor. According to the inverter switching vector relationship in Figure 2, the voltage vector relationship shown in equation (9) can be obtained:
式(9)中,Vα,β k-2,Vα,β k-1分别为k-2,k-1时刻两相αβ静止坐标系下的逆变器输出电压,Vgrid_α,β k-2,Vgrid_α,β k-1分别为k-2,k-1时刻两相αβ静止坐标系下的电网电压。In formula (9), V α, β k-2 , V α, β k-1 are the inverter output voltages in the two-phase αβ stationary coordinate system at time k-2, k-1, respectively, V grid_α, β k -2 , V grid_α, β k-1 are the grid voltages in the two-phase αβ stationary coordinate system at time k-2, k-1, respectively.
在采样频率足够大的情况下,相邻两个时刻电网电压的幅值近似相等,式(9)可转化为:When the sampling frequency is large enough, the magnitudes of the grid voltages at two adjacent moments are approximately equal, and equation (9) can be transformed into:
由式(10)可将步骤2中式(6)的奇点的形式转化为前后两个开关动作之差,大大简化了奇点的判断过程。由逆变器开关矢量图2可知,α轴电感估计式的奇点仅仅存在于两相邻时刻逆变器开关动作完全相同情况下,而β轴电感估计式的奇点不仅仅在上述情况下存在,在逆变器开关动作在000与100之间,001与101之间,010与110之间,111与011之间转换时也存在,奇点数多于α轴电感估计式,故α轴电感估计的响应速度快于β轴电感估计式,故采用α轴电感估计式对实际电感进行估计。From the formula (10), the form of the singularity in the formula (6) in step 2 can be converted into the difference between the two switching actions before and after, which greatly simplifies the judgment process of the singularity. From the inverter switch vector diagram 2, it can be seen that the singularity of the α-axis inductance estimation formula only exists when the switching actions of the inverter are identical at two adjacent moments, and the singularity of the β-axis inductance estimation formula is not only in the above cases. Exist, when the inverter switching action is between 000 and 100, between 001 and 101, between 010 and 110, and between 111 and 011, it also exists, the number of singular points is more than the α-axis inductance estimation formula, so the α-axis The response speed of the inductance estimation is faster than the β-axis inductance estimation formula, so the α-axis inductance estimation formula is used to estimate the actual inductance.
利用式(11)所示的α轴电感估计式对实际电感L进行估计,得到k时刻的α轴电感估计值Lα_est k:Use the α-axis inductance estimation formula shown in equation (11) to estimate the actual inductance L, and obtain the α-axis inductance estimated value L α_est k at time k :
式(11)中,Lα_est k-1为k-1时刻的α轴电感估计值,Δδα k-1为k-1时刻与k-2时刻的α轴最优电压估计误差之差,iαref k,iαref k-1分别为k时刻,k-1时刻的α轴参考电流,iα k,iα k-1,iα k-2分别为k时刻,k-1时刻,k-2时刻的α轴并网电流,Vα k-2,Vα k-1分别为k-2时刻,k-1时刻的α轴并网逆变器的输出电压;In formula (11), L α_est k-1 is the estimated value of the α-axis inductance at time k-1, Δδ α k-1 is the difference between the estimation errors of the optimal α-axis voltage at time k-1 and time k-2, i αref k , i αref k-1 are the α-axis reference currents at time k, time k-1, respectively, i α k , i α k-1 , i α k-2 are time k, time k-1, k- The α-axis grid-connected current at time 2, V α k-2 and V α k-1 are the output voltages of the α-axis grid-connected inverter at time k-2 and time k-1, respectively;
步骤5:步骤3电阻估计式(8)也存在奇点,但奇点形式简单,即为两轴电流的过零点,且两相αβ静止坐标系下两轴的电流相位相差90°,两轴电阻估计式的奇点相位也相差90°。通过切换估计轴,很容易避开各轴的估计式奇点,即在α轴估计式的奇点一定范围内,用β轴电阻估计式进行估计,α轴停止估计,到达β轴的奇点一定范围内时,用α轴的电阻估计式进行估计,β轴停止估计。但是两轴奇点附近的范围的选择会影响估计的效果,理论上越远离奇点,估计值的震荡越小,估计的效果越好。Step 5: Step 3 The resistance estimation formula (8) also has a singularity, but the singularity is simple in form, that is, the zero-crossing point of the two-axis current, and the current phase of the two axes in the two-phase αβ static coordinate system differs by 90°. The singularities of the resistance estimation formula are also out of phase by 90°. By switching the estimation axis, it is easy to avoid the estimated singularity of each axis, that is, within a certain range of the singularity of the α-axis estimation formula, use the β-axis resistance estimation formula to estimate, stop the α-axis estimation, and reach the β-axis singularity Within a certain range, use the α-axis resistance estimation formula to estimate, and stop the β-axis estimation. However, the selection of the range near the singularity of the two axes will affect the effect of the estimation. In theory, the farther away from the singularity, the smaller the shock of the estimated value, and the better the estimation effect.
步骤3式(7)中,r′为k-1时刻的预测模型中电阻的实际应用值,而r的估计值为k时刻的应用值,在采样频率足够高的情况下,可认为电流前后时刻幅值相等,式(7)可近似为k-1时刻的电阻上的电压减去k时刻的电阻上的电压,得到(12):Step 3 In formula (7), r' is the actual applied value of the resistance in the prediction model at time k-1, and the estimated value of r is the applied value at time k. When the sampling frequency is high enough, it can be considered that the current before and after the current The amplitudes at the time are equal, and the formula (7) can be approximated as the voltage on the resistor at time k-1 minus the voltage on the resistor at time k, to obtain (12):
Jα,β≈Vr k-1-Vr k (12)J α,β ≈V r k-1 -V r k (12)
式(14)中,Vr k-1,Vr k分别为k-1,k时刻的电阻r上的电压,两边同除以采样周期Ts,得到式(13):In formula (14), V r k-1 and V r k are the voltages on the resistor r at time k-1 and k, respectively, and both sides are divided by the sampling period Ts to obtain formula (13):
Jα,β/Ts≈(Vr k-1-Vr k)/Ts=-ΔVr/Ts (13)J α,β /Ts≈(V r k-1 -V r k )/Ts=-ΔV r /Ts (13)
式(13)中,ΔVr为k,k-1时刻的电阻r上的电压之差。In Equation (13), ΔV r is the difference between the voltages on the resistor r at time k and k-1.
可知,Jα,β滞后Vr k-190°,而电阻r上的电压与电流同相,因此Jα,β也滞后iα,β k-190°,则Jα/iα k-1可表示为(14):It can be seen that J α, β lag V r k-1 90°, and the voltage on the resistor r is in phase with the current, so J α, β also lags i α, β k-1 90°, then J α /i α k- 1 can be expressed as (14):
Jα/iα k-1=J_αsin(θ-90)/I_α×sin(θ)=J_α/I_αtan(θ-90) (14)J α /i α k-1 =J _α sin(θ-90)/I _α ×sin(θ)=J _α /I _α tan(θ-90) (14)
式(14)中,Jα为电阻r上相邻时刻的电压差的α轴分量,iα k-1为k-1时刻并网电流的α轴分量,J_α为相邻时刻电阻上电压差幅值α轴分量,I_α为并网电流的α轴分量的幅值,θ为k-1时刻的电网相角。In formula (14), J α is the α-axis component of the voltage difference at the adjacent time on the resistor r, i α k-1 is the α-axis component of the grid-connected current at the time k-1, and J_α is the voltage on the resistance at the adjacent time. The difference amplitude α-axis component, I_α is the amplitude of the α-axis component of the grid-connected current, and θ is the grid phase angle at time k-1.
同理,Jβ/iβ k-1可表示为式(15):Similarly, J β /i β k-1 can be expressed as formula (15):
Jβ/iβ k-1==J_β/I_βtanθ (15)J β /i β k-1 ==J _β /I _β tanθ (15)
式(15)中,Jβ为电阻r上相邻时刻的电压差的β轴分量,iβ k-1为k-1时刻并网电流的β轴分量,J_β为相邻时刻电阻上电压差β轴分量幅值,I_β为并网电流的β轴分量的幅值。In formula (15), J β is the β-axis component of the voltage difference between adjacent moments on the resistor r, i β k-1 is the β-axis component of the grid-connected current at the time k-1, and J _β is the voltage on the resistor at the adjacent moment. Difference β-axis component amplitude, I_β is the amplitude of the β-axis component of grid-connected current.
由式(14),式(15)的图形图3可知,在π/2,3π/2附近,α轴电阻估计值的震荡较小,而在π,2π附近β轴电阻估计值的震荡较小,故取在等幅震荡点作为两轴辨识转换的临界,总体上,电感的估计较为平稳。From the graphs of equations (14) and (15) in Figure 3, it can be seen that near π/2, 3π/2, the estimated value of the α-axis resistance has a smaller oscillation, while in the vicinity of π and 2π, the estimated value of the β-axis resistance has a larger oscillation. Therefore, the constant amplitude oscillation point is taken as the critical point of the two-axis identification and conversion. In general, the estimation of the inductance is relatively stable.
故令式(14)与式(15)相等,得到式(16):Therefore, Equation (14) is equal to Equation (15), and Equation (16) is obtained:
|J_α/I_αtan(θ-90)|=|J_β/I_βtanθ| (16)|J _α /I _α tan(θ-90)|=|J _β /I _β tanθ| (16)
解得两相αβ静止坐标系下两轴电阻辨识转换的临界角度为:π/4,3π/4,5π/4,7π/4,利用式(17)对实际电阻r进行估计,得到k时刻的电阻估计值Rest k:The critical angle of the two-axis resistance identification transformation in the two-phase αβ stationary coordinate system is obtained as: π/4, 3π/4, 5π/4, 7π/4, and the actual resistance r is estimated by using the formula (17), and the time k is obtained. The resistance estimate R est k of :
式(17)中,θ为k-1时刻的电网相角,变量A=[1π/4,3π/4]∪[5π/4,7π/4],变量B=[0,1π/4]∪[3π/4,5π/4]∪[7π/4~π];此种方法得到的电阻估计值总体震荡幅度最小,且呈周期性震荡,故可采用滑动平均滤波,获得平滑的电阻估计曲线。In formula (17), θ is the grid phase angle at time k-1, variable A=[1π/4,3π/4]∪[5π/4,7π/4], variable B=[0,1π/4] ∪[3π/4,5π/4]∪[7π/4~π]; the resistance estimate obtained by this method has the smallest overall oscillation amplitude and periodic oscillation, so moving average filtering can be used to obtain a smooth resistance estimate curve.
步骤6:将k时刻的α轴电感估计值Lα_est k作为标称电感L′,将k时刻的电阻估计值Rest k作为标称电阻r′并代入式(1)中,得到k时刻的标称离散模型;Step 6: Take the estimated value of the α-axis inductance L α_est k at time k as the nominal inductance L′, and take the estimated resistance value R est k at time k as the nominal resistance r′ and substitute it into Equation (1) to obtain the Nominal discrete model;
步骤7:将k替换为k+1后代入式(1)中,得到两步预测模型;Step 7: Substitute k with k+1 and enter into formula (1) to obtain a two-step prediction model;
步骤8:根据两步预测模型得到k+1时刻并网逆变器的最优输出电压;Step 8: Obtain the optimal output voltage of the grid-connected inverter at time k+1 according to the two-step prediction model;
步骤9:根据最优输出电压,利用价值函数寻优方法获得k+1时刻的并网逆变器开关管动作信号Sa k+1,Sb k+1,Sc k+1,并在延时一个周期后输出并网逆变器开关管动作信号Sa k+1,Sb k+1,Sc k+1,实现对并网逆变器在k+1时刻的开关动作;Step 9: According to the optimal output voltage, the value function optimization method is used to obtain the switch tube action signals S a k+1 , S b k+1 , S c k+1 of the grid-connected inverter at the time k+1 , and in After a period of delay, output the switch tube action signals S a k+1 , S b k+1 , S c k+1 of the grid-connected inverter to realize the switching action of the grid-connected inverter at time k+1;
步骤10:在k+1时刻,将k+1赋值给k后,返回步骤1执行。Step 10: At time k+1, after assigning k+1 to k, return to step 1 for execution.
为验证本发明提出的参数辨识方法的有效性,在Matlab/simulink中搭建额定容量为18kw三相并网逆变器模型,电感和电阻的标称值分别为1mH,0.5Ω,实际电感和电阻为5mH,0.3Ω。图4为加入参数辨识前后电感和电阻的辨识效果图,0.5s加入参数辨识算法,其中0.5s前为标称值,0.5s后为辨识的实际电感值。从图4中可以看出,辨识电感与电阻可以快速准确地跟踪电感电阻的实际值。图5为加入参数辨识前后的并网电流波形,0.1s加入参数辨识算法,可以看出0.1s前三相并网电流畸变严重,0.1s后电流波形得到很大改善。图6为加入参数辨识前,并网电流的FFT分析结果图,并网电流幅值明显偏离电流指令值40A,电流波形畸变严重,THD值过高。图7为加入参数辨识后,并网电流的FFT分析结果图,并网电流的幅值的偏离得到明显改善,电流波形呈正弦,THD值大幅降低。本发明所提出的基于简化的模型预测控制下的参数辨识,能很好地改善由于参数失配导致的并网电流幅值偏离与电流畸变,大大提高了有限集模型预测控制的鲁棒性。In order to verify the validity of the parameter identification method proposed by the present invention, a three-phase grid-connected inverter model with a rated capacity of 18kw is built in Matlab/simulink. The nominal values of the inductance and resistance are 1mH and 0.5Ω respectively. The actual inductance and resistance is 5mH, 0.3Ω. Figure 4 shows the effect of inductance and resistance identification before and after adding parameter identification. The parameter identification algorithm is added at 0.5s. The nominal value before 0.5s and the actual inductance value after 0.5s are identified. As can be seen from Figure 4, identifying the inductance and resistance can quickly and accurately track the actual value of the inductance resistance. Figure 5 shows the grid-connected current waveform before and after adding parameter identification. The parameter identification algorithm is added at 0.1s. It can be seen that the three-phase grid-connected current is seriously distorted before 0.1s, and the current waveform is greatly improved after 0.1s. Figure 6 is the FFT analysis result of the grid-connected current before adding the parameter identification. The grid-connected current amplitude obviously deviates from the current command value of 40A, the current waveform is seriously distorted, and the THD value is too high. Figure 7 shows the result of FFT analysis of the grid-connected current after adding parameter identification. The deviation of the amplitude of the grid-connected current is significantly improved, the current waveform is sinusoidal, and the THD value is greatly reduced. The parameter identification based on the simplified model predictive control proposed by the present invention can well improve the grid-connected current amplitude deviation and current distortion caused by parameter mismatch, and greatly improve the robustness of the finite set model predictive control.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910406793.XA CN110011359B (en) | 2019-05-16 | 2019-05-16 | A Parameter Identification Method of Grid-connected Inverter Under Finite Set Model Predictive Control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910406793.XA CN110011359B (en) | 2019-05-16 | 2019-05-16 | A Parameter Identification Method of Grid-connected Inverter Under Finite Set Model Predictive Control |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110011359A true CN110011359A (en) | 2019-07-12 |
CN110011359B CN110011359B (en) | 2020-09-04 |
Family
ID=67177173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910406793.XA Active CN110011359B (en) | 2019-05-16 | 2019-05-16 | A Parameter Identification Method of Grid-connected Inverter Under Finite Set Model Predictive Control |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110011359B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111030486A (en) * | 2019-12-06 | 2020-04-17 | 合肥工业大学 | Parameter-free finite set model predictive control method for three-level grid-connected inverter |
CN111740575A (en) * | 2020-07-01 | 2020-10-02 | 电子科技大学 | An Adaptive Identification Method of Inverter Model Parameters Based on Steepest Descent Method |
CN112018809A (en) * | 2020-08-14 | 2020-12-01 | 长安大学 | Single-phase grid-connected inverter fixed frequency model prediction current control method |
CN113489358A (en) * | 2021-06-29 | 2021-10-08 | 南京工程学院 | Parameter online identification method for inverter |
CN113517822A (en) * | 2021-05-10 | 2021-10-19 | 南京工程学院 | Inverter parameter rapid identification method under finite set model predictive control |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104734545A (en) * | 2015-03-24 | 2015-06-24 | 西安交通大学 | PWM rectifier control method based on model prediction and voltage square control |
CN106602596A (en) * | 2016-11-30 | 2017-04-26 | 南京航空航天大学 | Model parameter adaptive method for inverter model prediction control |
CN108696170A (en) * | 2018-04-25 | 2018-10-23 | 华南理工大学 | Determine frequency finite aggregate model predictive control method for two level three-phase inverters |
-
2019
- 2019-05-16 CN CN201910406793.XA patent/CN110011359B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104734545A (en) * | 2015-03-24 | 2015-06-24 | 西安交通大学 | PWM rectifier control method based on model prediction and voltage square control |
CN106602596A (en) * | 2016-11-30 | 2017-04-26 | 南京航空航天大学 | Model parameter adaptive method for inverter model prediction control |
CN108696170A (en) * | 2018-04-25 | 2018-10-23 | 华南理工大学 | Determine frequency finite aggregate model predictive control method for two level three-phase inverters |
Non-Patent Citations (1)
Title |
---|
贾冠龙等: "改进有限集模型预测控制策略在三相级联并网逆变器中的应用", 《电网技术》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111030486A (en) * | 2019-12-06 | 2020-04-17 | 合肥工业大学 | Parameter-free finite set model predictive control method for three-level grid-connected inverter |
CN111740575A (en) * | 2020-07-01 | 2020-10-02 | 电子科技大学 | An Adaptive Identification Method of Inverter Model Parameters Based on Steepest Descent Method |
CN111740575B (en) * | 2020-07-01 | 2023-06-09 | 电子科技大学 | An Adaptive Identification Method of Inverter Model Parameters Based on Steepest Descent Method |
CN112018809A (en) * | 2020-08-14 | 2020-12-01 | 长安大学 | Single-phase grid-connected inverter fixed frequency model prediction current control method |
CN112018809B (en) * | 2020-08-14 | 2022-03-08 | 长安大学 | A fixed-frequency model predictive current control method for single-phase grid-connected inverters |
CN113517822A (en) * | 2021-05-10 | 2021-10-19 | 南京工程学院 | Inverter parameter rapid identification method under finite set model predictive control |
CN113517822B (en) * | 2021-05-10 | 2022-12-06 | 南京工程学院 | Inverter parameter rapid identification method under finite set model predictive control |
CN113489358A (en) * | 2021-06-29 | 2021-10-08 | 南京工程学院 | Parameter online identification method for inverter |
CN113489358B (en) * | 2021-06-29 | 2022-07-01 | 南京工程学院 | A method for online parameter identification of inverter |
Also Published As
Publication number | Publication date |
---|---|
CN110011359B (en) | 2020-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110011359B (en) | A Parameter Identification Method of Grid-connected Inverter Under Finite Set Model Predictive Control | |
CN106501574B (en) | A kind of active power filter harmonic current detection method | |
CN103595069B (en) | Photovoltaic generating system grid side converter model predictive control method under unbalance voltage | |
CN102916600B (en) | Self-correcting prediction control method of model of three-phase voltage type PWM (Pulse-Width Modulation) rectifier | |
CN111130366B (en) | Predictive control method without grid voltage sensor for three-phase VIENNA rectifier | |
CN105071677B (en) | Current predictive control method for two-level three-phase grid-connected inverter | |
CN102931857B (en) | Predictive control method of voltage-type PWM (pulse-width modulation) rectifier fixed-frequency model | |
CN106911147B (en) | A kind of finite aggregate model prediction voltage control method containing compensation of delay | |
CN106549400B (en) | A kind of control method of the distribution static synchronous compensator based on voltage prediction | |
CN107196534A (en) | A kind of single-phase inverter finite-time control method based on interference observer | |
CN114079399B (en) | Grid-connected inverter current loop control system and method based on linear active disturbance rejection control | |
CN103595280A (en) | Deadbeat control method of solar power generating system inverter under condition of voltage unbalance | |
CN106549399A (en) | A kind of APF DC side voltage control methods in parallel based on sliding formwork PI complex control algorithms | |
CN110492494B (en) | Direct Power Control Method of Voltage Source Converter Based on Internal Model Theory | |
CN107546767A (en) | The control structure and control method of a kind of photovoltaic combining inverter | |
CN103595279A (en) | Photovoltaic inverter fixed-frequency-type model prediction control method in power grid asymmetric fault | |
CN111641363A (en) | Dead-beat control method for permanent magnet synchronous motor under low carrier ratio | |
CN102969913B (en) | Method for compensating mismatching of model predictive control parameters for initiative front-end rectifier | |
CN111600522A (en) | A motor model predictive current control method and device, electronic equipment and medium | |
CN104617593B (en) | Inverse direct power control method of grid connection converter | |
CN112994110B (en) | LC filtering type grid-connected inverter parameter-free prediction capacitor voltage control method | |
CN114301361B (en) | A control method for electrolytic capacitor-free permanent magnet synchronous motor drive system based on bus current control | |
CN102931856B (en) | Robust fixed-frequency type model prediction control method for active front-end rectifier | |
CN109378982A (en) | A three-phase voltage-type PWM rectifier adaptive continuous variable structure predictive control method | |
CN110297446A (en) | More vector rapid model prediction control methods under a kind of non-ideal grid conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |