CN110004185B - 一种复合金属污染苜蓿草再利用的方法 - Google Patents

一种复合金属污染苜蓿草再利用的方法 Download PDF

Info

Publication number
CN110004185B
CN110004185B CN201910190353.5A CN201910190353A CN110004185B CN 110004185 B CN110004185 B CN 110004185B CN 201910190353 A CN201910190353 A CN 201910190353A CN 110004185 B CN110004185 B CN 110004185B
Authority
CN
China
Prior art keywords
alfalfa
fermentation
polluted
copper
composite metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910190353.5A
Other languages
English (en)
Other versions
CN110004185A (zh
Inventor
田永兰
郑磊
李树森
曹宇东
张化永
徐丹
孙建忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201910190353.5A priority Critical patent/CN110004185B/zh
Publication of CN110004185A publication Critical patent/CN110004185A/zh
Application granted granted Critical
Publication of CN110004185B publication Critical patent/CN110004185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了属于生物质废弃物再利用领域的一种复合金属污染苜蓿草再利用的方法,所述方法,包括以下步骤:向含有复合金属污染苜蓿草的发酵体系中添加铜和钴离子,然后进行发酵产气。本发明的方法通过添加特定的金属离子,将被复合金属污染的苜蓿草与牛粪混合进行厌氧发酵产甲烷,达到降解苜蓿草、生产沼气的目的。

Description

一种复合金属污染苜蓿草再利用的方法
技术领域
本发明属于生物质废弃物再利用技术领域,具体涉及一种复合金属污染苜蓿草再利用的方法。
背景技术
近年来,利用植物修复重金属污染土地(即植物修复)的概念受到越来越多的关注[1-4]。与其他传统工程物化工艺,例如,挖掘、土壤淋洗、电动修复、土壤焚化等[5]相比,植物修复技术在审美、经济和技术方面都有显著的优势[6]。植物修复技术是一种利用高等植物和/或其根系微生物通过提取、降解、固定或者挥发等作用,来修复土壤、底泥或水体中污染物(金属、有机物、放射性物质等)的技术[7]。其中,植物固定降低了有害废物在土壤中的可移动性,根系过滤则利用植物根系或其微生物有效去除污染水体中的重金属[3],植物提取主要是通过植物将受污染的土地、水体中的污染物移除至植物的地上部分[5]
在植物修复领域,植物对重金属的吸收和耐受能力,是影响植物修复技术成功与否的关键因素之一。选择合适的耐受植物是植物修复技术可持续化的重要因素,具有高生物量、高抗病虫害能力、能抵御不良生存环境和可以富含多种金属元素的植物最适用于植物提取技术[5]
苜蓿草是一年生或多年生草本植物,同时苜蓿草还是良好的牧草。之前有研究表明,苜蓿草对土壤中的金属具有良好的富集能力[8],并且乙酸—乙酸钾缓冲溶液可以促进苜蓿草对土壤中重金属铬离子的吸收,提高苜蓿草对土壤中重金属的富集系数[9]。苜蓿草可以作为厌氧发酵产甲烷的原料[10–12],且不同生长期的苜蓿草发酵能力不同[13]。以紫花苜蓿为发酵原料,在恒温30℃条件下进行批量式沼气发酵试验,结果表明,6%发酵浓度的紫花苜蓿发酵历时34d,发酵体系出现酸化时,在微生物自动调节下,pH能够很快恢复,产气未受到任何影响;当提高紫花苜蓿的发酵总固体含量到8%时,发酵体系表现出相同的规律;紫花苜蓿的产气潜力为936ml/gTS、1094ml/g VS[14]。鲜苜蓿的产甲烷潜力优于小麦秸秆、玉米茎和叶[15]
已知微量元素对于厌氧发酵过程中微生物的生长繁殖以及酶的活性起着重要的作用。重金属对厌氧发酵反应过程中的作用可以刺激、抑制,甚至是有毒的,取决于其浓度[3],存在的化学形式,与其过程相关的因素如pH、氧化还原电位[4-6]。但是如果金属过量,就有可能导致抑制或毒性[7-9]。尽管已有研究表明苜蓿草可以富集吸收土壤中的金属,然而对于被金属污染后的苜蓿草再利用研究不足,尤其是缺乏对复合金属污染苜蓿草厌氧发酵产甲烷技术的研究。截至目前,对复合金属污染的苜蓿草厌氧发酵尚未见报道。
参考文献
[1]Y.L.Tian,H.Y.Zhang,W.Guo,X.F.Wei,Morphological Responses,BiomassYield,and Bioenergy Potential of Sweet Sorghum Cultivated in Cadmium-Contaminated Soil for Biofuel,Int.J.Green Energy.12(2015)577-584.
[2]Y.Tian,H.Zhang,W.Guo,Z.Chen,X.Wei,L.Zhang,et al.,Assessment of thephytoremediation potential in the bioenergy crop maize(Zea mays)in soilcontaminated by cadmium:morphology,photosynthesis and accumulation.,FreseniusEnviron.Bull.21(2012)3575-3581.
[3]P.Sharma,R.S.Dubey,Lead toxicity in plants,Brazilian J.PlantPhysiol.17(2005)35-52.
[4]G.Shi,Q.Cai,Cadmium tolerance and accumulation in eight potentialenergy crops,Biotechnol.Adv.27(2009)555-561.
[5]Z.Sun,J.Chen,X.Wang,C.Lv,Heavy metal accumulation in native plantsat a metallurgy waste site in rural areas of Northern China,Ecol.Eng.86(2016)60-68.
[6]Z.Cao,S.Wang,T.Wang,Z.Chang,Z.Shen,Y.Chen,Using ContaminatedPlants Involved in Phytoremediation for Anaerobic Digestion,Int.J.Phytoremediation.17(2015)201-207.
[7]M.B.Kirkham,Cadmium in plants on polluted soils:Effects of soilfactors,hyperaccumulation,and amendments,Geoderma.137(2006)19-32.
[8]王娜,污泥有机肥对紫花苜蓿草生长和土壤理化性质的影响.工业安全与环保。38(2012)94-96.
[9]金兰淑,贾成楠,高湘骐,刘洋,乙酸-乙酸钾缓冲溶液对苜蓿草吸收土壤中铬离子的影响研究,北方园艺.(2012)183-186.
[10]尹云厚,麻志红,李香子,高青山,严昌国,未发酵花生壳替代粗饲料对瘤胃微生物体外发酵特性的影响,黑龙江畜牧兽医.(2016)120-123.
[11]张帅松,陈绍江,冷国辉,高油玉米群体沼气生产性能研究,in:全国玉米遗传育种学术研讨会暨新品种展示观摩会论文,2012.
[12]张莉娟,张无敌,尹芳,赵兴玲,王昌梅,柳静,et al.,接种物添加量对紫花苜蓿常温厌氧发酵的影响,湖北农业科学.55(2016)1675-1678.
[13]刘卢生,玉永雄,王东,周丽,廖颖,紫花苜蓿草渣及浆汁发酵研究,草业科学.27(2010)144-147.
[14]张莉娟,尹芳,张无敌,赵兴玲,柳静,杨红,et al.,紫花苜蓿产沼气潜力研究,安徽农业科学.(2014)4394-4396.
[15]李超,刘刚金,刘静溪,陈柳萌,张诚,董泰丽,et al.,基于产甲烷潜力和基质降解动力学的沼气发酵物料评估,农业工程学报.(2015)262-268.
发明内容
为了克服现有技术中的问题,本发明提供一种提高木质纤维素厌氧发酵降解效率的方法。
为此本发明的技术方案如下:
一种复合金属污染苜蓿草再利用的方法,包括以下步骤:
向含有复合金属污染苜蓿草的发酵体系中添加铜和钴离子,然后进行发酵产气。
上述方法中,所述复合金属污染苜蓿草中的复合金属为镁、钙、锌、铁、镍、铜、铬中的两种、三种、四种、五种、六种或七种的组合。
上述方法中,所述复合金属的含量为:镁0-5000mg/kg、钙0-15000mg/kg、锌0-100mg/kg、铁0-2000mg/kg、镍0-50mg/kg、铜0-500mg/kg、铬0-50mg/kg。
上述方法中,优选的,所述复合金属的含量为:镁0-5000mg/kg、钙0-15000mg/kg、锌0-60mg/kg、铁0-2000mg/kg、镍0-20mg/kg、铜0-200mg/kg、铬0-30mg/kg。
上述方法中,所述铜的添加量为5-15mg/L,所述钴的添加量为0.5-2.0mg/L。
上述方法中,优选的,所述铜的添加量为8-12mg/L,所述钴的添加量为0.5-1.5mg/L
上述方法中,优选的,所述铜的添加量为8mg/L、9mg/L、10mg/L、11mg/L或12mg/L,所述钴的添加量为0.5mg/L、0.75mg/L、1.0mg/L、1.25mg/L或1.5mg/L。
上述方法中,所述发酵体系包含复合金属污染苜蓿草和动物粪便,所述苜蓿草和动物粪便的干物质比为1:1-3,两者混合后的碳氮比为20-30:1。
上述方法中,优选的,所述苜蓿草和动物粪便的干物质比为1:1.5-2.5,例如,1:2,两者混合后的碳氮比为22-28:1,例如24:1、25:1、26:1、27:1。
上述方法中,所述动物粪便选自牛粪、鸡粪、马粪、羊粪中的一种或一种以上,优选牛粪。
上述方法中,所述发酵体系中,开始发酵时的总固体浓度为6-12%,优选8-10%。
上述方法中,所述发酵温度为35-39℃,厌氧发酵,发酵时间为32-39天。
上述方法中,发酵前将苜蓿草粉粹,其粒径不大于0.5mm。
本发明的有益效果:
本发明的方法可以将环境整治和生物能源产出结合在一起,提高大量含复合金属的生物质资源化利用率。通过提出将受复合金属污染苜蓿草再利用产生沼气的方法,通过向发酵体系中,添加特定浓度或比例的铜和钴,提高发酵产气量。其中,在本发明采用中温湿法厌氧发酵,苜蓿草秸秆:牛粪干重比1:2,总固体浓度8%,混合后加入10.0mg/L的铜以及1.0mg/L的钴时,添加复合金属后发酵体系的累积产气量为67.56mL/g TS,高于同等条件下未添加微量金属的发酵体系产气量10.4%。
附图说明
图1为不同金属添加条件下苜蓿草与牛粪混合厌氧发酵累积产气结果。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明要求保护的范围并不局限于实施例表述的范围,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或成分比例上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围内。本发明中所使用的材料和装置,如无特殊说明,均为市售。
实施例1
本实例中的厌氧发酵实验发酵原料选用受复合金属污染的苜蓿草秸秆与牛粪,选取苜蓿草根部以上部分。苜蓿草和牛粪均取自张家口宣化区。苜蓿草中各金属的浓度为:镁4300mg/kg、钙11000mg/kg、锌42mg/kg、铁2000mg/kg、镍1.19mg/kg、铜100mg/kg、铬4.03mg/kg。
将风干的苜蓿草秸秆用粉碎机磨碎,过0.5mm标准土壤筛。苜蓿草秸秆和牛粪的干物质比重为1:2。厌氧发酵装置罐体总容积为500mL,工作容积为300mL,总固体浓度8%。将发酵原料、去离子水按照上述比例添加好,再向发酵罐中加入10.0mg/L的铜以及1.0mg/L的钴,之后搅匀放置2h,使发酵液体系稳定。温度设定为37.0±1.0℃。向发酵罐内充氮气5min,以驱逐在发酵罐上方残存的空气,封闭进料口,开始厌氧发酵实验,实验时间为45天。经过发酵后,苜蓿草与牛粪干重比为1:2、添加10.0mg/L铜以及1.0mg/L钴的发酵体系累积产气量为67.56mL/g TS,高于同等条件下其他未添加金属的发酵体系产气量的10.4%。发酵过程累积产气量见图1。
实施例2
本实例中的厌氧发酵实验发酵原料选用受复合金属污染的苜蓿草秸秆与牛粪,选取苜蓿草根部以上部分。将风干的苜蓿草秸秆用粉碎机磨碎,过0.5mm标准土壤筛。苜蓿草中各金属的浓度为:镁4000mg/kg、钙11000mg/kg、锌36mg/kg、铁1500mg/kg、镍7.81mg/kg、铜300mg/kg、铬3.89mg/kg。苜蓿草和牛粪均取自张家口宣化区。苜蓿草秸秆和牛粪的干物质比重为1:1.5。厌氧发酵装置罐体总容积为500mL,工作容积为300mL,总固体浓度10%。将发酵原料、去离子水按照上述比例添加好,再向发酵罐中加入8.0mg/L的铜以及0.5mg/L的钴,之后搅匀放置2h,使发酵液体系稳定。温度设定为37.0±1.0℃。向发酵罐内充氮气5min,以驱逐在发酵罐上方残存的空气,封闭进料口,开始厌氧发酵实验,实验时间为45天。经过发酵后,苜蓿草与牛粪干重比为1:1.5、添加8.0mg/L铜以及0.5mg/L钴的发酵体系累积产气量为66.10mL/g TS,高于同等条件下其他未添加金属的发酵体系产气量的8.0%。
实施例3
本实例中的厌氧发酵实验发酵原料选用受复合金属污染的苜蓿草秸秆与牛粪,选取苜蓿草根部以上部分。将风干的苜蓿草秸秆用粉碎机磨碎,过0.5mm标准土壤筛。苜蓿草中各金属的浓度为:镁4000mg/kg、钙7900mg/kg、锌20mg/kg、铁1500mg/kg、镍0.81mg/kg、铜200mg/kg、铬4.03mg/kg。苜蓿草和牛粪均取自张家口宣化区。苜蓿草秸秆和牛粪的干物质比重为1:1。厌氧发酵装置罐体总容积为500mL,工作容积为300mL,总固体浓度12%。将发酵原料、去离子水按照上述比例添加好,再向发酵罐中加入15.0mg/L的铜以及2.0mg/L的钴,之后搅匀放置2h,使发酵液体系稳定。温度设定为37.0±1.0℃。向发酵罐内充氮气5min,以驱逐在发酵罐上方残存的空气,封闭进料口,开始厌氧发酵实验,实验时间为45天。经过发酵后,苜蓿草与牛粪干重比为1:1、添加15.0mg/L铜以及2.0mg/L钴的发酵体系累积产气量为62.74mL/g TS,高于同等条件下其他未添加金属的发酵体系产气量的2.5%。

Claims (8)

1.一种复合金属污染苜蓿草再利用的方法,其特征在于,包括以下步骤:
向含有复合金属污染苜蓿草的发酵体系中添加铜和钴离子,然后进行发酵产气;所述复合金属污染苜蓿草中的复合金属为镁、钙、锌、铁、镍、铜、铬中的两种或三种以上的组合;所述铜的添加量为5-15 mg/L,所述钴的添加量为0.5-2.0 mg/L;
所述复合金属的含量为:镁0-5000mg/kg、钙0-15000 mg/kg、锌0-100 mg/kg、铁0-2000mg/kg、镍0-50mg/kg、铜0-500 mg/kg、铬0-50 mg/kg。
2.根据权利要求1所述的方法,其特征在于,所述铜的添加量为8-12 mg/L,所述钴的添加量为0.5-1.5mg/L。
3.根据权利要求2所述的方法,其特征在于,所述铜的添加量为10mg/L,所述钴的添加量为1.0mg/L。
4.根据权利要求1所述的方法,其特征在于,所述发酵体系包含复合金属污染苜蓿草和动物粪便,所述苜蓿草和动物粪便的干物质比为1:1-3,两者混合后的碳氮比为20-30:1。
5.根据权利要求4所述的方法,其特征在于,所述动物粪便选自牛粪、鸡粪、马粪、羊粪中的一种或一种以上。
6.根据权利要求1所述的方法,其特征在于,所述发酵体系中,开始发酵时的总固体浓度为6-12%。
7.根据权利要求1所述的方法,其特征在于,所述发酵温度为35-39 ºC,厌氧发酵,发酵时间为32-39天。
8.根据权利要求1所述的方法,其特征在于,发酵前将苜蓿草粉粹,其粒径不大于0.5mm。
CN201910190353.5A 2019-03-13 2019-03-13 一种复合金属污染苜蓿草再利用的方法 Active CN110004185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910190353.5A CN110004185B (zh) 2019-03-13 2019-03-13 一种复合金属污染苜蓿草再利用的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910190353.5A CN110004185B (zh) 2019-03-13 2019-03-13 一种复合金属污染苜蓿草再利用的方法

Publications (2)

Publication Number Publication Date
CN110004185A CN110004185A (zh) 2019-07-12
CN110004185B true CN110004185B (zh) 2021-02-02

Family

ID=67166962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910190353.5A Active CN110004185B (zh) 2019-03-13 2019-03-13 一种复合金属污染苜蓿草再利用的方法

Country Status (1)

Country Link
CN (1) CN110004185B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3108121A1 (fr) * 2020-03-11 2021-09-17 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Utilisation d’une plante hyperaccumulatrice pour complémenter la biomasse en oligoéléments dans un digesteur anérobie

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107815471A (zh) * 2017-12-05 2018-03-20 华北电力大学 一种含镉生物质厌氧发酵的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107815471A (zh) * 2017-12-05 2018-03-20 华北电力大学 一种含镉生物质厌氧发酵的方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
《Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses》;He Hao;《Biodegradation》;20170715;第28卷;第372页最后1段,第373页第1段 *
《Influence of trace elements on methane formation from a synthetic model substrate for maize silage》;Herbert Pobeheim;《Bioresource Technology》;20090917;第101卷;第839页左栏第2段 *
《Process analysis of anaerobic fermentation of Phragmites australis straw and cow dung exposing to elevated chromium (VI)concentrations》;Huayong Zhang;《Journal of Environmental Management》;20180723;第224卷;第414-424页 *
《紫花苜蓿产沼气潜力研究》;张莉娟;《安徽农业科学》;20140510;第42卷(第12期);第4396页右栏第2段 *
He Hao.《Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses》.《Biodegradation》.2017,第28卷 *
Herbert Pobeheim.《Influence of trace elements on methane formation from a synthetic model substrate for maize silage》.《Bioresource Technology》.2009,第101卷 *
张莉娟.《紫花苜蓿产沼气潜力研究》.《安徽农业科学》.2014,第42卷(第12期), *

Also Published As

Publication number Publication date
CN110004185A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
Malik Environmental challenge vis a vis opportunity: the case of water hyacinth
CN101333123B (zh) 城市生活污泥资源化工艺
CN103495602B (zh) 一种利用微生物发酵来修复六价铬污染土壤的方法
CN106754461B (zh) 一种生物絮团及其制备方法和应用
CN104289506B (zh) 镉、锌、铅、铜离子污染土壤的生物修复方法
CN101088645B (zh) 重金属污染土壤的菌-草修复技术
CN111011159B (zh) 一种基于煤矸石和污泥的生态改良基质制备方法
CN106986720A (zh) 利用处理畜禽养殖废水产生的废渣生产土壤改良剂的方法
CN101244955B (zh) 一种生物肥及其制备方法
Zou et al. Emerging technologies of algae‐based wastewater remediation for bio‐fertilizer production: a promising pathway to sustainable agriculture
CN103467148B (zh) 采用污泥制备的有机肥料
CN104591905A (zh) 一种生物有机肥料
CN106116946A (zh) 一种修复土壤重金属的生物有机肥料及其制备方法
CN106694541A (zh) 生物炭基缓释肥协同白茅修复重金属污染尾矿的方法
CN107384426A (zh) 一种阳离子重金属污染土壤的修复剂及其制备方法
CN105084957A (zh) 一种采用餐厨垃圾厌氧发酵后滤渣制备生物有机肥的方法及其应用
CN106734184A (zh) 一种重金属污染土壤的原位修复方法
Lu et al. From manure to high-value fertilizer: The employment of microalgae as a nutrient carrier for sustainable agriculture
CN104987216A (zh) 一种污泥炭基生物有机肥及其制备方法
CN107243504B (zh) 一种闭环式垃圾消纳修复盐碱地沙化地及垃圾场同位修复的方法
Tan et al. Pennisetum hydridum: A potential energy crop with multiple functions and the current status in China
CN105645596B (zh) 一种活性污泥预处理药剂及其制备方法和应用方法
Rajendran et al. Deposition of manure nutrients in a novel mycoalgae biofilm for nutrient management
CN101274861B (zh) 一种钝化重金属的有机肥料及堆肥方法
CN110004185B (zh) 一种复合金属污染苜蓿草再利用的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant