CN109993050B - Synthetic aperture radar image identification method - Google Patents

Synthetic aperture radar image identification method Download PDF

Info

Publication number
CN109993050B
CN109993050B CN201811430191.XA CN201811430191A CN109993050B CN 109993050 B CN109993050 B CN 109993050B CN 201811430191 A CN201811430191 A CN 201811430191A CN 109993050 B CN109993050 B CN 109993050B
Authority
CN
China
Prior art keywords
layer
order
convolution
size
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811430191.XA
Other languages
Chinese (zh)
Other versions
CN109993050A (en
Inventor
占荣辉
田壮壮
张军
欧建平
陈诗琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201811430191.XA priority Critical patent/CN109993050B/en
Publication of CN109993050A publication Critical patent/CN109993050A/en
Application granted granted Critical
Publication of CN109993050B publication Critical patent/CN109993050B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Astronomy & Astrophysics (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种合成孔径雷达图像识别方法,目的是解决目前SAR图像识别方法识别不准确的问题。技术方案是以卷积神经网络为基础,在卷积层中引入卷积核的权值。首先根据SAR图像构建神经网络模型,并将SAR图像通过网络前向传播得到概率预测值;将概率预测值与图像的类别标签进行匹配对比,得到目标损失函数;然后,采用后向传播算法对神经网络模型中的参数进行调整。最后将待识别的SAR图像通过训练完成的网络进行识别,得到识别结果。采用本发明可避免识别过程对专家经验的依赖性,同时避免识别的主观性和武断性;且本发明在卷积神经网络的卷积层中引入卷积核的权值,且可对卷积核的权值进行自适应调节,进一步提高了目标分类识别的准确性。

The invention discloses a synthetic aperture radar image recognition method, aiming to solve the problem of inaccurate recognition in the current SAR image recognition method. The technical solution is based on the convolutional neural network, and the weight of the convolution kernel is introduced into the convolutional layer. Firstly, the neural network model is constructed according to the SAR image, and the SAR image is propagated forward through the network to obtain the probability prediction value; the probability prediction value is matched and compared with the category label of the image to obtain the target loss function; The parameters in the network model are adjusted. Finally, the SAR image to be recognized is recognized through the trained network, and the recognition result is obtained. Adopting the present invention can avoid the dependence of the recognition process on expert experience, and avoid the subjectivity and arbitrariness of recognition; and the present invention introduces the weight of the convolution kernel in the convolution layer of the convolutional neural network, and the convolution The weight of the kernel is adaptively adjusted, which further improves the accuracy of target classification and recognition.

Description

一种合成孔径雷达图像识别方法A Synthetic Aperture Radar Image Recognition Method

技术领域technical field

本发明属于图像处理领域,涉及合成孔径雷达(Synthetic Aperture Radar,SAR)图像识别方法,尤其是基于深度学习框架的SAR图像识别方法,该方法也可推广应用于其他类型图像的自动分类识别。The invention belongs to the field of image processing, and relates to a Synthetic Aperture Radar (SAR) image recognition method, especially a SAR image recognition method based on a deep learning framework. The method can also be extended and applied to automatic classification and recognition of other types of images.

背景技术Background technique

合成孔径雷达(SAR)具有高分辨、远距离、全天时、全天候等特点,与传统雷达相比,这种新体制扩展了雷达成像的维数,可以提供目标的二维散射信息,因此在战场监视、武器制导、地形测绘等多个领域都具有广泛的应用。传统的SAR图像识别主要是基于人工经验的特征提取与模式分类方法来实现的,例如文献1:Qun Zhao,Jose C.Principe,“Support vector machines for SAR automatic target recognition”,IEEETransactions on Aerospace and Electronic Systems,2001,37(2):643-655(Qun Zhao等人在2001年于电气与电子工程师协会航天与电子系统会报第37期发表的“用于SAR自动目标识别的支持向量机”)中提出了利用支撑向量机(Support Vector Machine,SVM)进行目标的识别分类,该方法首先对目标进行姿态的估计,然后对所有图像进行归一化操作,最后将归一化后的图片输入到分类器中进行训练和测试。Synthetic Aperture Radar (SAR) has the characteristics of high resolution, long distance, all-weather, all-weather, etc. Compared with traditional radar, this new system expands the dimensionality of radar imaging and can provide two-dimensional scattering information of targets. It has a wide range of applications in many fields such as battlefield surveillance, weapon guidance, and terrain mapping. Traditional SAR image recognition is mainly realized by feature extraction and pattern classification methods based on artificial experience, such as literature 1: Qun Zhao, Jose C.Principe, "Support vector machines for SAR automatic target recognition", IEEETransactions on Aerospace and Electronic Systems , 2001, 37(2): 643-655 ("Support Vector Machines for SAR Automatic Target Recognition" published by Qun Zhao et al. in IEEE Aerospace and Electronic Systems Bulletin No. 37 in 2001) A support vector machine (Support Vector Machine, SVM) is proposed for object recognition and classification. This method first estimates the pose of the object, then normalizes all images, and finally inputs the normalized images into the classification train and test in the machine.

文献2:Jayaraman J.Thiagarajan,Karthikeyan N.Ramamurthy,et al“Sparserepresentation for automatic target classification in SAR images”,4thInternational Symposium on Communications,Control and Signal Processing(ISCCSP),2010:1-4(Jayaraman J.Thiagarajan等人在2010年于第4届通信、控制与信号处理国际讨论会上发表的“用于SAR图像自动目标识别的稀疏表示”)中提出了利用归一化后的训练向量集来构建稀疏表示词典,并使用该词典来寻找底层类流形的局部线性近似,从而计算测试集的稀疏表示。Document 2: Jayaraman J.Thiagarajan, Karthikeyan N.Ramamurthy, et al "Sparse representation for automatic target classification in SAR images", 4thInternational Symposium on Communications, Control and Signal Processing (ISCCSP), 2010: 1-4 (Jayaraman J.Thiagarajan et al. In the "Sparse Representation for Automatic Target Recognition of SAR Image" published at the 4th International Symposium on Communication, Control and Signal Processing in 2010, it was proposed to use the normalized training vector set to construct a sparse representation dictionary , and use this dictionary to find a local linear approximation to the underlying class manifold to compute a sparse representation of the test set.

文献3:Ganggang Dong,Wang Na,et al“Sparse representation of monogenicsignal:with application to target recognition in SAR images”,IEEE SignalProcessing Letters,2014,21(8):952-956(Ganggang Dong等人在2014年于电气与电子工程师协会信号处理快报第21期上发表的“用于SAR图像目标识别的单演信号的稀疏表示”)中提出了提取SAR图像的单演信号,并通过对该单演信号进行均匀下采样、归一化以及级联处理产生增强的单演特征向量,最后将单演特征向量输入到稀疏表示分类器(SparseRepresentation Classifier,SRC)进行训练和测试。Document 3: Ganggang Dong, Wang Na, et al "Sparse representation of monogenic signal: with application to target recognition in SAR images", IEEE Signal Processing Letters, 2014, 21(8): 952-956 (Ganggang Dong et al. in 2014 at In the "Sparse Representation of Single-cast Signals for SAR Image Target Recognition" published on the 21st Issue of Signal Processing Letters of the Institute of Electrical and Electronics Engineers, it is proposed to extract the single-cast signals of SAR images, and uniformly Downsampling, normalization, and cascading processing generate enhanced single-shot feature vectors, and finally the single-shot feature vectors are input to the Sparse Representation Classifier (Sparse Representation Classifier, SRC) for training and testing.

文献4:Ganggang Dong,GangyaoKuang“Target recognition in SAR image viaclassification on Riemannian manifolds”,IEEE Geoscience and Remote SensingLetters,2015,12(1):199-204(Ganggang Dong等人在2015年于电气与电子工程师协会地球科学与遥感快报第12期上发表的“通过黎曼流形的分类对SAR图像进行目标识别”)中提出了通过黎曼几何对SAR图像进行识别的方法。该方法首先通过单演信号对目标图像进行表征,并通过计算单演分量之间的相关性来构建协方差矩阵。由于协方差矩阵的对称和正定性,可以构建出连通的黎曼流形,并可转化到切向量空间上。之后利用得到的切向量作为特征向量,利用稀疏表示分类器(Sparse Representation Classifier,SRC)进行分类。Document 4: Ganggang Dong, Gangyao Kuang "Target recognition in SAR image viaclassification on Riemannian manifolds", IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 199-204 (Ganggang Dong et al. in 2015 at IEEE Earth In the "Target Recognition of SAR Images Through the Classification of Riemannian Manifolds" published on the 12th issue of Science and Remote Sensing Letters, a method for recognizing SAR images through Riemannian geometry was proposed. In this method, the target image is first characterized by monogenetic signals, and the covariance matrix is constructed by calculating the correlation between monogenetic components. Due to the symmetry and positive definiteness of the covariance matrix, a connected Riemannian manifold can be constructed and transformed into a tangent vector space. Then use the obtained tangent vector as the feature vector, and use Sparse Representation Classifier (Sparse Representation Classifier, SRC) to classify.

上述各种方法通常需要人工提取目标特征并选择分类器,其识别效果对人工经验的依赖性很大,且特征提取与分类器设计是两个相对独立的环节。作为一种数据驱动的方法,卷积神经网络可以通过机器训练自动从数据中学到有效的特征信息,同时完成目标的分类识别,其与传统浅层神经网络相比,所获取的深层隐含特征具有更强的目标区分能力,为SAR图像识别提供了一种新的可行途径。The above methods usually require manual extraction of target features and selection of classifiers. The recognition effect is highly dependent on manual experience, and feature extraction and classifier design are two relatively independent links. As a data-driven method, the convolutional neural network can automatically learn effective feature information from the data through machine training, and at the same time complete the classification and recognition of the target. Compared with the traditional shallow neural network, the deep hidden features obtained It has a stronger target discrimination ability and provides a new feasible way for SAR image recognition.

文献5:Sizhe Chen,Haipeng Wang,et al.“Target classification using thedeep convolutional networks for SAR images.”IEEE Transactions on Geoscienceand Remote Sensing,2016,54(8):4806-4817.(Sizhe Chen等人在2016年于电气与电子工程师协会地球科学与遥感会报第54期发表的“用于SAR图像目标分类的深度卷积网络”)中提出用全卷积神经网络来减少训练参数,避免在过小训练样本的情况下的过拟合现象。Document 5: Sizhe Chen, Haipeng Wang, et al. "Target classification using the deep convolutional networks for SAR images." IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806-4817. (Sizhe Chen et al. in 2016 In the "Deep Convolutional Network for SAR Image Target Classification" published in the 54th issue of the Institute of Electrical and Electronics Engineers Earth Science and Remote Sensing, it is proposed to use a fully convolutional neural network to reduce training parameters and avoid too small training samples. The phenomenon of overfitting in the case of .

文献6:Jun Ding,Bo Chen et al.“Convolutional neural network with dataaugmentation for SAR target recognition”,IEEE Geoscience and Remote SensingLetters,2016,13(3),364-368.(Jun Ding等人在2016年于电气与电子工程师协会地球科学与遥感快报第13期上发表的“用于SAR目标识别的带数据集扩充的卷积神经网络”)中提出通过对SAR图像进行预处理,来扩充数据集,从而增强网络对于目标的位置变换和抗噪声能力。Document 6: Jun Ding, Bo Chen et al. "Convolutional neural network with data augmentation for SAR target recognition", IEEE Geoscience and Remote Sensing Letters, 2016, 13(3), 364-368. (Jun Ding et al. In "Convolutional Neural Networks with Dataset Expansion for SAR Target Recognition" published on the 13th issue of the Earth Science and Remote Sensing Letters of the Institute of Electronics Engineers, it is proposed to expand the data set by preprocessing the SAR image, thereby enhancing the The network's position transformation and anti-noise ability for the target.

上述方法虽然将卷积神经网络应用到了SAR图像识别领域,但却并未考虑不同卷积核之间的关系对生成特征图的影响,从而影响了识别效果的进一步提升。本发明提出的合成孔径雷达图像识别方法基于卷积神经网络,通过在卷积层中引入卷积核权值,构建卷积核之间的关系,增强有效的特征,抑制非有效特征,从而提高卷积神经网络的分类性能。目前尚无公开文献涉及在卷积神经网络的卷积层中引入卷积核权值,并运用在SAR图像识别中。Although the above method applies the convolutional neural network to the field of SAR image recognition, it does not consider the influence of the relationship between different convolution kernels on the generated feature map, which affects the further improvement of the recognition effect. The synthetic aperture radar image recognition method proposed by the present invention is based on a convolutional neural network. By introducing convolution kernel weights in the convolution layer, the relationship between convolution kernels is constructed, effective features are enhanced, and ineffective features are suppressed, thereby improving Classification performance of convolutional neural networks. At present, there is no public literature related to the introduction of convolution kernel weights in the convolutional layer of the convolutional neural network and its application in SAR image recognition.

发明内容Contents of the invention

本发明要解决的技术问题是提出一种合成孔径雷达图像识别方法,解决目前基于卷积神经网络的SAR图像识别方法未考虑不同卷积核之间关系导致的识别不准确的问题。The technical problem to be solved by the present invention is to propose a synthetic aperture radar image recognition method to solve the problem of inaccurate recognition caused by the current SAR image recognition method based on convolutional neural network without considering the relationship between different convolution kernels.

本发明以卷积神经网络为基础,在卷积层中引入卷积核的权值。首先根据SAR图像构建神经网络模型,并将SAR图像通过网络前向传播得到概率预测值;将概率预测值与图像的类别标签进行匹配对比,得到目标损失函数;然后,采用后向传播算法对神经网络模型中的参数进行调整。最后将待识别的SAR图像通过训练完成的网络进行识别,得到识别结果。The invention is based on the convolution neural network, and introduces the weight of the convolution kernel into the convolution layer. Firstly, the neural network model is constructed according to the SAR image, and the SAR image is propagated forward through the network to obtain the probability prediction value; the probability prediction value is matched and compared with the category label of the image to obtain the target loss function; The parameters in the network model are adjusted. Finally, the SAR image to be recognized is recognized through the trained network, and the recognition result is obtained.

本发明主要包括以下几个步骤:The present invention mainly comprises the following steps:

第一步,构建用于训练的SAR图像数据库,SAR图像数据库由N个SAR图像和N个SAR图像的类别标签组成;N为SAR图像数据库中SAR图像的个数,每幅SAR图像只包含一个目标;SAR图像表示为G1,…Gn,…GN,Gn的大小为Wn×Hn,Wn为Gn的宽,Hn为Gn的高;类别标签表示为L1,…Ln,…LN,Ln为一维矩阵,含有C个元素,C个元素分别对应C个目标类别,Ln中表示真实类别的元素赋值为1,其余元素赋值为0;C为图像的类别个数,C为正整数,C≤N;。The first step is to construct a SAR image database for training. The SAR image database consists of N SAR images and the category labels of N SAR images; N is the number of SAR images in the SAR image database, and each SAR image contains only one Target; SAR image is expressed as G 1 ,…G n ,…G N , the size of G n is W n ×H n , W n is the width of G n , H n is the height of G n ; the category label is expressed as L 1 ,...L n ,...L N , L n is a one-dimensional matrix, containing C elements, and the C elements correspond to C target categories, the elements in L n that represent the real category are assigned 1, and the remaining elements are assigned 0; C is the number of image categories, C is a positive integer, C≤N;

第二步,对G1,…Gn,…GN进行预处理,方法为:The second step is to preprocess G 1 ,...G n ,...G N by:

2.1初始化变量n=1;2.1 Initialize variable n=1;

2.2若Gn中所有像素均为复数数据,转2.3;若Gn中所有像素均为实数数据,转2.4;2.2 If all pixels in G n are complex data, go to 2.3; if all pixels in G n are real data, go to 2.4;

2.3对Gn的Wn×Hn个像素分别取模,转化为实数,方法为:2.3 Take the modulus of W n × H n pixels of G n and convert them into real numbers, the method is:

2.3.1令行变量p=1;2.3.1 command line variable p=1;

2.3.2令列变量q=1;2.3.2 Order variable q=1;

2.3.3令Gn(p,q)为Gn上(p,q)点的值,a为Gn(p,q)复数数据的实数部分,b为Gn(p,q)复数数据的虚数部分。2.3.3 order G n (p, q) is the value of point (p, q) on G n , a is the real part of G n (p, q) complex data, b is the imaginary part of G n (p, q) complex data.

2.3.4q=q+1;2.3.4q=q+1;

2.3.5判定q是否小于等于Wn,若满足,转2.3.3,;若不满足,转2.3.6.2.3.5 Determine whether q is less than or equal to W n , if satisfied, go to 2.3.3; if not, go to 2.3.6.

2.3.6p=p+1;2.3.6 p = p + 1;

2.3.7判定p是否小于等于Hn,若满足,转2.3.2;若不满足,说明已经将Gn转化为了实数图像,转2.4。2.3.7 Determine whether p is less than or equal to H n , if it is satisfied, go to 2.3.2; if not, it means that G n has been transformed into a real number image, go to 2.4.

2.4人工判定G1,…,Gn,…,GN中目标的位置和目标的大小(为Gn中目标的宽,为Gn中目标的高)。2.4 Manually determine the position and size of the target in G 1 ,…,G n ,…,G N ( is the width of the target in G n , is the height of the target in Gn ).

2.5对G1,…Gn,…GN进行裁剪,使所有的SAR图像具有统一的大小,令统一的大小为WG×HG。WG和HG均为正整数,方法是:取中的最大值的1.1倍到2倍作为WG,取中的最大值的1.1倍到2倍作为HG,以目标为中心,对图像按WG×HG进行裁剪。2.5 Crop G 1 ,...G n ,...G N so that all SAR images have a uniform size, and let the uniform size be W G ×H G . Both W G and H G are positive integers, the method is: take 1.1 to 2 times the maximum value in W G , take 1.1 to 2 times of the maximum value in is used as H G , and the image is cropped by W G ×H G with the target as the center.

2.6使用随机序列生成函数(如MATLAB中的randperm函数),生成1到N的随机序列rn1…,rnn,…,rnN,以随机序列为索引,对G1,…Gn,…GN,L1,…Ln,…LN进行读取,令读取的随机图像令读取的随机类别标签得到随机图像序列G′1,…G′n,…,G′N和随机类别标签L′1,…,L′n,…,L′N2.6 Use a random sequence generation function (such as the randperm function in MATLAB) to generate a random sequence rn 1 ...,rn n ,...,rn N from 1 to N, with the random sequence as the index, for G 1 ,...G n ,...G N ,L 1 ,…L n ,…L N are read, so that the read random image Random class labels read by order Get random image sequences G′ 1 ,…G′ n ,…,G′ N and random category labels L′ 1 ,…,L′ n ,…,L′ N .

2.7对G′1,…G′n,…,G′N,L′1,…,L′n,…,L′N进行分组,令每组的图像个数和标签个数为in,1≤in≤N,一般in∈[1,64],G′1,…G′n,…,G′N共分为BN组,L′1,…,L′n,…,L′N也分为BN组。其中表示向上取整。2.7 Group G′ 1 ,…G′ n ,…,G′ N , L′ 1 ,…,L′ n ,…,L′ N , and let the number of images and labels in each group be in, 1 ≤in≤N, generally in∈[1,64], G′ 1 ,…G′ n ,…,G′ N are divided into BN groups, L′ 1 ,…,L′ n ,…,L′ N are also Divided into BN group. in Indicates rounding up.

第三步,根据WG×HG构建神经网络模型,神经网络模型至少包括卷积层,为了降低传播中特征图的维度,可构建池化层;为了提高网络模型的鲁棒性,可构建丢弃层;为了使最后的特征得到更好的映射,可构建全连接层。The third step is to construct a neural network model according to W G × H G. The neural network model includes at least a convolutional layer. In order to reduce the dimension of the feature map in the propagation, a pooling layer can be constructed; in order to improve the robustness of the network model, it can be constructed Dropout layer; in order to get a better mapping of the final features, a fully connected layer can be built.

3.1初始化层数变量,令卷积层的层数变量cn=1,池化层的层数变量pn=1,丢弃层的层数变量dn=1,全连接层的层数变量fn=1。3.1 Initialize the layer number variable, set the layer number variable cn=1 of the convolutional layer, the layer number variable pn=1 of the pooling layer, the layer number variable dn=1 of the discarding layer, and the layer number variable fn=1 of the fully connected layer.

3.2计算卷积层输出特征图的大小,方法是:3.2 Calculate the size of the output feature map of the convolutional layer by:

3.2.1若cn=1,令CWcn=WG,CHcn=HG,CDcn=1,否则转3.2.2,其中,CWcn为第cn个卷积层的输入特征图CGcn的宽,CHcn为CGcn的高,CDcn为CGcn的深度,CWcn×CHcn×CDcn表示CGcn的维度大小。3.2.1 If cn=1, set CW cn =W G , CH cn =H G , CD cn =1, otherwise go to 3.2.2, where CW cn is the input feature map CG cn of the cnth convolutional layer Width, CH cn is the height of CG cn , CD cn is the depth of CG cn , CW cn ×CH cn ×CD cn indicates the dimension of CG cn .

3.2.2对CGcn构建卷积层,令第cn个卷积层的卷积核的大小为第cn个卷积层的卷积核的个数为KNcn,卷积核在滑动时的步长大小为零元素填充尺寸为χcn。令表示第cn个卷积层的第kncn(1≤kncn≤KNcn)个卷积核,表示第cn个卷积层的第kncn个偏置,表示第cn个卷积层的第kncn个卷积核的权值。令为卷积层输出特征图的大小,则有:3.2.2 Construct a convolutional layer for CG cn , so that the size of the convolution kernel of the cnth convolutional layer is The number of convolution kernels of the cnth convolutional layer is KN cn , and the step size of the convolution kernel when sliding is The zero-element padding dimension is χ cn . make Represents the kn cn (1≤kn cn ≤KN cn ) convolution kernel of the cnth convolutional layer, Indicates the kn cnth offset of the cnth convolutional layer, Represents the weight of the kn cn convolution kernel of the cn convolution layer. make Output feature maps for convolutional layers size, then:

在卷积层中,卷积核的大小的取值范围通常为当cn=1时,KNcn的取值范围通常为KNcn∈[10,20],当cn≠1时,KNcn的取值范围通常为KNcn∈[KNcn-1,2×KNcn-1]。卷积核在滑动时的步长大小通常设置为1或者2,零元素填充尺寸 In the convolution layer, the size of the convolution kernel The range of values is usually and and When cn=1, the value range of KN cn is usually KN cn ∈[10,20], when cn≠1, the value range of KN cn is usually KN cn ∈[KN cn-1 ,2×KN cn -1 ]. The step size of the convolution kernel when sliding Usually set to 1 or 2, zero element padding size

3.3构建池化层,计算池化层输出特征图的大小,方法是:3.3 Construct the pooling layer and calculate the size of the output feature map of the pooling layer, the method is:

3.3.1令第pn个池化层的输入特征图其中PWcn为PGpn的宽,PHcn为PGpn的高,PDcn为PGpn的深度,则PWpn×PHpn×PDpn表示PGpn的维度大小。3.3.1 Let the input feature map of the pnth pooling layer make Where PW cn is the width of PG pn , PH cn is the height of PG pn , and PD cn is the depth of PG pn , then PW pn ×PH pn ×PD pn represents the dimension of PG pn .

3.3.2对于PGpn构建池化层,令第pn个池化层中的滑窗窗口的大小为滑窗在滑动时的步长大小为为池化层输出特征图的大小,则有:3.3.2 For PG pn to construct a pooling layer, let the size of the sliding window in the pnth pooling layer be The step size of the sliding window when sliding is make Output feature maps for pooling layers size, then:

其中,通常设置为2或者3,步长 in, Usually set to 2 or 3, the step size

3.4构建丢弃层,计算丢弃层的特征图大小,方法为:3.4 Construct the discard layer and calculate the size of the feature map of the discard layer, the method is:

3.4.1令第dn个丢弃层的输入特征图其中DWdn表示DGdn的宽,DHdn表示DGdn的高,DDdn表示DGdn的深度,则DWdn×DHdn×DDdn表示DGdn的维度大小。3.4.1 Let the input feature map of the dnth dropout layer make Where DW dn represents the width of DG dn , DH dn represents the height of DG dn , and DD dn represents the depth of DG dn , then DW dn ×DH dn ×DD dn represents the dimension of DG dn .

3.4.2对DGdn构建丢弃层,令表示第dn个丢弃层的丢弃概率,通常令为丢弃层输出特征图的大小,则有:3.4.2 Construct the discarding layer for DG dn , let Indicates the drop probability of the dnth drop layer, usually let make Output feature maps for the dropout layer size, then:

3.5判定thf为丢弃层输出特征图的第一阈值,为正整数,通常设置为3000,若满足,令cn=cn+1,pn=pn+1,dn=dn+1,然后令并令转步骤3.2;若不满足,则表示输出特征图的维度已较小,因此执行步骤3.6。3.5 Judgment thf is the output feature map for the dropout layer The first threshold of is a positive integer, usually set to 3000, if it is satisfied, let cn=cn+1, pn=pn+1, dn=dn+1, and then let and order Go to step 3.2; if it is not satisfied, it means that the dimension of the output feature map is already small, so go to step 3.6.

3.6计算全连接层输出特征向量的大小。3.6 Calculate the size of the output feature vector of the fully connected layer.

3.6.1若fn=1,令第fn个全连接层的输入特征向量FGfn的维度大小 3.6.1 If fn=1, let the dimension size of the input feature vector FG fn of the fnth fully connected layer

3.6.2对于维度大小为FWfn的FGfn构建全连接层,令全连接层的权值矩阵Afn的维度大小为偏置fbfn的维度大小为其中为全连接层输出特征向量的大小,通常设置 3.6.2 Construct a fully connected layer for FG fn whose dimension size is FW fn , so that the dimension size of the weight matrix A fn of the fully connected layer is The dimension size of the bias fb fn is in Output feature vectors for fully connected layers size, usually set

3.7计算丢弃层的特征向量大小。3.7 Calculate the feature vector size of the dropout layer.

3.7.1令dn=dn+1。3.7.1 Let dn=dn+1.

3.7.2令DWdn=1,DHdn=1,其中DWdn×DHdn×DDdn=DDdn表示第dn个丢弃层的输入特征向量DGdn的维度大小,其中 3.7.2 Let DW dn = 1, DH dn = 1, where DW dn ×DH dn ×DD dn = DD dn represents the dimension size of the input feature vector DG dn of the dnth discarding layer, where

3.7.3对于维度大小为DWdn×DHdn×DDdn的DGdn构建丢弃层,令表示第dn个丢弃层的丢弃概率,通常令为丢弃层输出特征图的大小,则有:3.7.3 For the DG dn whose dimension size is DW dn ×DH dn ×DD dn to construct the dropout layer, let Indicates the drop probability of the dnth drop layer, usually let make Output feature maps for the dropout layer size, then:

3.7.4判定thd为丢弃层输出特征图的第二阈值,为正整数,通常设置为1000,若满足,令fn=fn+1,dn=dn+1,并令转步骤3.6.1;若不满足,执行步骤3.8。3.7.4 Judgment thd is the output feature map for the discard layer The second threshold of is a positive integer, usually set to 1000, if satisfied, set fn=fn+1, dn=dn+1, and order Go to step 3.6.1; if not satisfied, go to step 3.8.

3.8对于维度大小为构建全连接层,令全连接层的权值矩阵Afn的维度大小为偏置fbfn的维度大小为C。3.8 For a dimension size of of Construct a fully connected layer, so that the dimension size of the weight matrix A fn of the fully connected layer is The dimension size of the bias fb fn is C.

3.9令CN=cn,PN=pn,DN=dn,FN=fn,即神经网络模型共有CN个卷积层,PN个池化层,DN个丢弃层以及FN+1个全连接层。3.9 Let CN=cn, PN=pn, DN=dn, FN=fn, that is, the neural network model has CN convolutional layers, PN pooling layers, DN discarding layers and FN+1 fully connected layers.

第四步,采用Glorot Xavier等人在2010年第13届人工智能和统计国际会议上发表的“理解训练深度前向神经网络的困难”第2页2.3节中提出的Xavier方法初始化神经网络的模型参数。具体操作方式如下:The fourth step is to use the Xavier method proposed in section 2.3 on page 2 of "Understanding the Difficulties of Training Deep Forward Neural Networks" published by Glorot Xavier et al. at the 13th International Conference on Artificial Intelligence and Statistics in 2010 to initialize the model of the neural network parameter. The specific operation method is as follows:

4.1对卷积层中的卷积核进行初始化。4.1 For the convolution kernel in the convolution layer to initialize.

4.1.1初始化卷积层的层数变量cn=1。4.1.1 Initialize the layer number variable cn=1 of the convolutional layer.

4.1.2初始化第cn个卷积层的卷积核的个数变量kncn=1。4.1.2 Initialize the variable kn cn =1 for the number of convolution kernels of the cnth convolutional layer.

4.1.3利用随机函数(如MATLAB中的rand函数)生成随机矩阵中每个元素的取值范围在(0,1)内,的维度大小为 4.1.3 Use random functions (such as the rand function in MATLAB) to generate random matrices The value range of each element in (0,1), has a dimension size of

4.1.4对进行初始化,令:4.1.4 pair To initialize, let:

其中,公式(5)表示中每个元素初始化为中相应位置的元素减0.5后乘以下文中矩阵的运算都是这个含义。Among them, formula (5) expresses Each element in is initialized to Subtract 0.5 from the element in the corresponding position and multiply by This is the meaning of matrix operations in the following.

4.1.5令kncn=kncn+1,判定kncn≤KNcn,若满足,转4.1.3,若不满足转4.1.6。4.1.5 Let kn cn =kn cn +1, determine kn cn ≤ KN cn , if satisfied, go to 4.1.3, if not, go to 4.1.6.

4.1.6令cn=cn+1,判定cn≤CN,若满足,转4.1.2;若不满足,说明卷积核初始化完成,转4.2。4.1.6 Let cn=cn+1, determine cn≤CN, if satisfied, go to 4.1.2; if not satisfied, explain the convolution kernel After the initialization is complete, go to 4.2.

4.2对卷积层中的卷积核的权值进行初始化。4.2 The weight of the convolution kernel in the convolution layer to initialize.

4.2.1初始化卷积层的层数变量cn=1。4.2.1 Initialize the layer number variable cn=1 of the convolutional layer.

4.2.2初始化kncn=1。4.2.2 Initialize kn cn =1.

4.2.3利用随机函数(如MATLAB中的rand函数)生成随机数矩阵 中每个元素的取值范围在(0,1)内。4.2.3 Use random functions (such as the rand function in MATLAB) to generate random number matrices The value range of each element in is in (0,1).

4.2.4对进行初始化,令:4.2.4 Pairs To initialize, let:

4.2.5令kncn=kncn+1,判定kncn≤KNcn,若满足,转4.2.3;若不满足,执行4.2.6。4.2.5 Let kn cn =kn cn +1, determine kn cn ≤ KN cn , if satisfied, go to 4.2.3; if not, go to 4.2.6.

4.2.6令cn=cn+1,判定cn≤CN,若满足,转4.2.2;若不满足,说明卷积核的权值初始化完成,执行4.3。4.2.6 Set cn=cn+1, determine cn≤CN, if satisfied, go to 4.2.2; if not satisfied, it means that the weight initialization of the convolution kernel is completed, and go to 4.3.

4.3对全连接层中的权值矩阵A1,…,Afn,…,AFN+1进行初始化。4.3 Initialize the weight matrix A 1 ,...,A fn ,...,A FN+1 in the fully connected layer.

4.3.1初始化fn=1。4.3.1 Initialize fn=1.

4.3.2利用随机函数(如MATLAB中的rand函数)生成随机数矩阵RAfn,RAfn中每个元素的取值范围在(0,1)内。4.3.2 Use a random function (such as the rand function in MATLAB) to generate a random number matrix RA fn , and the value range of each element in RA fn is within (0,1).

4.3.3对Afn进行初始化,令:4.3.3 Initialize A fn , make:

4.3.4令fn=fn+1,判定fn≤FN+1,若满足,转4.3.2,若不满足说明全连接层中的权值矩阵初始化完成,转4.4。4.3.4 Let fn=fn+1, determine that fn≤FN+1, if it is satisfied, go to 4.3.2, if it is not satisfied, it means that the initialization of the weight matrix in the fully connected layer is completed, go to 4.4.

4.4对卷积核中的偏置和全连接层中的偏置fb1,…,fbfn,…,fbFN+1进行初始化,将所有偏置赋值为0。4.4 Bias in the convolution kernel Initialize with the bias fb 1 ,...,fb fn ,...,fb FN+1 in the fully connected layer, and assign all biases to 0.

第五步,在训练阶段,需要通过不断迭代前向传播和后向传播,对神经网络模型中的参数进行更新。初始化迭代次数en=1。In the fifth step, in the training phase, the parameters in the neural network model need to be updated through continuous iterative forward propagation and backward propagation. The number of initialization iterations en=1.

第六步,初始化组数bn=1。The sixth step is to initialize the number of groups bn=1.

第七步,初始化变量n=(bn-1)×in+1。The seventh step is to initialize the variable n=(bn-1)×in+1.

第八步,对G′n采用前向传播方法进行前向传播,即将第n个SAR图像在构建的神经网络模型中进行前向传播,获得SAR图像类别的概率预测值。传播过程中各层输出即为神经网络所提取的特征。The eighth step is to use the forward propagation method for G′ n to carry out forward propagation, that is, carry out forward propagation on the nth SAR image in the constructed neural network model, and obtain the probability prediction value of the SAR image category. The output of each layer in the propagation process is the feature extracted by the neural network.

8.1初始化层数变量,令卷积层的层数变量cn=1,池化层的层数变量pn=1,丢弃层的层数变量dn=1,全连接层的层数变量fn=1。8.1 Initialize the layer number variable, set the layer number variable cn=1 of the convolutional layer, the layer number variable pn=1 of the pooling layer, the layer number variable dn=1 of the discarding layer, and the layer number variable fn=1 of the fully connected layer.

8.2计算卷积层的输出特征图,方法是:8.2 Calculate the output feature map of the convolutional layer by:

8.2.1若cn=1,则令其中为第n个输入图像在第cn个卷积层的输入特征图,否则,执行8.2.2。8.2.1 If cn=1, then let in The input feature map of the nth input image in the cnth convolutional layer, otherwise, perform 8.2.2.

8.2.2对进行零元素填充,具体操作如下:8.2.2 Pairs Carry out zero element padding, the specific operation is as follows:

8.2.2.1初始化大小为(CWcn+2×χcn)×(CHcn+2×χcn)×CDcn矩阵为全零。8.2.2.1 The initialization size is (CW cn +2×χ cn )×(CH cn +2×χ cn )×CD cn The matrix is all zeros.

8.2.2.2初始化cdcn=1,cdcn为特征图上的第三维度的坐标。8.2.2.2 Initialize cd cn =1, where cd cn is the coordinate of the third dimension on the feature map.

8.2.2.3初始化chcn=1,chcn为特征图上的第二维度的坐标。8.2.2.3 Initialize ch cn =1, where ch cn is the coordinate of the second dimension on the feature map.

8.2.2.4初始化cwcn=1,cwcn为特征图上的第一维度的坐标。8.2.2.4 Initialize cw cn =1, where cw cn is the coordinate of the first dimension on the feature map.

8.2.2.5令其中表示在坐标(cwcncn,chcncn,cdcn)上的取值,下同。8.2.2.5 Order in express The values on the coordinates (cw cncn , ch cncn , cd cn ) are the same below.

8.2.2.6令cwcn=cwcn+1,判定cwcn≤CWcn,若满足,转8.2.2.5,若不满足,执行8.2.2.7。8.2.2.6 Let cw cn =cw cn +1, judge that cw cn ≤ CW cn , if satisfied, go to 8.2.2.5, if not, go to 8.2.2.7.

8.2.2.7令chcn=chcn+1,判定chcn≤CHcn,若满足,转8.2.2.4,若不满足,执行8.2.2.8。8.2.2.7 Let ch cn =ch cn +1, determine ch cn ≤ CH cn , if satisfied, go to 8.2.2.4, if not, go to 8.2.2.8.

8.2.2.8令cdcn=cdcn+1,判定cdcn≤CDcn,若满足,转8.2.2.3,若不满足,说明赋值完成,执行8.2.3。8.2.2.8 Let cd cn =cd cn +1, judge that cd cn ≤ CD cn , if satisfied, go to 8.2.2.3, if not, it means the assignment is completed, go to 8.2.3.

8.2.3初始化kncn=1。8.2.3 Initialize kn cn =1.

8.2.4计算第kncn个卷积核与的卷积结果计算方式如下:8.2.4 Calculate the kn cn convolution kernel and The convolution result of It is calculated as follows:

其中,表示在坐标(cwcn,chcn,kncn)上的取值;(kwcn,khcn)为卷积核的位置坐标,(cwcn,chcn,cdcn)为输入特征图的位置坐标。in, express The value on the coordinates (cw cn , ch cn , kn cn ); (kw cn , kh cn ) is the position coordinate of the convolution kernel, (cw cn , ch cn , cd cn ) is the input feature map location coordinates.

8.2.5利用激活函数σ(·)对中的值进行非线性化处理,得到非线性化处理后的卷积结果常见的激活函数包括S型函数(sigmoid)、双曲正切函数(tanh)和Alex Krizhevsky等人在2012年于神经信息处理系统国际会议上发表的“用深度神经网络进行ImageNet分类”中提出的修正线性单元(Rectified Linear Unit,ReLU)等。8.2.5 Using the activation function σ( ) to The value in is nonlinearized to obtain the convolution result after nonlinearization Common activation functions include sigmoid function (sigmoid), hyperbolic tangent function (tanh) and corrections proposed by Alex Krizhevsky et al. in "ImageNet Classification with Deep Neural Networks" published at the International Conference on Neural Information Processing Systems in 2012. Linear unit (Rectified Linear Unit, ReLU), etc.

8.2.6利用S型函数将映射到0~1之间,得到映射后的卷积核的权值 8.2.6 Using the sigmoid function to convert Mapped to between 0 and 1 to get the weight of the mapped convolution kernel

8.2.7利用进行加权,得到卷积层的输出具体操作如下:8.2.7 Exploitation right Weighted to get the output of the convolutional layer The specific operation is as follows:

8.2.7.1初始化kncn=1。8.2.7.1 Initialize kn cn =1.

8.2.7.2初始化chcn=1。8.2.7.2 Initialize ch cn =1.

8.2.7.3初始化cwcn=1。8.2.7.3 Initialize cw cn =1.

8.2.7.4令 8.2.7.4 Order

8.2.7.5令cwcn=cwcn+1,判定cwcn≤CWcn+2×χcn,若满足,转8.2.7.4,若不满足,执行8.2.7.6。8.2.7.5 Let cw cn =cw cn +1, judge that cw cn ≤ CW cn +2×χ cn , if satisfied, go to 8.2.7.4, if not, go to 8.2.7.6.

8.2.7.6令chcn=chcn+1,判定chcn≤CHcn+2×χcn,若满足,转8.2.7.3,若不满足,执行8.2.7.7。8.2.7.6 Let ch cn =ch cn +1, judge ch cn ≤ CH cn +2×χ cn , if satisfied, go to 8.2.7.3, if not, go to 8.2.7.7.

8.2.7.7令kncn=kncn+1,判定kncn≤KNcn,若满足,转8.2.7.2,若不满足,说明赋值完成,执行8.3。8.2.7.7 Let kn cn = kn cn +1, determine kn cn ≤ KN cn , if satisfied, go to 8.2.7.2, if not, it means the assignment is completed, go to 8.3.

8.3计算池化层的输出特征图,方法是:8.3 Calculate the output feature map of the pooling layer by:

8.3.1令第pn个池化层的输入特征图 8.3.1 Let the input feature map of the pnth pooling layer

8.3.2根据滑窗窗口的大小和滑窗在滑动时的步长大小对PGpn进行滑窗操作,得到个区域。8.3.2 According to the size of the sliding window and the step size of the sliding window when sliding Sliding window operation is performed on PG pn to get area.

8.3.3对等区域分别池化,其中表示池化层的输出特征图的位置坐标,同时利用该坐标表示输出特征图的位置对应于输入特征图的区域。具体操作如下:8.3.3 Pairs The regions are pooled separately, where Represents the position coordinates of the output feature map of the pooling layer, and uses this coordinate to indicate that the position of the output feature map corresponds to the area of the input feature map. The specific operation is as follows:

其中,为相对于滑窗区域的坐标, 通常为取最大值函数或者取平均值函数若取最大值函数,需记录最大值所在位置的滑窗区域的坐标转8.4;若取平均值函数,直接转8.4。in, is the coordinate relative to the sliding window area, Usually the function of taking the maximum value or take the average function If the maximum value function is taken, the coordinates of the sliding window area where the maximum value is located need to be recorded Go to 8.4; if you take the average function, go to 8.4 directly.

8.4计算丢弃层的输出特征图,方法是:8.4 Calculate the output feature map of the dropout layer by:

8.4.1令第dn个丢弃层的输入特征图 8.4.1 Let the input feature map of the dnth dropout layer

8.4.2使用随机序列生成函数(如MATLAB中的randperm函数),生成1到DDdn的随机序列以随机序列为索引,对维度大小为DDdn的一维矩阵Φ进行赋值。令为0,令为1。其中表示向下取整。8.4.2 Use a random sequence generation function (such as the randperm function in MATLAB) to generate a random sequence from 1 to DD dn Using the random sequence as the index, assign a value to the one-dimensional matrix Φ with dimension size DD dn . make is 0, let is 1. in Indicates rounding down.

8.4.3将Φ与DGdn相乘。具体操作为:8.4.3 Multiply Φ by DG dn . The specific operation is:

8.4.3.1初始化dddn=1。8.4.3.1 Initialize dd dn =1.

8.4.3.2初始化dhdn=1。8.4.3.2 Initialize dh dn =1.

8.4.3.3初始化dwdn=1。8.4.3.3 Initialize dw dn =1.

8.4.3.4令 8.4.3.4 Order

8.4.3.5令dwdn=dwdn+1,判定dwdn≤DWdn,若满足,转8.4.3.4,若不满足,执行8.4.3.6。8.4.3.5 Let dw dn =dw dn +1, judge that dw dn ≤ DW dn , if satisfied, go to 8.4.3.4, if not, go to 8.4.3.6.

8.4.3.6令dhdn=dhdn+1,判定dhdn≤DHdn,若满足,转8.4.3.3,若不满足,执行8.4.3.7。8.4.3.6 Let dh dn =dh dn +1, judge that dh dn ≤ DH dn , if satisfied, go to 8.4.3.3, if not, go to 8.4.3.7.

8.4.3.7令dddn=dddn+1,判定dddn≤DDdn,若满足,转8.4.3.2,若不满足,说明赋值完成,执行8.5。8.4.3.7 Let dd dn =dd dn +1, judge that dd dn ≤ DD dn , if it is satisfied, go to 8.4.3.2, if it is not satisfied, it means that the assignment is completed, and go to 8.5.

8.5令cn=cn+1,pn=pn+1,dn=dn+1,判定cn≤CN,若满足,转8.2,若不满足,执行8.6。8.5 Let cn=cn+1, pn=pn+1, dn=dn+1, determine cn≤CN, if satisfied, go to 8.2, if not, go to 8.6.

8.6计算全连接层的输出特征向量,方法是:8.6 Calculate the output feature vector of the fully connected layer by:

8.6.1若fn=1,将第dn-1层丢弃层输出的特征图转换为一维的特征向量,作为全连接层的输入特征向量FGfn,具体操作步骤如下:8.6.1 If fn=1, discard the feature map output by the layer dn-1 Convert to a one-dimensional feature vector, as the input feature vector FG fn of the fully connected layer, the specific operation steps are as follows:

8.6.1.1初始化 8.6.1.1 Initialization

8.6.1.2初始化 8.6.1.2 Initialization

8.6.1.3初始化 8.6.1.3 Initialization

8.6.1.4令:8.6.1.4 Order:

8.6.1.5令判定若满足,转8.6.1.4,若不满足,执行8.6.1.6。8.6.1.5 Order determination If satisfied, go to 8.6.1.4; if not, go to 8.6.1.6.

8.6.1.6令判定若满足,转8.6.1.3,若不满足,执行8.6.1.7。8.6.1.6 Order determination If satisfied, go to 8.6.1.3; if not, go to 8.6.1.7.

8.6.1.7令判定若满足,转8.6.1.2,若不满足,说明赋值完成,执行8.6.2。8.6.1.7 order determination If it is satisfied, go to 8.6.1.2. If it is not satisfied, it means that the assignment is completed and go to 8.6.2.

8.6.2计算权值矩阵Afn与FGfn的乘积,并与偏置fbfn相加,得到卷积层中间的特征向量FGfn′,计算方式如下:8.6.2 Calculate the product of the weight matrix A fn and FG fn , and add it to the bias fb fn to obtain the feature vector FG fn ′ in the middle of the convolutional layer. The calculation method is as follows:

FGfn′=Afn×FGfn+fbfn (11)FG fn ′=A fn ×FG fn +fb fn (11)

8.6.3利用激活函数σ(·)对FGfn′中的值进行非线性化处理,得到非线性化处理后的特征向量 8.6.3 Use the activation function σ( ) to nonlinearize the value in FG fn ′ to obtain the nonlinearized feature vector

8.7计算丢弃层的输出特征向量,方法是:8.7 Calculate the output feature vector of the dropout layer by:

8.7.1令第dn个丢弃层的输入特征图 8.7.1 Let the input feature map of the dnth dropout layer

8.7.2使用随机序列生成函数(如MATLAB中的randperm函数),生成1到DDdn的随机序列以随机序列为索引,对维度大小为DDdn的一维矩阵Φ进行赋值。令为0,令为1。其中表示向下取整。8.7.2 Use a random sequence generation function (such as the randperm function in MATLAB) to generate a random sequence from 1 to DD dn Using the random sequence as the index, assign a value to the one-dimensional matrix Φ with dimension size DD dn . make is 0, let is 1. in Indicates rounding down.

8.7.3将Φ与DGdn相乘。具体操作为:8.7.3 Multiply Φ by DG dn . The specific operation is:

8.7.3.1初始化dddn=1。8.7.3.1 Initialize dd dn =1.

8.7.3.2令 8.7.3.2 Order

8.7.3.3令dddn=dddn+1,判定dddn≤DDdn,若满足,转8.7.3.2,若不满足,说明赋值完成,执行8.8。8.7.3.3 Let dd dn =dd dn +1, judge that dd dn ≤DD dn , if satisfied, go to 8.7.3.2, if not, it means the assignment is completed, go to 8.8.

8.8令fn=fn+1,dn=dn+1,判定fn≤FN,若满足,转8.6,若不满足,执行8.9。8.8 Let fn=fn+1, dn=dn+1, determine fn≤FN, if satisfied, go to 8.6, if not, go to 8.9.

8.9计算全连接层的输出特征向量,方法是:8.9 Calculate the output feature vector of the fully connected layer by:

8.9.1计算权值矩阵Afn与FGfn的乘积,并与偏置fbfn相加,得到全连接层中间的特征向量(FGfn)′,计算方式如下:8.9.1 Calculate the product of the weight matrix A fn and FG fn , and add it to the bias fb fn to obtain the feature vector (FG fn )′ in the middle of the fully connected layer. The calculation method is as follows:

(FGfn)′=Afn×FGfn+fbfn (12)(FG fn )'=A fn ×FG fn +fb fn (12)

8.9.2利用softmax函数对(FGfn)′中的值进行非线性化处理,得到全连接层的结果为例,计算方式如下:8.9.2 Use the softmax function to nonlinearize the value in (FG fn )′ to obtain the result of the fully connected layer by For example, the calculation is as follows:

则为图像为第c类的概率预测值。 Then it is the predicted value of the probability that the image is the c-th class.

第九步,根据和L′n,计算第n个SAR图像的损失函数JnThe ninth step, according to and L′ n , calculate the loss function J n of the nth SAR image:

L′n(cc)表示L′n中的第cc个元素;9.1令n=n+1,判定bn=BN,若满足,执行9.2;若不满足,执行9.3。L' n (cc) represents the cc-th element in L'n; 9.1 sets n=n+1, judges bn=BN, if satisfied, executes 9.2; if not satisfied, executes 9.3.

9.2判定n≤N,若满足,转第八步;若不满足,执行第十步。9.2 Determine n≤N, if it is satisfied, go to the eighth step; if not, go to the tenth step.

9.3判定n≤bn×in,若满足,转第八步,若不满足,执行第十步。9.3 Determine n≤bn×in, if satisfied, go to the eighth step, if not, go to the tenth step.

第十步,对第bn组内的SAR图像得到的损失函数求平均值,计算第en次迭代中的第bn组的损失函数JJ(en-1)×in+bn(即组内SAR图像的损失函数的平均值),判定bn=BN,若满足,转10.1,若不满足,转10.2。In the tenth step, the loss function obtained by the SAR images in the bnth group is averaged, and the loss function JJ (en-1)×in+bn of the bnth group in the en iteration is calculated (that is, the SAR image in the group The average value of the loss function), determine bn=BN, if satisfied, go to 10.1, if not, go to 10.2.

10.110.1

10.210.2

第十一步,判定第en次迭代中的第bn组的损失函数JJ(en-1)×in+bn≤JJM,其中JJM为设定的损失函数阈值(通常小于0.01),若满足,则说明前向传播完成,转第十七步,若不满足,转第十二步。In the eleventh step, determine the loss function JJ (en-1)×in+bn ≤ JJM of the bn-th group in the en-th iteration, where JJM is the set loss function threshold (usually less than 0.01), if satisfied, then It means that the forward propagation is completed, go to the seventeenth step, if not satisfied, go to the twelfth step.

第十二步,将Jn在网络中进行后向传播,从而对卷积层中的卷积核、卷积核的权值、偏置以及全连接层中的权值矩阵、偏置这些神经网络模型参数进行调节。具体步骤如下:In the twelfth step, J n is propagated backward in the network, so that the convolution kernel in the convolution layer, the weight and bias of the convolution kernel, and the weight matrix in the fully connected layer, bias these neurons Network model parameters are adjusted. Specific steps are as follows:

12.1初始化层数变量,令卷积层的层数变量cn=CN,池化层的层数变量pn=PN,丢弃层的层数变量dn=DN,全连接层的层数变量fn=FN+1。12.1 Initialize the layer number variable, let the layer number variable of the convolutional layer cn=CN, the layer number variable of the pooling layer pn=PN, the layer number variable of the discarding layer dn=DN, and the layer number variable of the fully connected layer fn=FN+ 1.

12.2计算Jn对全连接层中的权值矩阵A1,…,Afn,…,AFN+1和偏置fb1,…,fbfn,…,fbFN+1的偏导数。12.2 Calculate the partial derivatives of J n to the weight matrix A 1 ,…,A fn ,…,A FN+1 and biases fb 1 ,…,fb fn ,…,fb FN+1 in the fully connected layer.

12.2.1若fn=FN+1,则否则,其中,softmax′(·)和S′(·)表示softmax函数和sigmoid函数的导数。12.2.1 If fn=FN+1, then otherwise, Among them, softmax'( ) and S'( ) represent the derivatives of softmax function and sigmoid function.

12.2.2计算Jn对权值矩阵Afn以及Jn对偏置fbfn的偏导数。12.2.2 Calculate the partial derivative of J n to weight matrix A fn and J n to bias fb fn .

12.2.3令fn=fn-1,判定fn≥1,若满足,转12.2;,若不满足,转12.3。12.2.3 Let fn=fn-1, determine fn≥1, if satisfied, go to 12.2; if not satisfied, go to 12.3.

12.3若pn=PN,将Jn对FGfn+1′的偏导数转换为为三维矩阵,具体操作步骤如下,否则转12.4。12.3 If pn=PN, the partial derivative of J n to FG fn+1 converted to is a three-dimensional matrix, the specific operation steps are as follows, otherwise go to 12.4.

12.3.1初始化 12.3.1 Initialization

12.3.2初始化 12.3.2 Initialization

12.3.3初始化 12.3.3 Initialization

12.3.4令:12.3.4 Order:

12.3.5判定若满足,转12.3.4;若不满足,转12.3.6。12.3.5 determination If satisfied, go to 12.3.4; if not, go to 12.3.6.

12.3.6判定若满足,转12.3.3;若不满足,转12.3.7。12.3.6 determination If satisfied, go to 12.3.3; if not, go to 12.3.7.

12.3.7判定若满足,转12.3.2;若不满足,说明赋值完成,转12.4。12.3.7 determination If it is satisfied, go to 12.3.2; if it is not satisfied, it means the assignment is completed, go to 12.4.

12.4利用Jn的偏导数求损失函数Jn对PGpn等区域内元素的偏导数。12.4 Using J n pairs partial derivative of Find the loss function J n to PG pn Partial derivatives of elements in the equal region.

12.4.1若8.3.2中的为最大值函数,转12.4.2,若为平均值函数,则转12.4.3。12.4.1 If in 8.3.2 If it is the maximum value function, go to 12.4.2, if it is the average value function, then go to 12.4.3.

12.4.2令Jn对PGpn中位置为的元素的偏导数为:12.4.2 Let the position of J n to PG pn be The partial derivatives of the elements of are:

Jn对PGpn中其余元素的偏导数为0。The partial derivatives of J n with respect to the remaining elements in PG pn are 0.

12.4.3令Jn对PGpn中所有元素的偏导数均为 12.4.3 Let the partial derivatives of J n with respect to all elements in PG pn be

12.5根据8.3.1可知,所以可以令 12.5 According to 8.3.1, so you can make

12.6计算Jn对卷积层中的卷积核卷积核的权值和卷积核中的偏置的偏导数,方法是:12.6 Calculating J n pairs of convolutional kernels in convolutional layers The weight of the convolution kernel and the bias in the convolution kernel The partial derivative of , by:

12.6.1计算Jn对卷积核的偏导数。12.6.1 Calculating J n pairs of convolution kernels partial derivative of .

12.6.2计算Jn对卷积核的权值的偏导数。12.6.2 Calculating the weight of J n to the convolution kernel partial derivative of .

12.6.3计算Jn对卷积核中的偏置的偏导数。12.6.3 Calculating the offset of J n to the convolution kernel partial derivative of .

12.6.4令cn=cn-1,pn=pn-1,dn=dn-1,判定cn≥1,若不满足,说明传播已完成,转第十三步;若满足,转12.6.5。12.6.4 Let cn=cn-1, pn=pn-1, dn=dn-1, determine cn≥1, if not satisfied, it means that the propagation has been completed, go to step 13; if satisfied, go to 12.6.5.

12.6.5计算Jn的偏导数计算方式为:12.6.5 Computing J n pairs partial derivative of The calculation method is:

12.6.5.1对进行零元素填充,具体操作如下:12.6.5.1 pair Carry out zero element padding, the specific operation is as follows:

12.6.5.1.1初始化大小为的全零矩阵JCcn+112.6.5.1.1 The initialization size is The all-zero matrix JC cn+1 of .

12.6.5.1.2初始化上的第三维度的坐标。12.6.5.1.2 Initialization for Coordinates in the third dimension on .

12.6.5.1.3初始化上的第二维度的坐标。12.6.5.1.3 Initialization for Coordinates in the second dimension on .

12.6.5.1.4初始化上的第一维度的坐标。12.6.5.1.4 Initialization for Coordinates in the first dimension on .

12.6.5.1.5令Order 12.6.5.1.5

12.6.5.1.6判定若满足,转12.6.5.1.5,若不满足,转12.6.5.1.7。12.6.5.1.6 determination If satisfied, go to 12.6.5.1.5; if not, go to 12.6.5.1.7.

12.6.5.1.7判定若满足,转12.6.5.1.4,若不满足,转12.6.5.1.8。12.6.5.1.7 determination If satisfied, go to 12.6.5.1.4; if not, go to 12.6.5.1.8.

12.6.5.1.8判定若满足,转12.6.5.1.3,若不满足,说明赋值完成,转12.6.5.2。12.6.5.1.8 determination If it is satisfied, go to 12.6.5.1.3, if not, it means the assignment is completed, go to 12.6.5.2.

12.6.5.2将顺时针旋转180°得到旋转后的矩阵 12.6.5.2 will Rotate 180° clockwise to get rotated matrix

12.6.5.3计算:12.6.5.3 Calculation:

12.6.5.4转12.4。12.6.5.4 to 12.4.

第十三步,令n=n+1,判定bn=BN,若满足,转13.1;若不满足,转13.2。The thirteenth step, make n=n+1, determine bn=BN, if satisfied, go to 13.1; if not satisfied, go to 13.2.

13.1判定n≤N,若满足,转至12.1.2;若不满足,转至13.3。13.1 Determine n≤N, if satisfied, go to 12.1.2; if not, go to 13.3.

13.2判定n≤bn×in,若满足,转至12.1.2;若不满足,转至13.3。13.2 Determine that n≤bn×in, if satisfied, go to 12.1.2; if not, go to 13.3.

13.3对第bn组内的SAR图像得到的损失函数对卷积层中的卷积核卷积层中的卷积核的权值卷积核中的偏置全连接层中的权值矩阵A1,…,Afn,…,AFN+1、全连接层中的偏置fb1,…,fbfn,…,fbFN+1的偏导数分别求平均值,方法是:13.3 The loss function obtained for the SAR image in the bn group is for the convolution kernel in the convolution layer The weight of the convolution kernel in the convolution layer Bias in convolution kernel Average the partial derivatives of the weight matrix A 1 ,…,A fn ,…,A FN+1 in the fully connected layer and the bias fb 1 ,…,fb fn ,…,fb FN+1 in the fully connected layer value, by:

13.3.1判定bn=BN,若满足,转13.3.2;若不满足,转13.3.3。13.3.1 Determine bn=BN, if satisfied, go to 13.3.2; if not, go to 13.3.3.

13.3.213.3.2

转第十四步;Go to step fourteen;

13.3.313.3.3

第十四步,采用第十三步的输出,利用Diederik P.Kingma等人在2015年国际学习表征会议上发表的“Adam:一种随机优化方法”中提出的Adam算法更新卷积核卷积核的权值卷积核中的偏置全连接层中的权值矩阵A1,…,Afn,…,AFN+1、全连接层中的偏置fb1,…,fbfn,…,fbFN+1,具体为:The fourteenth step, using the output of the thirteenth step, uses the Adam algorithm proposed by Diederik P. Kingma et al. in "Adam: A Stochastic Optimization Method" published at the 2015 International Conference on Learning Representation to update the convolution kernel The weight of the convolution kernel Bias in convolution kernel The weight matrix A 1 ,…,A fn ,…,A FN+1 in the fully connected layer and the bias fb 1 ,…,fb fn ,…,fb FN+1 in the fully connected layer are as follows:

14.1令14.1 order

其中β1是给定的第一超参数,通常设为β1=0.9。Where β 1 is a given first hyperparameter, usually set as β 1 =0.9.

14.2令14.2 order

其中β2是给定的第二超参数,通常设为β2=0.999。Where β 2 is a given second hyperparameter, usually set to β 2 =0.999.

14.3令14.3 order

14.4更新Afn和fbfn,令:14.4 update A fn and fb fn , let:

其中η为初始化学习率,通常设置为η≤0.01。Where η is the initial learning rate, usually set to η≤0.01.

第十五步令bn=bn+1,判定bn≤BN,若满足,转第七步;若不满足,转第十六步。The fifteenth step sets bn=bn+1, and judges that bn≤BN, if satisfied, go to the seventh step; if not satisfied, go to the sixteenth step.

第十六步,令en=en+1,判定en≤EN,若满足,转第六步;若不满足,则表明训练完成,执行第十七步。The sixteenth step, let en=en+1, determine en≤EN, if satisfied, turn to the sixth step; if not satisfied, it indicates that the training is completed, and execute the seventeenth step.

第十七步,使用训练完成的网络模型对待识别的SAR图像TG进行识别。In the seventeenth step, use the trained network model to identify the SAR image TG to be identified.

17.1将图像在网络中进行前向传播。17.1 Forward propagating the image through the network.

17.1.1初始化丢弃层的层数变量dn=117.1.1 Initialize the layer number variable dn=1 of the discarded layer

17.1.2令均为0,。17.1.2 Order Both are 0,.

17.2采用第八步所述前向传播方法将TG在网络中进行前向传播,得到 17.2 Use the forward propagation method described in the eighth step to propagate TG forward in the network, and get

17.3寻找中最大值的位置cm,即:17.3 Finding The position of the maximum value in cm, that is:

17.4将标签中C个类别中的第cm个类别作为识别的结果输出。17.4 Output the cm-th category among the C categories in the label as the recognition result.

说明:在实际使用中,除卷积层外,其他层可根据需要进行构建。对于池化层而言,若传播过程中的特征图维度过大,可使用池化层来减小特征图维度。对于丢弃层而言,若训练样本过小或训练过程中出现了过拟合现象,则可以采用丢弃层。对全连接层而言,为了使特征得到更好的映射,可构建全连接层。本发明给出了卷积层、池化层、丢弃层、全连接层的构建和使用方法,但是用户也可根据实际需求构建相应的层,只有卷积层是必须要构建的。Note: In actual use, except for the convolutional layer, other layers can be constructed as needed. For the pooling layer, if the dimension of the feature map during propagation is too large, the pooling layer can be used to reduce the dimension of the feature map. For the dropout layer, if the training sample is too small or overfitting occurs during training, the dropout layer can be used. For the fully connected layer, in order to better map the features, a fully connected layer can be constructed. The present invention provides methods for constructing and using convolutional layers, pooling layers, discarding layers, and fully connected layers, but users can also construct corresponding layers according to actual needs, and only the convolutional layer must be constructed.

本发明的有益效果:Beneficial effects of the present invention:

(1)卷积神经网络模型的训练(即第八步-第十六步)完全通过机器学习自动完成,避免了识别过程对专家经验的依赖性,同时也避免了识别的主观性和武断性,提高了图像识别的准确性。(1) The training of the convolutional neural network model (that is, the eighth step to the sixteenth step) is completely automatically completed through machine learning, which avoids the dependence of the recognition process on expert experience, and also avoids the subjectivity and arbitrariness of the recognition , which improves the accuracy of image recognition.

(2)第三步中提出的针对SAR图像的神经网络模型构建方法,可以针对不同尺寸的SAR图像,构建出更为有效的网络模型。相较于以往主观性地构建神经网络模型,本发明为神经网络模型的构建提供了指南。(2) The neural network model construction method for SAR images proposed in the third step can construct more effective network models for SAR images of different sizes. Compared with constructing the neural network model subjectively in the past, the present invention provides a guideline for the construction of the neural network model.

(3)第八步中在卷积神经网络的卷积层中引入卷积核的权值,通过对卷积核进行加权,来实现对卷积核所提取特征进行加权的目的。通过权值可以调节卷积核所提取特征在输出特征图的比重,增强特征的表示能力,最终影响识别结果,进一步提高了目标分类识别的准确性。(3) In the eighth step, the weight of the convolution kernel is introduced into the convolution layer of the convolutional neural network, and the purpose of weighting the features extracted by the convolution kernel is achieved by weighting the convolution kernel. The weight can be used to adjust the proportion of the features extracted by the convolution kernel in the output feature map, enhance the representation ability of the features, and finally affect the recognition results, further improving the accuracy of target classification and recognition.

(4)第十二步中提出了针对包含了卷积核的权值的卷积层进行后向传播的方法,可以对卷积核的权值进行自适应调节。自适应调节避免了人工设定的主观性,可以根据训练得到更为合适的权值。(4) In the twelfth step, a method of backpropagating the convolutional layer including the weight of the convolution kernel is proposed, which can adaptively adjust the weight of the convolution kernel. Adaptive adjustment avoids the subjectivity of manual setting, and can obtain more appropriate weights according to training.

(5)第十四步中通过引入Adam算法,使得网络参数可以根据训练得到的梯度进行自适应地调节,避免了原始算法中学习率大小固定的缺点,使得网络模型可以更快更稳定地完成训练。(5) In the fourteenth step, by introducing the Adam algorithm, the network parameters can be adjusted adaptively according to the gradient obtained from training, avoiding the disadvantage of the fixed learning rate in the original algorithm, and making the network model complete faster and more stably train.

附图说明Description of drawings

图1是本发明总体流程图;Fig. 1 is the overall flow chart of the present invention;

图2是本发明第三步构建神经网络模型流程图;Fig. 2 is that the third step of the present invention builds the neural network model flowchart;

图3是本发明第八步前向传播方法流程图;Fig. 3 is the eighth step forward propagation method flowchart of the present invention;

图4是本发明第十二步后向传播方法流程图。Fig. 4 is a flow chart of the twelfth step backward propagation method of the present invention.

具体实施方式Detailed ways

图1是本发明的总体流程图。结合实验对本发明进行进一步描述:Fig. 1 is the general flowchart of the present invention. The present invention is further described in conjunction with experiment:

第一步,构建用于训练的SAR图像数据库。实验中,采用MSTAR数据集中的用于训练的SAR图像数据,N=2747,Wn×Hn=128×128。The first step is to construct a SAR image database for training. In the experiment, the SAR image data used for training in the MSTAR data set is used, N=2747, W n ×H n =128×128.

第二步,对SAR图像进行预处理,得到2747个大小为WG×HG=96×96的SAR图像。在此设置in=30,BN=92,即每组中的图像和标签个数为30,图像中共分为92组。In the second step, the SAR images are preprocessed to obtain 2747 SAR images with a size of W G ×H G =96×96. Here set in=30, BN=92, that is, the number of images and labels in each group is 30, and the images are divided into 92 groups.

第三步,根据预处理后的SAR图像构建神经网络模型。构建流程如图3所示。The third step is to build a neural network model based on the preprocessed SAR images. The construction process is shown in Figure 3.

3.1初始化层数变量,令卷积层的层数变量cn=1,池化层的层数变量pn=1,丢弃层的层数变量dn=1,全连接层的层数变量fn=1。3.1 Initialize the layer number variable, set the layer number variable cn=1 of the convolutional layer, the layer number variable pn=1 of the pooling layer, the layer number variable dn=1 of the discarding layer, and the layer number variable fn=1 of the fully connected layer.

3.2计算卷积层输出特征图的大小。3.2 Calculate the size of the output feature map of the convolutional layer.

3.3构建池化层,计算池化层输出特征图的大小。3.3 Build a pooling layer and calculate the size of the output feature map of the pooling layer.

3.4构建丢弃层,计算丢弃层的特征图大小。3.4 Construct the dropout layer and calculate the feature map size of the dropout layer.

3.5判定thf为丢弃层输出特征图的第一阈值,若满足,令cn=cn+1,pn=pn+1,dn=dn+1,然后令 并令转步骤3.2;若不满足,执行步骤3.6。3.5 Judgment thf is the output feature map for the dropout layer The first threshold of , if satisfied, let cn=cn+1, pn=pn+1, dn=dn+1, then let and order Go to step 3.2; if not satisfied, go to step 3.6.

3.6计算全连接层输出特征向量的大小。3.6 Calculate the size of the output feature vector of the fully connected layer.

3.7计算丢弃层的特征向量大小。3.7 Calculate the feature vector size of the dropout layer.

3.7.1令dn=dn+1。3.7.1 Let dn=dn+1.

3.7.2令DWdn=1,DHdn=1,其中DWdn×DHdn×DDdn=DDdn表示第dn个丢弃层的输入特征向量DGdn的维度大小,其中 3.7.2 Let DW dn = 1, DH dn = 1, where DW dn ×DH dn ×DD dn = DD dn represents the dimension size of the input feature vector DG dn of the dnth discarding layer, where

3.7.3对于维度大小为DWdn×DHdn×DDdn的DGdn构建丢弃层,令表示第dn个丢弃层的丢弃概率,通常令为丢弃层输出特征图的大小,则有:3.7.3 For the DG dn whose dimension size is DW dn ×DH dn ×DD dn to construct the dropout layer, let Indicates the drop probability of the dnth drop layer, usually let make Output feature maps for the dropout layer size, then:

3.7.4判定thd为丢弃层输出特征图的第二阈值,若满足,令fn=fn+1,dn=dn+1,并令转步骤3.6;若不满足,执行步骤3.8。3.7.4 Judgment thd is the output feature map for the discard layer The second threshold of , if satisfied, set fn=fn+1, dn=dn+1, and order Go to step 3.6; if not satisfied, go to step 3.8.

3.8对于维度大小为构建全连接层,令全连接层的权值矩阵Afn的维度大小为偏置fbfn的维度大小为C。3.8 For a dimension size of of Construct a fully connected layer, so that the dimension size of the weight matrix A fn of the fully connected layer is The dimension size of the bias fb fn is C.

3.9令CN=cn,PN=pn,DN=dn,FN=fn,即神经网络模型共有CN个卷积层,PN个池化层,DN个丢弃层以及FN+1个全连接层。3.9 Let CN=cn, PN=pn, DN=dn, FN=fn, that is, the neural network model has CN convolutional layers, PN pooling layers, DN discarding layers and FN+1 fully connected layers.

实验中,首先设置thf=3000,之后根据3.2,设置第一个卷积层的参数为:KN1=16,χ1=3,输出特征图大小为96×96×16;根据3.3,设置第一个池化层的参数为:输出特征图大小为48×48×16;根据3.4,设置第一个丢弃层的参数为:输出特征图大小为48×48×16;根据3.5判定48×48×16>thf,所以返回3.2并依照上述步骤继续构建卷积层、池化层和丢弃层如下:In the experiment, first set thf=3000, and then according to 3.2, set the parameters of the first convolutional layer as: KN 1 =16, χ 1 = 3, the output feature map size is 96×96×16; according to 3.3, set the parameters of the first pooling layer as: The output feature map size is 48×48×16; according to 3.4, set the parameters of the first discard layer as: The size of the output feature map is 48×48×16; according to 3.5, it is judged that 48×48×16>thf, so return to 3.2 and continue to build the convolutional layer, pooling layer and discarding layer according to the above steps as follows:

设置第二个卷积层的参数为:KN2=32,χ2=3,输出特征图大小为48×48×32;第二个池化层的参数为:输出特征图大小为24×24×32;第二个丢弃层的参数为:输出特征图大小为24×24×32,因为24×24×32>thf,所以返回3.2。Set the parameters of the second convolutional layer as: KN 2 =32, χ 2 =3, the output feature map size is 48×48×32; the parameters of the second pooling layer are: The output feature map size is 24×24×32; the parameters of the second dropout layer are: The output feature map size is 24×24×32, because 24×24×32>thf, so it returns 3.2.

设置第三个卷积层的参数为:KN3=64,χ3=2,输出特征图大小为24×24×64;第三个池化层的参数为:输出特征图大小为12×12×64;第三个丢弃层的参数为:输出特征图大小为12×12×64,因为12×12×64>thf,所以返回3.2。Set the parameters of the third convolutional layer as: KN 3 =64, χ 3 =2, the output feature map size is 24×24×64; the parameters of the third pooling layer are: The output feature map size is 12×12×64; the parameters of the third dropout layer are: The output feature map size is 12×12×64, because 12×12×64>thf, so it returns 3.2.

设置第四个卷积层的参数为:KN4=128,χ4=2,输出特征图大小为12×12×128;第四个池化层的参数为:输出特征图大小为6×6×128;第四个丢弃层的参数为:输出特征图大小为6×6×128,因为6×6×128>thf,所以返回3.2。Set the parameters of the fourth convolutional layer as: KN 4 =128, χ 4 =2, the output feature map size is 12×12×128; the parameters of the fourth pooling layer are: The output feature map size is 6×6×128; the parameters of the fourth dropout layer are: The output feature map size is 6×6×128, because 6×6×128>thf, so it returns 3.2.

设置第五个卷积层的参数为:KN5=128,χ5=1,输出特征图大小为6×6×128;第五个池化层的参数为:输出特征图大小为3×3×128;第五个丢弃层的参数为:输出特征图大小为3×3×128,因为3×3×128<thf,进行下一步。Set the parameters of the fifth convolutional layer as: KN 5 =128, χ 5 =1, the output feature map size is 6×6×128; the parameters of the fifth pooling layer are: The output feature map size is 3×3×128; the parameters of the fifth dropout layer are: The output feature map size is 3×3×128, because 3×3×128<thf, proceed to the next step.

设置thd=1000,之后根据3.6,设置第一个全连接层的参数为:输出特征向量大小为512;根据3.7,设置第六个丢弃层的参数为:输出特征向量大小为512,根据3.7.4,判定512<thd,根据3.8构建全连接层,实验中的图像数据有10类目标,设置参数为:C=10。最终构建的网络中,CN=5,PN=5,DN=6,FN=1。Set thd=1000, then according to 3.6, set the parameters of the first fully connected layer as: The output feature vector size is 512; according to 3.7, set the parameters of the sixth discard layer as: The size of the output feature vector is 512. According to 3.7.4, it is determined that 512<thd, and the fully connected layer is constructed according to 3.8. The image data in the experiment has 10 types of objects, and the setting parameters are: C=10. In the finally constructed network, CN=5, PN=5, DN=6, FN=1.

第四步,采用Xavier方法初始化神经网络的模型参数。。The fourth step is to use the Xavier method to initialize the model parameters of the neural network. .

第五步,设置EN=300,初始化迭代次数en=1;The fifth step is to set EN=300 and initialize the number of iterations en=1;

第六步,初始化组数bn=1;The sixth step is to initialize the number of groups bn=1;

第七步,初始化变量n=(bn-1)×in+1;The seventh step, initialize variable n=(bn-1)×in+1;

第八步,如图3所示,对G′n采用前向传播方法进行前向传播,获得SAR图像类别的概率预测值。The eighth step, as shown in Fig. 3, uses the forward propagation method to carry out forward propagation on G′n , and obtains the probability prediction value of the SAR image category.

8.1初始化层数变量,令卷积层的层数变量cn=1,池化层的层数变量pn=1,丢弃层的层数变量dn=1,全连接层的层数变量fn=1。8.1 Initialize the layer number variable, set the layer number variable cn=1 of the convolutional layer, the layer number variable pn=1 of the pooling layer, the layer number variable dn=1 of the discarding layer, and the layer number variable fn=1 of the fully connected layer.

8.2计算卷积层的输出特征图。8.2 Calculate the output feature map of the convolutional layer.

8.3计算池化层的输出特征图。8.3 Calculate the output feature map of the pooling layer.

8.4计算丢弃层的输出特征图。8.4 Compute the output feature map of the dropout layer.

8.5令cn=cn+1,pn=pn+1,dn=dn+1,判定cn≤CN,若满足,转8.2,若不满足,执行8.6。8.5 Let cn=cn+1, pn=pn+1, dn=dn+1, determine cn≤CN, if satisfied, go to 8.2, if not, go to 8.6.

8.6计算全连接层的输出特征向量。8.6 Calculate the output feature vector of the fully connected layer.

8.7计算丢弃层的输出特征向量。8.7 Compute the output feature vector of the dropout layer.

8.8令fn=fn+1,dn=dn+1,判定fn≤FN,若满足,转8.6,若不满足,执行8.9。8.8 Let fn=fn+1, dn=dn+1, determine fn≤FN, if satisfied, go to 8.6, if not, go to 8.9.

8.9计算全连接层的输出特征向量。8.9 Calculate the output feature vector of the fully connected layer.

实验中,根据8.2,8.3,8.4的计算方法以及8.5的判定方法计算各个卷积层、池化层和丢弃层的输出特征图;根据8.6,8.7的计算方法以及8.8的判定方法计算第一个全连接层和第六个池化层的输出特征向量。然后根据8.9的计算方法,得到 In the experiment, calculate the output feature maps of each convolutional layer, pooling layer and dropout layer according to the calculation methods of 8.2, 8.3, 8.4 and the determination method of 8.5; calculate the first one according to the calculation methods of 8.6, 8.7 and the determination method of 8.8 The output feature vector of the fully connected layer and the sixth pooling layer. Then according to the calculation method in 8.9, we get

第九步,根据和L′n,按公式(14)计算第n个SAR图像的损失函数JnThe ninth step, according to and L′ n , calculate the loss function J n of the nth SAR image according to formula (14):

9.1令n=n+1,判定bn=BN,若满足,执行9.2;若不满足,执行9.3。9.1 Set n=n+1, determine bn=BN, if satisfied, execute 9.2; if not, execute 9.3.

9.2判定n≤N,若满足,转第八步;若不满足,执行第十步。9.2 Determine n≤N, if it is satisfied, go to the eighth step; if not, go to the tenth step.

9.3判定n≤bn×in,若满足,转第八步,若不满足,执行第十步。9.3 Determine n≤bn×in, if satisfied, go to the eighth step, if not, go to the tenth step.

第十步,对第bn组内的SAR图像得到的损失函数求平均值,计算第en次迭代中的第bn组的损失函数JJ(en-1)×in+bnIn the tenth step, the loss function obtained by the SAR images in the bn group is averaged, and the loss function JJ (en-1)×in+bn of the bn group in the en iteration is calculated;

第十一步,判定第en次迭代中的第bn组的损失函数JJ(en-1)×in+bn≤JJM,其中JJM为设定的损失函数阈值,此处设置为0.01,若满足,则说明前向传播完成,转第十七步,若不满足,转第十二步;The eleventh step is to determine the loss function JJ (en-1)×in+bn ≤ JJM of the bn-th group in the en-th iteration, where JJM is the set loss function threshold, which is set to 0.01 here. If it is satisfied, It means that the forward propagation is completed, go to the seventeenth step, if not satisfied, go to the twelfth step;

第十二步,如图4所示,将Jn在网络中进行后向传播,对卷积层中的卷积核、卷积核的权值、偏置以及全连接层中的权值矩阵、偏置这些神经网络模型参数进行调节。In the twelfth step, as shown in Figure 4, J n is propagated backward in the network, and the convolution kernel in the convolution layer, the weight and bias of the convolution kernel, and the weight matrix in the fully connected layer , Bias these neural network model parameters to adjust.

12.1初始化层数变量,令卷积层的层数变量cn=CN,池化层的层数变量pn=PN,丢弃层的层数变量dn=DN,全连接层的层数变量fn=FN+1。12.1 Initialize the layer number variable, let the layer number variable of the convolutional layer cn=CN, the layer number variable of the pooling layer pn=PN, the layer number variable of the discarding layer dn=DN, and the layer number variable of the fully connected layer fn=FN+ 1.

12.2计算Jn对全连接层中的权值矩阵A1,…,Afn,…,AFN+1和偏置fb1,…,fbfn,…,fbFN+1的偏导数。12.2 Calculate the partial derivatives of J n to the weight matrix A 1 ,…,A fn ,…,A FN+1 and biases fb 1 ,…,fb fn ,…,fb FN+1 in the fully connected layer.

12.2.1若fn=FN+1,则否则,其中,softmax′(·)和S′(·)表示softmax函数和sigmoid函数的导数。12.2.1 If fn=FN+1, then otherwise, Among them, softmax'( ) and S'( ) represent the derivatives of softmax function and sigmoid function.

12.2.2按公式(17)计算Jn对权值矩阵Afn以及Jn对偏置fbfn的偏导数。12.2.2 Calculate the partial derivatives of J n to weight matrix A fn and J n to bias fb fn according to formula (17).

12.2.3令fn=fn-1,判定fn≥1,若满足,转12.2;,若不满足,转12.3。12.2.3 Let fn=fn-1, determine fn≥1, if satisfied, go to 12.2; if not satisfied, go to 12.3.

12.3若pn=PN,将Jn对FGfn+1′的偏导数转换为为三维矩阵后转12.4,否则直接转12.4。12.3 If pn=PN, the partial derivative of J n to FG fn+1 converted to Go to 12.4 after it is a three-dimensional matrix, otherwise go to 12.4 directly.

12.4利用Jn的偏导数求损失函数Jn对PGpn等区域内元素的偏导数。12.4 Using J n pairs partial derivative of Find the loss function J n to PG pn Partial derivatives of elements in the equal region.

12.5令 12.5 orders

12.6计算Jn对卷积层中的卷积核卷积核的权值和卷积核中的偏置的偏导数,方法是:12.6 Calculating J n pairs of convolutional kernels in convolutional layers The weight of the convolution kernel and the bias in the convolution kernel The partial derivative of , by:

12.6.1按公式(20)计算Jn对卷积核的偏导数。12.6.1 Calculate J n pairs of convolution kernels according to formula (20) partial derivative of .

12.6.2按公式(21)计算Jn对卷积核的权值的偏导数。12.6.2 Calculate the weight of J n to the convolution kernel according to formula (21) partial derivative of .

12.6.3按公式(22)计算Jn对卷积核中的偏置的偏导数。12.6.3 Calculate the bias of J n to the convolution kernel according to formula (22) partial derivative of .

12.6.4令cn=cn-1,pn=pn-1,dn=dn-1,判定cn≥1,若不满足,说明传播已完成,转第十三步;若满足,转12.6.5。12.6.4 Let cn=cn-1, pn=pn-1, dn=dn-1, determine cn≥1, if not satisfied, it means that the propagation has been completed, go to step 13; if satisfied, go to 12.6.5.

12.6.5计算Jn的偏导数转12.4。12.6.5 Computing J n pairs partial derivative of Go to 12.4.

实验中,根据12.2计算损失函数对全连接层中的权值矩阵和偏置的偏导数;根据12.2.3判定fn≥1,若满足转12.2,若不满足,转12.3。根据12.3,判定pn=PN,若满足则将损失函数对特征图的偏导数转换为三维,若不满足则直接转12.4。根据12.4计算损失函数对特征图中各池化区域内元素的偏导数。根据12.6计算损失函数对卷积层中的卷积核,卷积核的权值和卷积核中的偏置的偏导数。In the experiment, calculate the partial derivative of the loss function to the weight matrix and bias in the fully connected layer according to 12.2; judge fn≥1 according to 12.2.3, if it is satisfied, go to 12.2, if not, go to 12.3. According to 12.3, judge that pn=PN, if it is satisfied, convert the partial derivative of the loss function to the feature map into three-dimensional, if not, go directly to 12.4. According to 12.4, calculate the partial derivative of the loss function to the elements in each pooling area in the feature map. According to 12.6, calculate the partial derivative of the loss function with respect to the convolution kernel in the convolution layer, the weight of the convolution kernel and the bias in the convolution kernel.

第十三步,令n=n+1,判定bn=BN,若满足,转13.1;若不满足,转13.2;The thirteenth step, make n=n+1, determine bn=BN, if satisfied, go to 13.1; if not satisfied, go to 13.2;

13.1判定n≤N,若满足,转至12.1.2;若不满足,转至13.3。13.1 Determine n≤N, if satisfied, go to 12.1.2; if not, go to 13.3.

13.2判定n≤bn×in,若满足,转至12.1.2;若不满足,转至13.3。13.2 Determine that n≤bn×in, if satisfied, go to 12.1.2; if not, go to 13.3.

13.3对第bn组内的SAR图像得到的损失函数对卷积层中的卷积核卷积层中的卷积核的权值卷积核中的偏置全连接层中的权值矩阵A1,…,Afn,…,AFN+1、全连接层中的偏置fb1,…,fbfn,…,fbFN+1的偏导数分别求平均值。13.3 The loss function obtained for the SAR image in the bn group is for the convolution kernel in the convolution layer The weight of the convolution kernel in the convolution layer Bias in convolution kernel Average the partial derivatives of the weight matrix A 1 ,…,A fn ,…,A FN+1 in the fully connected layer and the bias fb 1 ,…,fb fn ,…,fb FN+1 in the fully connected layer value.

第十四步,利用Adam算法更新卷积核卷积核的权值卷积核中的偏置全连接层中的权值矩阵A1,…,Afn,…,AFN+1、全连接层中的偏置fb1,…,fbfn,…,fbFN+1The fourteenth step, using the Adam algorithm to update the convolution kernel The weight of the convolution kernel Bias in convolution kernel The weight matrix A 1 ,…,A fn ,…,A FN+1 in the fully connected layer, and the bias fb 1 ,…,fb fn ,…,fb FN+1 in the fully connected layer.

第十五步,令bn=bn+1,判定bn≤BN,若满足,转第七步;若不满足,转第十六步;The fifteenth step, let bn=bn+1, determine that bn≤BN, if satisfied, go to the seventh step; if not satisfied, go to the sixteenth step;

第十六步,令en=en+1,判定en≤EN,若满足,转第六步;若不满足,则表明训练完成,执行第十七步;The sixteenth step, let en=en+1, determine en≤EN, if satisfied, go to the sixth step; if not satisfied, it means that the training is completed, and execute the seventeenth step;

第八步到第十二步是将图像在模型中进行前向传播和后向传播;第十三步和第十四步是对模型的参数进行更新。第八到第十四步是迭代过程,根据第十五步和第十六步判断是否迭代结束。最终当en=301,由于不满足en≤300的要求,从而完成训练,得到最终用于识别的模型。The eighth step to the twelfth step is to forward and backward propagate the image in the model; the thirteenth and fourteenth steps are to update the parameters of the model. The eighth to fourteenth steps are iterative process, according to the fifteenth and sixteenth steps to judge whether the iteration is over. Finally, when en=301, since the requirement of en≤300 is not satisfied, the training is completed and the final model for recognition is obtained.

第十七步,使用训练完成的神经网络模型对待识别的SAR图像进行识别。实验中,采用MSTAR数据集中的用于测试的3203个SAR图像对神经网络模型进行测试。若输出的类别与实际的类别相同,则视为识别正确。最终得到的正确识别率为98.39%,说明了本发明的有效性。In the seventeenth step, use the trained neural network model to identify the SAR image to be identified. In the experiment, 3203 SAR images used for testing in the MSTAR dataset are used to test the neural network model. If the output category is the same as the actual category, the recognition is considered correct. The finally obtained correct recognition rate is 98.39%, which illustrates the effectiveness of the present invention.

Claims (13)

1. A synthetic aperture radar image identification method is characterized by comprising the following steps:
first, build for trainingThe SAR image database consists of N SAR images and category labels of the N SAR images; n is the number of SAR images in an SAR image database, and each SAR image only comprises one target; SAR image is denoted as G1,…Gn,…GN,GnIs of size Wn×Hn,WnIs GnWidth of (H)nIs GnHigh of (d); class label denoted L1,…Ln,…LN,LnIs a one-dimensional matrix containing C elements corresponding to C object classes, LnThe middle element representing the real category is assigned with 1, and the rest elements are assigned with 0; c is the number of the image categories, C is a positive integer, and C is less than or equal to N;
second step, for G1,…Gn,…GNThe pretreatment is carried out, and the method comprises the following steps:
2.1 initializing variable n ═ 1;
2.2 if GnAll the pixels in the pixel array are complex data, and 2.3 is converted; if G isnAll the pixels in the image are real number data, and 2.4 turns;
2.3 mixing GnW of (2)n×HnEach pixel is converted into a real number, and the real number is converted into 2.4;
2.4 determination of G1,…,Gn,…,GNPosition of the target and size of the target Is GnThe width of the medium target is greater than the target width,is GnHigh for medium targets;
2.5 pairs of G1,…Gn,…GNCutting to make all SAR images have uniform size, and making uniform size be WG×HG,WGAnd HGAre all positive integers;
2.6 Generation of random sequences rn from 1 to N Using random sequence Generation function1…,rnn,…,rnNUsing random sequence as index, for G1,…Gn,…GN,L1,…Ln,…LNReading is performed to make the random image readRandom class label for readingObtaining a random image sequence G'1,…G′n,…,G′NAnd a random class tag L'1,…,L′n,…,L′N
2.7 to G'1,…G′n,…,G′N,L′1,…,L′n,…,L′NGrouping is carried out, the number of images and the number of labels in each group are in, and in is more than or equal to 1 and less than or equal to N and G'1,…G′n,…,G′NIs totally BN group, L'1,…,L′n,…,L′NAnd is also divided into a group BN, wherein,whereinRepresents rounding up;
third step, according to WG×HGConstructing a neural network model, wherein the method comprises the following steps:
3.1 initializing the layer number variable cn, setting the layer number variable cn of the convolutional layer to 1, setting the layer number variable pn of the pooling layer to 1, setting the layer number variable dn of the discarded layer to 1, and setting the layer number variable fn of the all-connected layer to 1;
3.2 calculating the size of the convolution layer output characteristic diagram, wherein the method comprises the following steps:
3.2.1 if cn is 1, let CWcn=WG,CHcn=HG,CDcn1, otherwise, 3.2.2, where CWcnAn input feature map CG for the cn-th convolution layercnWidth of (C, CH)cnIs CGcnHigh, CDcnIs CGcnDepth of (CW)cn×CHcn×CDcnRepresentation CGcnThe dimension size of (d);
3.2.2 pairs of CGcnBuilding convolutional layers with the convolutional kernel of the cn convolutional layer of sizeThe number of convolution kernels of the cn convolution layer is KNcnStep size of convolution kernel at sliding isThe zero element filling size is xcn(ii) a Order toRepresenting the kn of the cn-th convolutional layercnA convolution kernel of 1 or more kncn≤KNcnRepresenting the kn of the cn-th convolutional layercnThe bias voltage is set to be equal to the bias voltage,representing the kn of the cn-th convolutional layercnThe weight of each convolution kernel; order toOutputting a feature map for a convolutional layerThe size of (d) is as follows:
3.3 construct pooling layer, calculate the size of the pooling layer output characteristic map, the method is:
3.3.1 input profile of pn-th pooling layerOrder toWherein PWcnIs PGpnWidth of (D), PHcnIs PGpnHigh, PD ofcnIs PGpnDepth of (1), then PWpn×PHpn×PDpnRepresents PGpnThe dimension size of (d);
3.3.2 for PGpnConstructing the pooling layer such that the size of the sliding window in the pn-th pooling layer isThe step size of the sliding window during sliding isOrder toOutputting a feature map for the pooling layerThe size of (d) is as follows:
3.4, constructing a discarding layer, and calculating the size of a feature map of the discarding layer, wherein the method comprises the following steps:
3.4.1 input feature map for the dn-th discard layerOrder toIn which DWdnRepresents DGdnWidth of (D), DHdnRepresents DGdnHigh, DDdnRepresents DGdnDepth of (2), then DWdn×DHdn×DDdnRepresents DGdnThe dimension size of (d);
3.4.2 pairs DGdnBuild a discard layer, orderRepresents the drop probability of the dn-th drop layer, orderOrder toOutputting a feature map for a discard layerThe size of (d) is as follows:
3.5 determinationthf is the discard level output profileIf the first threshold value of (a) is a positive integer, let cn be cn +1, pn be pn +1, and dn be dn +1, and then letAnd orderTurning to step 3.2; if not, executing step 3.6;
3.6 calculate the size of the full-connection layer output feature vector:
3.6.1 let fn be 1, let the input feature vector FG for the fn-th fully-connected layerfnDimension of (2)
3.6.2 FW for dimension sizefnFG of (1)fnConstructing a full connection layer, and making a weight matrix A of the full connection layerfnHas a dimension ofOffset fbfnHas a dimension ofWhereinOutputting feature vectors for full connection layersSize, setting of
3.7 calculate the eigenvector size of the discarded layer:
3.7.1 let dn be dn + 1;
3.7.2 order DWdn=1,DHdn=1,Then DWdn×DHdn×DDdnInput feature vector DG for the dnth discarded layerdnOf size of (1), wherein
3.7.3 for dimension size DWdn×DHdn×DDdnDG of (1)dnConstruction ofDiscard the layer, orderRepresents the drop probability of the dn-th drop layer, orderOrder toOutputting a feature map for a discard layerThe size of (d) is as follows:
3.7.4 determinationthd is the discard layer output feature mapIf the second threshold value of (2) is a positive integer, let fn be fn +1, dn be dn +1,and orderTurning to step 3.6.1; if not, executing step 3.8;
3.8 for dimension size ofIs/are as followsConstructing a full connection layer, and making the weight moment of the full connection layerArray AfnHas a dimension ofOffset fbfnThe dimension of (a) is C;
3.9 make CN ═ PN, DN ═ DN, FN ═ FN, that is, the neural network model has CN convolution layers, PN pooling layers, DN discarding layers and FN +1 full connection layers;
fourthly, initializing model parameters of the neural network to obtain convolution kernels in the initialized convolution layerWeights of convolution kernels in initialized convolution layerWeight matrix A in initialized full connection layer1,…,Afn,…,AFN+1Bias in initialized convolution kernelAnd offset fb in the full connection layer1,…,fbfn,…,fbFN+1
Fifthly, initializing the iteration number en as 1;
sixthly, initializing a group number bn to be 1;
seventhly, initializing a variable n which is (bn-1) x in + 1;
eighth step, to G'nAdopting a forward propagation method to carry out forward propagation, namely carrying out forward propagation on the nth SAR image in the constructed neural network model to obtain a probability prediction value of the SAR image category, wherein the method comprises the following steps:
8.1 initializing the layer number variable, setting the layer number variable cn of the convolutional layer to 1, the layer number variable pn of the pooling layer to 1, the layer number variable dn of the discard layer to 1, and the layer number variable fn of the all-connected layer to 1;
8.2 calculating the output characteristic diagram of the convolution layer, the method is as follows:
8.2.1 if cn is 1, let us sayWhereinInputting the feature map of the nth input image at the cn convolution layer, otherwise, executing 8.2.2;
8.2.2 pairsCarrying out zero element filling to obtain a filled characteristic diagram
8.2.3 initializing kncn=1;
8.2.4 calculating the kthcnA convolution kernel andresult of convolution ofThe calculation method is as follows:
wherein,to representIn the coordinate (cw)cn,chcn,kncn) The value of (a); (kwcn,khcn) Is the position coordinate of the convolution kernel, (cw)cn,chcn,cdcn) For inputting feature mapsThe position coordinates of (a);
8.2.5 activation function σ (-) pairsThe value in (3) is subjected to nonlinear processing to obtain a convolution result after the nonlinear processing
8.2.6 will utilize an S-shaped functionMapping to 0-1 to obtain the weight of the mapped convolution kernel
8.2.7 utilizeTo pairWeighting to obtain the output of the convolution layer
8.3 calculating the output characteristic diagram of the pooling layer, wherein the method comprises the following steps:
8.3.1 input profile of the pn-th pooling layer
8.3.2 according to the size of the sliding WindowAnd step size of sliding window during slidingFor PGpnPerforming a sliding window operation to obtainAn area;
8.3.3 pairsAre respectively pooled in whichThe position coordinates of the output characteristic diagram of the pooling layer are represented, and meanwhile, the coordinates are used for representing that the position of the output characteristic diagram corresponds to the area of the input characteristic diagram, and the specific operation is as follows:
wherein,as a coordinate relative to the sliding window area, as a function of taking the maximumOr taking the mean functionIf the maximum function is taken, the coordinates of the sliding window area at the position of the maximum are recordedRotating 8.4; if get the flatThe mean function is directly converted to 8.4;
8.4 calculating the output characteristic graph of the discarding layer, wherein the method comprises the following steps:
8.4.1 input feature map for the dn-th discard layer
8.4.2 Generation of 1 to DD Using random sequence Generation functiondnRandom sequence of (2)Random sequence is used as index, and dimension is DDdnAssigning the one-dimensional matrix phi; order toIs 0, orderIs 1; whereinRepresents rounding down;
8.4.3 coupling phi with DGdnMultiplying;
8.5 making CN ═ CN +1, pn ═ pn +1, dn ═ dn +1, judging CN ≦ CN, if yes, turning to 8.2, if no, executing 8.6;
8.6 calculating the output characteristic vector of the full connection layer, the method is as follows:
8.6.1 feature map output by the dn-1 st layer drop layer if fn is 1Converting into one-dimensional feature vector as input feature vector FG of full connection layerfn
8.6.2 calculating the weight matrix AfnAnd FGfnAnd with an offset fbfnAdding to obtain a feature vector FG between convolution layersfn′The calculation method is as follows:
FGfn′=Afn×FGfn+fbfn (11);
8.6.3 Using the activation function σ (-) on FGfn′The value in (3) is subjected to nonlinear processing to obtain a characteristic vector after the nonlinear processing
8.7 calculating the output feature vector of the discarding layer, the method is:
8.7.1 input feature map for the dn-th discard level
8.7.2 use random sequence generation function to generate 1 to DDdnRandom sequence of (2)Random sequence is used as index, and dimension is DDdnAssigning the one-dimensional matrix phi; order toIs 0, orderIs 1;
8.7.3 will phi and DGdnMultiplication, specifically:
8.7.3.1 initialize dddn=1;
8.7.3.2 order
8.7.3.3 order dddn=dddn+1, decision dddn≤DDdnIf yes, 8.7.3.2 is turned to, if no, the assignment is finished, and 8.8 is executed;
8.8 making FN ═ FN +1 and dn ═ dn +1, judging FN is less than or equal to FN, if it is satisfied, turning to 8.6, if it is not satisfied, executing 8.9;
8.9 calculating the output characteristic vector of the full connection layer, the method is as follows:
8.9.1 calculating the weight matrix AfnAnd FGfnAnd with an offset fbfnAdding to obtain feature vector (FG) in the middle of the full connection layerfn) ', the calculation is as follows:
(FGfn)′=Afn×FGfn+fbfn (12)
8.9.2 utilize a softmax function pair (FG)fn) ' the values in (1) are non-linearized to obtain a fully connected layer result The calculation method of (c) is as follows:
the probability prediction value of the image as the class c is obtained;
the ninth step is based onAnd L'nCalculating a loss function J of the nth SAR imagen
L′n(cc) represents L'nThe cc element of (1);
9.1, let n be n +1, judge BN be BN, if satisfied, execute 9.2; if not, executing 9.3;
9.2 judging that N is less than or equal to N, if so, turning to the eighth step; if not, executing the tenth step;
9.3 judging that n is less than or equal to bn x in, if so, turning to the eighth step, and if not, executing the tenth step;
the tenth step is that the loss functions obtained by the SAR images in the bn group are averaged, and the loss function JJ of the bn group in the en iteration is calculated(en-1)×in+bnIf so, turning to 10.1, and if not, turning to 10.2;
10.1
10.2
the tenth step, determining the loss function JJ of the bn th group in the en-th iteration(en-1)×in+bnJJM, wherein JJM is a loss function threshold, if yes, the forward propagation is completed, the seventeenth step is carried out, and if not, the twelfth step is carried out;
a twelfth step of mixing JnBackward propagation is carried out in the network, neural network model parameters of convolution kernels and weights and offsets of the convolution kernels in the convolution layers and weight matrixes and offsets in the full-connection layers are adjusted, and the method specifically comprises the following steps:
12.1 initializing a layer number variable, wherein the layer number variable CN of the convolutional layer is CN, the layer number variable PN of the pooling layer is PN, the layer number variable DN of the discarded layer is DN, and the layer number variable FN of the fully-connected layer is FN + 1;
12.2 calculation of JnFor weight matrix A in the full connection layer1,…,Afn,…,AFN+1And an offset fb1,…,fbfn,…,fbFN+1Partial derivatives of (d);
12.2.1 if FN ═ FN +1, thenIf not, then,wherein T represents a matrix A(fn+1)Transpose of (1), softmax 'and S' represent derivatives of the softmax function and sigmoid function;
12.2.2 calculating JnFor weight matrix AfnAnd JnTo offset fbfnPartial derivatives of (a):
12.2.3, making fn equal to fn-1, judging that fn is equal to or more than 1, if so, converting to 12.2; if not, turning to 12.3;
12.3 if PN ═ PN, converting J intonFor FGfn+1Partial derivatives ofConversion into three dimensions12.4, turning; otherwise, directly rotating to 12.4;
12.4 use of JnTo pairPartial derivatives ofCalculating a loss function JnFor PGpnInPartial derivatives of the elements;
12.4.1 if in 8.3.2The maximum function is taken, and the operation is switched to 12.4.2, and if the maximum function is taken as the average function, the operation is switched to 12.4.3;
12.4.2 order JnFor PGpnThe middle position isThe partial derivatives of the elements of (a) are:
Jnfor PGpnThe partial derivatives of the other elements are 0;
12.4.3 order JnFor PGpnPartial derivatives of all elements in
12.5 order
12.6 calculation of JnFor convolution kernel in convolution layerWeights of convolution kernelsAnd bias in convolution kernelThe method comprises the following steps:
12.6.1 calculating JnFor convolution kernelWhere σ' (. cndot.) is the derivative of the activation function σ ():
12.6.2 calculating JnWeight to convolution kernelPartial derivatives of (a):
12.6.3 calculating JnFor bias in convolution kernelPartial derivatives of (a):
12.6.4, making cn ═ cn-1, pn ═ pn-1, dn ═ dn-1, judging cn ≥ 1, if not, it is said that propagation is completed, and going to the thirteenth step; if so, go to 12.6.5;
12.6.5 calculating JnTo pairPartial derivatives ofThe calculation method is as follows:
12.6.5.1 pairsCarrying out zero element filling;
12.6.5.2 will beRotate clockwise by 180 degrees to obtainRotated matrix
12.6.5.3 calculates:
12.6.5.4 to 12.4;
thirteenth, let n be n +1, judge BN be BN, if satisfy, go to 13.1; if not, 13.2 is switched;
13.1 judging that N is less than or equal to N, and if the N is less than or equal to N, turning to 12.1.2; if not, turning to 13.3;
13.2 judging that n is less than or equal to bn x in, if so, turning to 12.1.2; if not, turning to 13.3;
13.3 obtaining loss function for SAR images in the bn group vs. convolution kernel in convolution layerWeights of convolution kernels in convolutional layersBias in convolution kernelsWeight matrix A in full connection layer1,…,Afn,…,AFN+1Bias fb in the full connection layer1,…,fbfn,…,fbFN+1Respectively averaging partial derivatives of (A) by the following steps:
13.3.1, judging BN is BN, if so, turning to 13.3.2; if not, go to 13.3.3;
13.3.2
turning to the fourteenth step;
13.3.3
fourteenth, updating the convolution kernel using the output of the thirteenth stepWeights of convolution kernelsBias in convolution kernelsWeight matrix A in full connection layer1,…,Afn,…,AFN+1Bias fb in the full connection layer1,…,fbfn,…,fbFN+1The method specifically comprises the following steps:
14.1 order
Wherein beta is1Is a given first hyper-parameter;
14.2 order
Wherein beta is2Is a given second hyperparameter;
14.3 order
14.4 updateAfnAnd fbfnOrder:
wherein η is the initial learning rate;
the fifteenth step, making BN be BN +1, judging that BN is less than or equal to BN, and if so, turning to the seventh step; if not, turning to the sixteenth step;
sixthly, making EN equal to EN +1, judging that EN is less than or equal to EN, and if the EN is less than or equal to EN, turning to the sixth step; if not, indicating that the training is finished, and executing a seventeenth step;
seventeenth step, using the trained neural network model to identify the SAR image TG to be identified, wherein the method comprises the following steps:
17.1 forward-propagating the image in the network:
17.1.1 initializing the layer number variable dn of the discarded layer to 1;
17.1.2 orderAre all 0;
17.2 adopting the forward propagation method of the eighth step to forward propagate TG in the network to obtain
17.3 searchThe position cm of the medium maximum, i.e.:
and 17.4, outputting the cm-th category in the C categories in the label as the identification result.
2. The method of claim 1, wherein step 2.3 is performed by using GnW of (2)n×HnThe method for respectively converting each pixel into a real number comprises the following steps:
2.3.1 let the row variable p be 1;
2.3.2 let column variable q be 1;
2.3.3 orderGn(p, q) is GnThe value of the upper (p, q) point, a is Gn(p, q) the real part of the complex data, b being Gn(p, q) an imaginary part of the complex data;
2.3.4q=q+1;
2.3.5 determining whether q is equal to or less than WnIf yes, turning to 2.3.3; if not, go to 2.3.6;
2.3.6p=p+1;
2.3.7 determining whether p is equal to or less than HnIf yes, turning to 2.3.2; if not, G will be describednThe conversion is finished for a real image.
3. The method of claim 1, wherein 2.5 of the pairs G1,…Gn,…GNThe method for cutting comprises the following steps: get1.1 to 2 times the maximum value of (A) as WGGet it1.1 to 2 times the maximum value of (A) as HGWith the object as the center, press W on the imageG×HGAnd (5) cutting.
4. The method according to claim 1, wherein the random sequence generating function refers to randderm function in MATLAB; random functions refer to rand functions in MATLAB.
5. The synthetic aperture radar image recognition method of claim 1, wherein in the convolutional layer,has a value range ofAnd isAnd isKN when cn is 1cnHas a value range of KNcn∈[10,20]When cn ≠ 1, KNcnHas a value range of KNcn∈[KNcn-1,2×KNcn-1](ii) a Step size of convolution kernel during slidingSet to 1 or 2, zero element fill sizeIn the above-mentioned pooling layer the water is added,set to 2 or 3, step size
6. The synthetic aperture radar image recognition method of claim 1, wherein in e [1,64 ∈ is said](ii) a The discard layer outputs a feature mapIs set to 3000, the layer output profile is discardedSet to 1000; the loss function threshold JJM is less than 0.01; beta is the same as10.9; beta is the same as20.999; eta is less than or equal to 0.01.
7. The synthetic aperture radar image recognition method of claim 1, wherein the fourth step initializes model parameters of the neural network using an Xavier method by:
4.1 convolution kernels in pairs of convolution layersAnd (3) initializing:
4.1.1 initializing the number of layers of the convolutional layer variable cn to 1;
4.1.2 initializing the number variable kn of the convolution kernel of the cn-th convolution layercn=1;
4.1.3 Generation of random matrices Using random functionsWherein the value range of each element is within (0,1),has a dimension of
4.1.4 pairsInitializing to enable:
wherein, the formula (5) representsIs initialized toThe element at the corresponding position is subtracted by 0.5 and multiplied byAll matrix operations are in this sense;
4.1.5 order kncn=kncn+1, decision kncn≤KNcnIf yes, turning to 4.1.3, and if not, turning to 4.1.6;
4.1.6 making CN ═ CN +1, judging CN ≤ CN, if yes, turning to 4.1.2; if not, indicating the convolution kernelAfter the initialization is finished, 4.2 is switched;
4.2 weights for convolution kernels in convolutional layerAnd (3) initializing:
4.2.1 initializing the number of layers of the convolutional layer variable cn to 1;
4.2.2 initializing kncn=1;
4.2.3 Generation of random number matrix Using random functionThe value range of each element in the (1) is within (0);
4.2.4 pairsInitializing to enable:
4.2.5 order kncn=kncn+1, decision kncn≤KNcnIf yes, turning to 4.2.3; if not, 4.2.6 is executed;
4.2.6 making CN equal to CN +1, judging CN less than or equal to CN, if yes, turning to 4.2.2; if not, the initialization of the weight value of the convolution kernel is completed, and 4.3 is executed;
4.3 weight matrix A in full connection layer1,…,Afn,…,AFN+1And (3) initializing:
4.3.1 initialize fn to 1;
4.3.2 Generation of random number matrix RA Using random functionfn,RAfnThe value range of each element in the (1) is within (0);
4.3.3 pairs of AfnInitializing to enable:
4.3.4, making FN be FN +1, judging FN to be not more than FN +1, if yes, turning to 4.3.2, if not, turning to 4.4;
4.4 bias in the pairs of convolution kernelsAnd offset fb in the full connection layer1,…,fbfn,…,fbFN +1Initialization is performed to assign all biases to 0.
8. A synthetic aperture radar image recognition method according to claim 1, wherein the pair of steps 8.2.2The method for carrying out zero element filling comprises the following steps:
8.2.2.1 initialize a size of (CW)cn+2×χcn)×(CHcn+2×χcn)×CDcnIs/are as followsThe matrix is all zero;
8.2.2.2 initializing cdcn=1,cdcnCoordinates of a third dimension on the feature map;
8.2.2.3 initialize chcn=1,chcnCoordinates for a second dimension on the feature map;
8.2.2.4 initializing cwcn=1,cwcnCoordinates that are a first dimension on the feature map;
8.2.2.5 orderWhereinTo representIn the coordinate (cw)cncn,chcncn,cdcn) The value of (a);
8.2.2.6 order cwcn=cwcn+1, decision cwcn≤CWcnIf yes, go to 8.2.2.5, if not, go to 8.2.2.7;
8.2.2.7 order chcn=chcn+1, determining chcn≤CHcnIf yes, go to 8.2.2.4, if not, go to 8.2.2.8;
8.2.2.8 order cdcn=cdcn+1, decision cdcn≤CDcnIf yes, go to 8.2.2.3, otherwise, end.
9. The method of claim 1, wherein 8.2.7 said pairs are used for image recognitionWeighting to obtain the output of the convolution layerThe method comprises the following steps:
8.2.7.1 initializing kncn=1;
8.2.7.2 initialize chcn=1;
8.2.7.3Initializing cwcn=1;
8.2.7.4 order
8.2.7.5 order cwcn=cwcn+1, decision cwcn≤CWcn+2×χcnIf yes, go to 8.2.7.4, if not, go to 8.2.7.6;
8.2.7.6 order chcn=chcn+1, determining chcn≤CHcn+2×χcnIf yes, go to 8.2.7.3, if not, go to 8.2.7.7;
8.2.7.7 order kncn=kncn+1, decision kncn≤KNcnIf yes, go to 8.2.7.2, otherwise, end.
10. The method of claim 1, wherein the step of 8.4.3 is performed by combining Φ and DGdnThe multiplication method comprises the following steps:
8.4.3.1 initialize dddn=1;
8.4.3.2 initialize dhdn=1;
8.4.3.3 initialize dwdn=1;
8.4.3.4 order
8.4.3.5 order dwdn=dwdn+1, decision dwdn≤DWdnIf yes, go to 8.4.3.4, if not, go to 8.4.3.6;
8.4.3.6 order dhdn=dhdn+1, decision dhdn≤DHdnIf yes, go to 8.4.3.3, if not, go to 8.4.3.7;
8.4.3.7 order dddn=dddn+1, decision dddn≤DDdnIf yes, go to 8.4.3.2, otherwise, end.
11.The method of claim 1, wherein the step 8.6.1 is implemented by outputting the feature map of the layer dn-1 discarding layerThe method of converting into a one-dimensional feature vector is:
8.6.1.1 initialization
8.6.1.2 initialization
8.6.1.3 initialization
8.6.1.4 order:
8.6.1.5 orderDeterminationIf yes, go to 8.6.1.4, if not, execute 8.6.1.6;
8.6.1.6 orderDeterminationIf yes, go to 8.6.1.3, if not, execute 8.6.1.7;
8.6.1.7 orderDeterminationIf so, the routine proceeds to 8.6.1.2, and if not, the routine ends.
12. The method of claim 1, wherein step 12.3 is performed by using JnFor FGfn+1Partial derivatives ofConversion into three dimensionsThe method comprises the following steps:
12.3.1 initialization
12.3.2 initialization
12.3.3 initialization
12.3.4 order:
12.3.5determinationIf so, go to 12.3.4; if not, go to 12.3.6;
12.3.6determinationIf so, go to 12.3.3; if not, go to 12.3.7;
12.3.7determinationIf so, go to 12.3.2; if not, ending.
13. The method of claim 1, wherein 12.6.5.1 said pairs are used for image recognitionThe method for carrying out zero element filling comprises the following steps:
12.6.5.1.1 initialize a size ofAll-zero matrix JC ofcn+1
12.6.5.1.2 initialization Is composed ofCoordinates of a third dimension above;
12.6.5.1.3 initialization Is composed ofA second dimension of coordinates of;
12.6.5.1.4 initialization Is composed ofA coordinate of a first dimension above;
12.6.5.1.5 order
12.6.5.1.6DeterminationIf yes, go to 12.6.5.1.5, if not, go to 12.6.5.1.7;
12.6.5.1.7determinationIf yes, go to 12.6.5.1.4, if not, go to 12.6.5.1.8;
12.6.5.1.8determinationIf so, the routine proceeds to 12.6.5.1.3, and if not, the routine ends.
CN201811430191.XA 2018-11-28 2018-11-28 Synthetic aperture radar image identification method Active CN109993050B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811430191.XA CN109993050B (en) 2018-11-28 2018-11-28 Synthetic aperture radar image identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811430191.XA CN109993050B (en) 2018-11-28 2018-11-28 Synthetic aperture radar image identification method

Publications (2)

Publication Number Publication Date
CN109993050A CN109993050A (en) 2019-07-09
CN109993050B true CN109993050B (en) 2019-12-27

Family

ID=67128672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811430191.XA Active CN109993050B (en) 2018-11-28 2018-11-28 Synthetic aperture radar image identification method

Country Status (1)

Country Link
CN (1) CN109993050B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640066B (en) * 2020-06-02 2022-09-27 中国人民解放军国防科技大学 An image matrix-column conversion acceleration method for target detection
CN112233042B (en) * 2020-11-05 2021-05-11 中国人民解放军国防科技大学 A fast generation method for large scene SAR images with non-cooperative targets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732243A (en) * 2015-04-09 2015-06-24 西安电子科技大学 SAR target identification method based on CNN
CN105512680A (en) * 2015-12-02 2016-04-20 北京航空航天大学 Multi-view SAR image target recognition method based on depth neural network
CN108280412A (en) * 2018-01-12 2018-07-13 西安电子科技大学 High Resolution SAR image object detection method based on structure changes CNN

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105139395B (en) * 2015-08-19 2018-03-06 西安电子科技大学 SAR image segmentation method based on small echo pond convolutional neural networks
CN105913076B (en) * 2016-04-07 2019-01-08 西安电子科技大学 Classification of Polarimetric SAR Image method based on depth direction wave network
CN107967484B (en) * 2017-11-14 2021-03-16 中国计量大学 A Multi-Resolution-Based Image Classification Method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732243A (en) * 2015-04-09 2015-06-24 西安电子科技大学 SAR target identification method based on CNN
CN105512680A (en) * 2015-12-02 2016-04-20 北京航空航天大学 Multi-view SAR image target recognition method based on depth neural network
CN108280412A (en) * 2018-01-12 2018-07-13 西安电子科技大学 High Resolution SAR image object detection method based on structure changes CNN

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Adaptive Learning Rate CNN for SAR ATR;Tian Zhuangzhuang et al.;《2016 CIE International Conference on Radar(RADAR)》;20161013;第1-5页 *
基于卷积神经网络的SAR图像目标识别研究;田壮壮 等;《雷达学报》;20160630;第5卷(第3期);第320-325页 *
基于卷积神经网络的SAR图像目标识别算法研究;张笑 等;《电子测量技术》;20180731;第41卷(第14期);第92-96页 *

Also Published As

Publication number Publication date
CN109993050A (en) 2019-07-09

Similar Documents

Publication Publication Date Title
Shang et al. SAR targets classification based on deep memory convolution neural networks and transfer parameters
Mason et al. Deep learning for radar
Dong et al. Automatic design of CNNs via differentiable neural architecture search for PolSAR image classification
CN108038445B (en) SAR automatic target identification method based on multi-view deep learning framework
Williams An efficient, variational approximation of the best fitting multi-Bernoulli filter
Cui et al. Polarimetric multipath convolutional neural network for PolSAR image classification
Du et al. Fast C&W: A fast adversarial attack algorithm to fool SAR target recognition with deep convolutional neural networks
CN109948693A (en) A hyperspectral image classification method based on superpixel sample augmentation and generative adversarial network
Liu et al. Adversarial domain alignment with contrastive learning for hyperspectral image classification
CN108734199B (en) Robust classification of hyperspectral images based on segmented depth features and low-rank representation
Wang et al. SAR target recognition based on probabilistic meta-learning
CN111310666A (en) High-resolution image ground feature identification and segmentation method based on texture features
CN106919952A (en) EO-1 hyperion Anomaly target detection method based on structure rarefaction representation and internal cluster filter
CN111160176A (en) Fusion feature-based ground radar target classification method for one-dimensional convolutional neural network
CN109359525B (en) Polarized SAR image classification method based on sparse low-rank discrimination spectral clustering
CN112394354A (en) Method for identifying HRRP fusion target small samples based on meta-learning in different polarization modes
CN112116019B (en) Multi-sensor Vine Copula heterogeneous information decision fusion method
CN113537031A (en) Radar image target identification method for generating countermeasure network based on condition of multiple discriminators
CN114926693A (en) SAR image small sample identification method and device based on weighted distance
CN109993050B (en) Synthetic aperture radar image identification method
CN110348287A (en) A kind of unsupervised feature selection approach and device based on dictionary and sample similar diagram
Li et al. A novel graph metalearning method for SAR target recognition
CN113392871A (en) Polarized SAR terrain classification method based on scattering mechanism multichannel expansion convolutional neural network
Du et al. Local aggregative attack on SAR image classification models
Chen et al. CVPCNN: Conditionally variational parameterized convolution neural network for HRRP target recognition with imperfect side information

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant