CN109999870A - 一种碳化硅/石墨烯纳米片状复合材料及其制备方法 - Google Patents

一种碳化硅/石墨烯纳米片状复合材料及其制备方法 Download PDF

Info

Publication number
CN109999870A
CN109999870A CN201910218601.2A CN201910218601A CN109999870A CN 109999870 A CN109999870 A CN 109999870A CN 201910218601 A CN201910218601 A CN 201910218601A CN 109999870 A CN109999870 A CN 109999870A
Authority
CN
China
Prior art keywords
graphene
silicon carbide
silicon
composite material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910218601.2A
Other languages
English (en)
Other versions
CN109999870B (zh
Inventor
曹宏
李梓烨
薛俊
安子博
袁密
郑雨佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201910218601.2A priority Critical patent/CN109999870B/zh
Publication of CN109999870A publication Critical patent/CN109999870A/zh
Application granted granted Critical
Publication of CN109999870B publication Critical patent/CN109999870B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种碳化硅/石墨烯纳米片状复合材料制备方法,包括如下步骤:1)制备石墨烯纳米片和一氧化硅粉末混合分散液,所述混合分散液中石墨烯与氧化硅的摩尔比为(2‑1):(1‑2.5);2)对所述混合分散液进行干燥得到前驱体;3)将所述前驱体在真空度为0.03‑0.1MPa,温度为1000‑1250℃条件下煅烧,得到碳化硅/石墨烯纳米片粗产物;4)对所述粗产物进行除硅处理得到碳化硅/石墨烯纳米片。根据本发明的碳化硅/石墨烯纳米片复合材料制备方法,工艺简单、成本较低,易于工业化生产。

Description

一种碳化硅/石墨烯纳米片状复合材料及其制备方法
技术领域
本发明涉及半导体复合材料领域,具体涉及一种碳化硅/石墨烯纳米片状复合材料及其制备方法。
背景技术
二维原子半导体材料一直备受关注,尤其是石墨烯,由于其具有优异的电学、光学和力学性质,如高载流子迁移率,较高吸光率等,被广泛应用在电子器件、光电器件等领域。近年来,由于石墨烯合成技术、材料表征方法的快速进步,及对高质量半导体材料和设备越来越高的需求,研究人员已经把目光从石墨烯材料本身,转移到研究不同的二维半导体复合材料及异质结构。碳化硅(SiC)是第三代半导体的核心材料之一,具有很多优异的性能,如高带隙、高强度、高导热性、高电导性,又由于其独特的光、电和优异的机械性能,使得碳化硅纳米材料在许多领域都有极为广泛及潜在的应用价值。因此,碳化硅/石墨烯纳米片状异质结构结合了众所周知的半导体的优势及石墨烯的独特优势,在光催化、光电器件等领域有潜在应用价值,是一种很有前途的复合材料。一般的碳化硅/石墨烯复合结构是通过SiC热分解[Berger C,Song Z,Li T,et al.Ultrathin Epitaxial Graphite:2DElectronGas Properties and a Route toward Graphene-based Nanoelectronics[J].J.phys.chem,2004,108(52):19912-19916.]、化学气相沉积(CVD)[Michon A,VeZian S,Ouerghi A,et al.Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Sivia propane chemical vapor deposition[J].Applied Physics Letters,2010,97(17):171909.]和分子束外延(MBE)[Razadocolambo I,Avila J,Chen C,et al.Probing theelectronic properties of graphene on C-face SiC down to single domains bynanoresolved photoelectron spectroscopies[J].Physical Review B,2015,92(3).]方法制备得到,这些方法因为生长温度高、设备昂贵、操作成本高和安全性等问题,仅适用于高价值应用,无法进行大规模工业化生产。基于此,有必要提供一种反应温度低、制备方法简单、成本低的碳化硅/石墨烯复合材料制备方法。
发明内容
本发明解决的技术问题是:提供一种碳化硅/石墨烯纳米片状复合材料制备方法,制备得到的碳化硅颗粒均匀分散于所述石墨烯表面,且工艺简单,成本低,易于工业化生产。
本发明提供的具体解决方案包括如下步骤:
1)制备石墨烯(GNS)纳米片和氧化硅(SiO)粉末混合分散液,所述混合分散液中石墨烯与一氧化硅摩尔比为(2-1):(1-2.5);
2)对所述混合分散液进行干燥得到前驱体;
3)将所述前驱体在真空度为0.03-0.1MPa,温度为1000-1250℃条件下煅烧,得到碳化硅/石墨烯纳米片粗产物。
4)对所述粗产物进行除硅处理得到碳化硅/石墨烯纳米片。
该制备过程中涉及到的化学反应为:
2C(s)+SiO(g)=SiC(s)+CO(g) 公式(1)
2SiO(g)=Si(s)+SiO2(s) 公式(2)
Si(s)+C(s)=SiC(s) 公式(3)
SiO2(s)+2C(s)=SiC(s)+CO2(g) 公式(4)
C(s)+CO2(g)=2CO(g) 公式(5)
SiO(g)+3CO(g)=SiC(s)+2CO2(g) 公式(6)
4CO(g)+SiO2(s)=SiC(s)+3CO2(g) 公式(7)
3C(s)+2SiO(g)=2SiC(s)+CO2(g) 公式(8)
其中反应(1)和(6)是生成SiC的主要反应,高温下SiO(s)升华形成SiO(g),与GNS表面碳反应(反应(1))生成SiC晶核,碳化硅在成核处生长得到碳化硅颗粒;由于高温下SiO自身会发生歧化反应(反应(2)),生成的Si(s)与SiO2(s)堆积在GNS表面和周围,且由于固相反应主要靠扩散进行,所以反应(3)和(4)只有极少部分进行;理论上反应(8)有可能发生,但从活化能考虑不可能成为主反应;虽然反应(6)无论是在热力学还是动力学都占有优势,但是为了使主反应(1)朝正反应方向进行,需要对反应的温度和压强进行控制。在实验过程中持续地抽真空,使得反应产生的混合气体(CO、CO2)能及时溢出,提高原位生成SiC反应的产率。温度越高,各种副反应例如(2)、(5)、(6)、(7)和(8)反应加剧,与SiC原位生成反应(1)竞争,得到的材料中含有较多的SiC杂质,而非石墨烯上原位生成碳化硅后得到的碳化硅/石墨烯复合材料。
采用上述方案的有益效果是:
(1)根据本发明的方法,在石墨烯纳米片上原位生成碳化硅颗粒,得到了碳化硅/石墨烯纳米片状复合材料,且制备得到的碳化硅颗粒均匀分散于所述石墨烯表面;
(2)制备碳化硅/石墨烯纳米片所需的原料易得,制备工艺简单,合成温度低,设备要求低,有望实现碳化硅/石墨烯纳米片的规模化生产。
进一步,步骤3)中前驱体的煅烧温度为1050-1200℃,升温速率为4-6℃/min,煅烧时间为1-24h。
反应温度低,则反应速率慢;反应温度高,升温速率快,一方面SiO气化速率快,气态SiO无法及时反应,大部分的反应气体会逸出,另一方面,温度过高,反应快,不利于原位生成碳化硅反应的充分实现(会有大量的一氧化硅参与反应(6)),此时会产生与其他许多文献报道的独立的SiC纳米线而非与所述石墨烯键连的碳化硅,即非碳化硅/石墨烯复合材料。在该条件下,得到的碳化硅/石墨烯复合材料中,SiC杂质少,碳化硅与石墨烯具有较好的复合效果,且碳化硅颗粒均匀分散于所述石墨烯表面。
进一步,步骤3)中前驱体煅烧的真空度为0.05MPa-0.08MPa。
在该条件下,得到的碳化硅/石墨烯复合材料纯度高,产率高。
进一步,步骤1)中的分散溶剂为N-甲基吡咯烷酮或N-N二甲基甲酰胺。
具体的,先将所述石墨烯纳米片充分分散于所述所述分散溶剂中,再加入一氧化硅粉末分散均匀。
由此,以N-甲基吡咯烷酮或N-N二甲基甲酰胺作为分散溶剂得到的混合分散液均匀稳定。
进一步,步骤1)中石墨烯与一氧化硅的摩尔比为(2-1):(1.5-2)。
由此,纳米薄片表面均匀生长了大量尺寸均一的2-10nm的SiC纳米颗粒。
进一步,步骤4)中除硅处理包括氢氟酸溶液浸泡洗涤或者碱溶液浸泡处理。
具体的,将粗产物在氢氟酸溶液或者碱溶液中浸泡洗涤可以除去未反应的硅及硅的氧化物,得到碳化硅/碳纳米管复合物。
优选的,所述碱溶液包括氢氧化钠、氧化钾的热水溶液。
优选的,所述氢氟酸溶液的质量分数为10%-40%,浸泡时间为2h-24h。
在该条件下,杂质硅及其氧化物的去除效果好。
本发明还提供了一种碳化硅/石墨烯纳米片状复合材料,按照如上所述的方法制备得到,且碳化硅颗粒均匀分散于所述石墨烯表面,SiC杂质少,碳化硅与石墨烯具有较好的复合效果。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是碳化硅/石墨烯纳米片制备流程图。
图2是本发明实施例1所制得的碳化硅/石墨烯纳米片XRD图谱。
图3是本发明实施例1所制得的碳化硅/石墨烯纳米片拉曼光谱。
图4是本发明实施例1所制得的碳化硅/石墨烯纳米片场发射扫描电镜照片。
图5是本发明实例1超声分散的石墨烯纳米片透射电子显微镜照片。
图6是本发明实施例1所制得的碳化硅/石墨烯纳米片透射电子显微镜照片。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1(请参阅图1):
(1)将一氧化硅在砂磨机中砂磨30min得到一氧化硅粉末,然后将石墨烯纳米片在NMP溶液中超声分散2h,将分散后的石墨烯纳米片与一氧化硅按照摩尔比为1:1在研钵中研磨混合30min,过滤掉滤液后在100℃烘箱中干燥得到前驱体。
(2)将前驱体在真空管式炉中进行煅烧,真空度为0.06MPa,煅烧温度为1150℃,煅烧时间为4h,得到粗产物;
(3)将粗产物在温度为60℃,质量分数为20%的HF溶液中进行浸泡除硅,浸泡时间为4h,过滤清洗后在100℃烘箱干燥得到最终产物。
对实施例1中的产物进行表征,图2为碳化硅/石墨烯纳米片的XRD图谱,图谱表明产物由SiC和石墨烯两种物相组成;图3为碳化硅/石墨烯纳米片的拉曼光谱,进一步证实了产物物相组成;图4所示为碳化硅/石墨烯纳米片的场发射扫描电镜照片,从照片中可以看出,制备出的碳化硅/石墨烯纳米复合材料为表面粗糙的片状结构;图5、6分别为石墨烯纳米片、碳化硅/石墨烯纳米片的TEM照片,可以看出在石墨烯纳米片表面生长了大量的SiC纳米颗粒。
实施例2:
(1)将一氧化硅在砂磨机中砂磨30min得到一氧化硅粉末,然后将石墨烯纳米片在NMP分散剂中超声分散2h,将分散后的石墨烯纳米片与一氧化硅按照摩尔比为2:1在研钵中研磨混合30min,过滤掉滤液后在100℃烘箱中干燥得到前驱体。
(2)将前驱体在真空管式炉中进行煅烧,真空度为0.03MPa,煅烧温度为1000℃,煅烧时间为24h,得到粗产物;
(3)将粗产物在温度为60℃,质量分数为10%的HF溶液中进行浸泡除硅,浸泡时间为24h,过滤清洗后在100℃烘箱干燥得到最终产物。
实施例3:
(1)将一氧化硅在砂磨机中砂磨30min,干燥后得到一氧化硅粉末,然后将石墨烯纳米片在NMP分散剂中超声分散2h,将分散后的石墨烯纳米片与一氧化硅按照摩尔比为1:2.5在研钵中研磨混合30min,过滤掉滤液后在100℃烘箱中干燥得到前驱体。
(2)将前驱体在真空管式炉中进行煅烧,真空度为0.1MPa,煅烧温度为1250℃,煅烧时间为1h,得到粗产物;
(3)将粗产物在温度为60℃,质量分数为40%的HF溶液中进行浸泡除硅,浸泡时间为2h,过滤清洗后在100℃烘箱干燥得到最终产物。
实施例4:
(1)将一氧化硅在砂磨机中砂磨30min,干燥后得到一氧化硅粉末,然后将石墨烯纳米片在NMP分散剂中超声分散2h,将分散后的石墨烯纳米片与一氧化硅按照摩尔比为1:2在研钵中研磨混合30min,过滤掉滤液后100℃烘箱中干燥得到前驱体。
(2)将前驱体在真空管式炉中进行煅烧,真空度为0.05MPa,煅烧温度为1150℃,煅烧时间为4h,得到粗产物;
(3)将粗产物在温度为60℃,质量分数为40%的HF溶液中进行浸泡除硅,浸泡时间为4h,过滤清洗后在100℃烘箱干燥得到最终产物。
实施例5:
(1)将一氧化硅在砂磨机中砂磨30min,干燥后得到一氧化硅粉末,然后将石墨烯纳米片在NMP分散剂中超声分散2h,将分散后的石墨烯纳米片与一氧化硅按照摩尔比为2:1在研钵中研磨混合30min,过滤掉滤液后在100℃烘箱中干燥得到前驱体。
(2)将前驱体在真空管式炉中进行煅烧,真空度为0.08MPa,煅烧温度为1200℃,煅烧时间为8h,得到粗产物;
(3)将粗产物在温度为60℃,质量分数为40%的HF溶液中进行浸泡除硅,浸泡时间为4h,过滤清洗后在100℃烘箱干燥得到最终产物。
实施例6
(1)将一氧化硅在砂磨机中砂磨30min得到一氧化硅粉末,然后将石墨烯纳米片在NMP分散剂中超声分散2h,将分散后的石墨烯纳米片与一氧化硅按照摩尔比为2:1.5在研钵中研磨混合30min,过滤掉滤液后在100℃烘箱中干燥得到前驱体。
(2)将前驱体在真空管式炉中进行煅烧,真空度为0.06MPa,煅烧温度为1100℃,煅烧时间为12h,得到粗产物;
(3)将粗产物在温度为60℃,质量分数为10%的HF溶液中进行浸泡除硅,浸泡时间为12h,过滤清洗后在100℃烘箱干燥得到最终产物。
对比例1:
与实施例1相似,不同之处在于,步骤(2)中的煅烧温度800℃。
对比例2:
与实施例1相似,不同之处在于,步骤(2)中的煅烧温度1400℃。
对比例3:
与实施例1相似,不同之处在于,步骤(2)中的煅烧温度1600℃.
对比例4:
与实施例1相似,不同之处在于,步骤(2)中真空度为0.005MPa。
对比例5:
与实施例1相似,不同之处在于,步骤(2)中真空度为0.01MPa。
对比例6:
与实施例1相似,不同之处在于,步骤(2)中真空度为0.02MPa。
光催化活性测试:
对实施例1以及对比例1-6得到的碳化硅/石墨烯纳米复合材料进行光催剂活性测试。
分别取相同重量的0.25g上述碳化硅/石墨烯纳米复合光催化剂均匀分散于100mL8mg/L的有机染料罗丹明B溶液中,在黑暗条件下搅拌1h,吸附平衡后在紫外光下进行光催化降解实验,每隔30min取一次样,对降解液中剩余罗丹明B的浓度进行检测,2h后,实施例1、对比例1、对比例2、对比例3、对比例4、对比例5以及对比例6中的催化剂对罗丹明B的降解率分别为95%、56%、80%、68%、72%和82%。由此可知,实施例1制备的碳化硅/石墨烯纳米复合材料中碳化硅和石墨烯具有最佳的复合效果,光催化活性最高。
尽管上面已经详细描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (7)

1.一种碳化硅/石墨烯纳米片状复合材料制备方法,其特征在于,包括如下步骤:
1)制备石墨烯纳米片和一氧化硅粉末混合分散液,所述混合分散液中石墨烯与一氧化硅的摩尔比为(2-1):(1-2.5);
2)对所述混合分散液进行干燥得到前驱体;
3)将所述前驱体在真空度为0.03-0.1MPa,温度为1000-1250℃条件下煅烧,得到碳化硅/石墨烯纳米片粗产物;
4)对所述粗产物进行除硅处理得到碳化硅/石墨烯纳米片复合材料。
2.根据权利要求1所述的碳化硅/石墨烯纳米片状复合材料制备方法,其特征在于,步骤3)中前驱体的煅烧温度为1050-1200℃,升温速率为4-6℃/min,煅烧时间为1-24h。
3.根据权利要求1所述的碳化硅/石墨烯纳米片状复合材料制备方法,其特征在于,步骤3)中前驱体煅烧的真空度为0.05MPa-0.08MPa。
4.根据权利要求1所述的碳化硅/石墨烯纳米片状复合材料制备方法,其特征在于,步骤1)的混合分散液中的分散溶剂为N-甲基吡咯烷酮或N-N二甲基甲酰胺。
5.根据权利要求1所述的碳化硅/石墨烯纳米片状复合材料制备方法,其特征在于,步骤1)中石墨烯与一氧化硅的摩尔比为(2-1):(1.5-2)。
6.根据权利要求1-5任一所述的碳化硅/石墨烯纳米片状复合材料制备方法,其特征在于,步骤4)中除硅处理包括氢氟酸溶液浸泡洗涤或者碱溶液浸泡处理。
7.一种碳化硅/石墨烯纳米片状复合材料,其特征在于,由权利要求1-6任一所述的碳化硅/石墨烯纳米片状复合材料制备方法制备得到。
CN201910218601.2A 2019-03-21 2019-03-21 一种碳化硅/石墨烯纳米片状复合材料及其制备方法 Active CN109999870B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910218601.2A CN109999870B (zh) 2019-03-21 2019-03-21 一种碳化硅/石墨烯纳米片状复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910218601.2A CN109999870B (zh) 2019-03-21 2019-03-21 一种碳化硅/石墨烯纳米片状复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109999870A true CN109999870A (zh) 2019-07-12
CN109999870B CN109999870B (zh) 2022-01-11

Family

ID=67167689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910218601.2A Active CN109999870B (zh) 2019-03-21 2019-03-21 一种碳化硅/石墨烯纳米片状复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109999870B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115106106A (zh) * 2022-06-23 2022-09-27 广东工业大学 用于可见光制氢的石墨烯负载碳化硅光催化剂及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10220075A1 (de) * 2002-05-04 2003-11-13 Fne Gmbh Verfahren zur Herstellung von Silicium hoher Reinheit und Vorrichtung zur Ausführung dieses Verfahrens
CN104291339A (zh) * 2014-09-29 2015-01-21 浙江大学 一种超薄碳化硅材料的制备方法
JP2017120787A (ja) * 2015-12-30 2017-07-06 友達晶材股▲ふん▼有限公司AUO Crystal Corporation リチウム電池負極材及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10220075A1 (de) * 2002-05-04 2003-11-13 Fne Gmbh Verfahren zur Herstellung von Silicium hoher Reinheit und Vorrichtung zur Ausführung dieses Verfahrens
CN104291339A (zh) * 2014-09-29 2015-01-21 浙江大学 一种超薄碳化硅材料的制备方法
JP2017120787A (ja) * 2015-12-30 2017-07-06 友達晶材股▲ふん▼有限公司AUO Crystal Corporation リチウム電池負極材及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S. LIN ETAL.: "RGO-supported β-SiC nanoparticles by a facile solvothermal route and their enhanced adsorption and photocatalytic activity", 《MATERIALS LETTERS》 *
SAKINEH CHABI ETAL.: "From graphene to silicon carbide: ultrathin silicon carbide flakes", 《NANOTECHNOLOGY》 *
VLADIMIR D. KRSTIC ETAL.: "Production of Fine, High-Purity Beta Silicon Carbide Powders", 《J.AM.CERAM.SOC》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115106106A (zh) * 2022-06-23 2022-09-27 广东工业大学 用于可见光制氢的石墨烯负载碳化硅光催化剂及制备方法
US11969716B2 (en) 2022-06-23 2024-04-30 Guangdong University Of Technology Silicon carbide (SiC)-loaded graphene photocatalyst for hydrogen production under visible light irradiation and preparation thereof

Also Published As

Publication number Publication date
CN109999870B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
Xin et al. Morphological evolution of one-dimensional SiC nanomaterials controlled by sol–gel carbothermal reduction
CN107721429B (zh) 碳化锆-碳化硅复合粉体材料及其制备方法
Li et al. Synthesis and characterization of nanostructured silicon carbide crystal whiskers by sol–gel process and carbothermal reduction
CN109879285B (zh) 一种碳化硅纳米材料及其制备方法
CN110148760B (zh) 一种多孔碳-碳纳米管复合材料及其制备方法和应用
Czosnek et al. Preparation of silicon carbide SiC-based nanopowders by the aerosol-assisted synthesis and the DC thermal plasma synthesis methods
CN110124691A (zh) 一种花粉碳骨架负载生长二硫化铼光电材料的制备方法
US20140363675A1 (en) Silicon carbide powder and method for manufacturing the same
CN104562206A (zh) 一种提高物理气相传输法生长4H-SiC晶体晶型稳定性的方法
Cao et al. Growth of SiC whiskers onto carbonizing coir fibers by using silicon slurry waste
Longobardo et al. Tailored amorphization of graphitic carbon nitride triggers superior photocatalytic C–C coupling towards the synthesis of perfluoroalkyl derivatives
Cuiyan et al. Synthesis and visible-light photocatalytic activity of SiC/SiO2 nanochain heterojunctions
Li et al. Periodically twinned 6H-SiC nanowires with fluctuating stems
Liu et al. Fabrication of CdS-decorated mesoporous SiC hollow nanofibers for efficient visible-light-driven photocatalytic hydrogen production
CN101812730A (zh) 超长单晶β-SiC纳米线无金属催化剂的制备方法
CN109999870A (zh) 一种碳化硅/石墨烯纳米片状复合材料及其制备方法
Ding et al. Fabrication and microstructure evolution of monolithic bridged polysilsesquioxane-derived SiC ceramic aerogels
Attolini et al. Synthesis and characterization of 3C–SiC nanowires
An et al. Synthesis and formation mechanism of porous silicon carbide stacked by nanoparticles from precipitated silica/glucose composites
Li et al. Synthesis of β-SiC nanostructures via the carbothermal reduction of resorcinol–formaldehyde/SiO 2 hybrid aerogels
Echeverria et al. Synthesis and characterization of biomorphic 1D-SiC nanoceramics from novel macroalga precursor material
CN102976324A (zh) 一种β-SiC纳米线的合成方法
CN102259847B (zh) 一种宏量制备石墨烯的方法
Lee et al. Synthesis and characterization of graphene and graphene oxide based palladium nanocomposites and their catalytic applications in carbon-carbon cross-coupling reactions
Cheng et al. Graphene-coated pearl-chain-shaped SiC nanowires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant