CN109991849A - A kind of time lag LPV system has memory H ∞ output feedback controller design method - Google Patents

A kind of time lag LPV system has memory H ∞ output feedback controller design method Download PDF

Info

Publication number
CN109991849A
CN109991849A CN201910269377.XA CN201910269377A CN109991849A CN 109991849 A CN109991849 A CN 109991849A CN 201910269377 A CN201910269377 A CN 201910269377A CN 109991849 A CN109991849 A CN 109991849A
Authority
CN
China
Prior art keywords
matrix
memory
lpv
feedback controller
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910269377.XA
Other languages
Chinese (zh)
Other versions
CN109991849B (en
Inventor
黄金杰
潘晓真
郝现志
何瑾洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201910269377.XA priority Critical patent/CN109991849B/en
Publication of CN109991849A publication Critical patent/CN109991849A/en
Application granted granted Critical
Publication of CN109991849B publication Critical patent/CN109991849B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

The invention discloses a kind of time lag LPV systems memory HOutput feedback controller design method, comprising the following steps: the vibration control system of milling machine milling process is abstracted as time lag LPV model first, memory H has been obtained by model conversionThe canonical form of output feedback controller Solve problems;Secondly, introduce relaxation matrix variable and secondary Lyapunov functional, there is memory H for meet expected performance indexOutput feedback ontrol problem is converted into the problem of convex optimization based on linear matrix inequality;Then, a kind of method for selecting new convex optimization provides the parametrization linear matrix inequality of finite dimension in the apex of given more born of the same parents LPV systems;Finally, having obtained memory H by the linear matrix inequalityOutput feedback controller K.By using method provided by the present invention, can design has memory H with interference attenuation, robust stabilityOutput feedback controller makes cutter have good dynamic property always during the cutting process.

Description

Time-lag LPV system with memory H∞Design method of output feedback controller
Technical Field
The invention relates to the field of vibration control in the milling process of a milling machine, in particular to a time-lag LPV system with memory HAn output feedback controller design method.
Background
In the machining process, the precision and the surface roughness of a machined workpiece, the service life of a cutter and a machine tool, the machining period and the like are all influenced by the vibration of the cutter, so the vibration control of the machining becomes an important problem in the machining process;
the LPV theory was first proposed by Shamma in 1988, and its main objective was to extend the existing linear control design basis to non-linear and time-varying systems; in the prior art, a vibration control system in a milling process of a milling machine is generally abstracted into a time-delay LPV system, and then a corresponding controller is designed for the time-delay LPV system so as to reduce the influence of vibration on a cutter and a workpiece;
however, existing controller design methods typically employ robust HState feedback technique capable of securing systemSatisfy HPerformance indexes, but because state feedback requires acquiring state information of a controlled object, in many practical problems, considered state variables are a group of variables describing system internal information and often cannot be directly measured; even though the state of the system can be directly measured, considering the cost for implementing control, the reliability of the system and other factors, if the performance requirement of the closed-loop system can be met by the output feedback of the system, the control mode of the output feedback is more suitable to be selected; in addition, the existing memoryless state feedback controller cannot effectively control the influence of time lag on the system because the past state information of the system is not introduced, so that the cutting tool cannot accurately and stably work; therefore, the existing design method of the controller has many defects.
Disclosure of Invention
In view of the above, the present invention provides a time-lapse LPV system with memory HThe design method of the output feedback controller can design the controller which does not depend on the state information measured in real time, has the advantages of interference attenuation, stable robustness and closed loop response meeting the requirements, so that the precision of the cut workpiece is higher, and the cut surface is smoother;
the invention provides the following technical scheme: time-lag LPV system with memory HAn output feedback controller design method, the method comprising:
A. abstracting a vibration control system of a milling process of a milling machine into a time-lag LPV model, and obtaining a memory H of the time-lag LPV system through model conversionOutputting a standard form of the feedback controller solution problem;
B. the relaxation matrix variable and the secondary Lyapunov functional are introduced, so that the memory H meeting the expected performance index is realizedThe dynamic output feedback control problem is converted into a finite dimension convex optimization problem in a linear matrix inequality framework;
C. selecting a new convex optimization method, and giving a finite-dimension parameterized linear matrix inequality at the vertex of a given multi-cell LPV system;
D. solving the linear matrix inequality to obtain corresponding positive definite parameter dependent matrixes X4 and Y4; sequentially calculating to obtain memory HGain A of dynamic output feedback controllerk,Bk,Ck,DkThereby determining that there is a memory HAnd outputting the feedback controller K.
Preferably, the step a includes:
considering a vibration control system in the milling process of the milling machine, abstracting the vibration control system into a state space model of a time-lag LPV system as follows:
wherein x (t) e RnIs a state variable, u (t) e RrFor control input, y (t) e RpIs the measurement output, z (t) e RrIs the modulated output, w (t) e RqFor disturbance input, τ>0 is a known time-lag constant, phi (p) is a given initial condition, assuming the system matrix is a function of the time-varying parameter theta (t); for convenience of description, the following terms theta, thetai(where i ═ 1,. cndot., s) is substituted for θ (t), θi(t);
The LPV system described above was converted into a multicellular LPV model as follows:
with regard to the system (1),is the set of bounded convex polyhedral vertex systems in which the system is located, (A)i,A1i,B1i,B2i,C1i,C2i,Di,D1i,D2i) Watch (A)The ith vertex system of the system is shown, i is 1,2, …, N, and for the LPV system, a robust memorial H is designed by considering the introduction of a time lag term in a feedback control rateDynamic output feedback controller K:
wherein: a. thek、Bk、Ck、DkIs a matrix of controller parameters, x, to be determinedk(t)∈RnIs the state of the controller, u (t) is the control input; substituting the controller K into the time-delay LPV system to obtain a closed-loop time-delay LPV system C:
wherein:
Ccl(θ)=[C2(θ)+D(θ)Dk(θ)C1(θ) D(θ)Ck(θ)]
Ccl1(θ)=[D(θ)Dk(θ)C1(θ) 0],Dcl(θ)=D2(θ)
thus, the LPV system design described above has a memory HThe problem of the output feedback controller K can be summarized as: design of memory HAnd dynamically outputting the feedback controller (2) to ensure that the closed-loop system (3) meets the following indexes in all value ranges of the scheduling parameter theta:
(1) the closed loop system is internally stable;
(2) h ∞ performance index: for disturbance input signal w (t), a performance index gamma is given>0, closed loop transfer function T from disturbance input w (T) to controlled output z (T)wzH of(s)The norm ratio gamma is small, namely that:
preferably, consider that step B comprises:
lemma 1. for system (1), if there is a symmetric positive definite matrix P (θ), matrix Q satisfies the linear matrix inequality (4)
The closed loop system asymptotically stabilizes;
wherein,
2, for the system (1), if a symmetric positive definite matrix P (theta), a matrix Q and a given positive scalar gamma are existed, so that an inequality (5) is established, the system is asymptotically stable and meets the H-infinity performance index;
wherein,
from the above, it is understood that sufficient conditions for the closed-loop time-lag LPV system (3) to be asymptotically stable and satisfy the H ∞ performance index γ are that a symmetric positive definite matrix P (θ) exists, that the matrix Q and a given positive scalar γ satisfy the inequality (5), and that a symmetric block matrix of an appropriate dimension is usedThe inequality (5) is subjected to congruent transformation to obtain an inequality (6):
wherein:
the matrix inequality (6) can be written as:
according to lemma 3, for the arbitrary matrices M, N and the identity matrix I of the appropriate dimension, the following conditions are equivalent:
(1).
(2) there is a relaxation matrix G of appropriate dimensions such that the following holds
Therein, let matrix GT=[G1(θ) 0 0 0 G2(θ)]Then the above formula can be converted into inequality (7)
Wherein:
applying Schur complement theorem to the matrix inequality (7) to obtain inference 2;
inference 2 for a closed-loop time-lapse LPV system (3), if there is a continuously differentiable symmetric positive definite matrix function P (theta), a symmetric positive definite matrix Q, a symmetric matrix G1(theta) and G2(θ) and a given positive scalar γ, satisfy LMI (8):
the system asymptotically stabilizes and satisfies HPerformance index;
wherein:
theorem 1 for closed-loop time-lag multi-cell LPV system (3), if continuous differentiable symmetrical positive definite matrix function existsAnd an appropriate dimension matrix Q1,Q2,S1(θ),S2(θ),X(θ),Y(θ),U(θ),Andand a given positive scalar γ, satisfying LMI (9):
wherein:
Γ19=-X(θ)-XT(θ),
Γ20=-I-U(θ),Γ21=-YT(θ)-Y(θ)
the time-lag LPV system satisfying the formula (2) has a memory HThe dynamic output feedback controller coefficient matrix can be obtained by equation (10), where matrix X4(theta) and Y4(theta) ofSolving by full rank decomposition;
wherein:
to obtain the above inequality (9), assume G1=G2G is reversible and is denoted as W ═ G > 0-1And the matrices G and W are partitioned as:
defining:the following operational relationships can be readily obtained from the above definitions:
left-hand diag { Lambda over inequality (8)T(θ) I I I ΛT(θ) I ΛT(θ) }, right-multiplying the matrix diag { Λ (θ) iiΛ (θ) I Λ (θ) }, to obtain the inequality (13):
wherein:
Δ2=ΛT(θ)GT(θ)Acl1(θ),Δ3=ΛT(θ)GT(θ)Bcl(θ),
Δ8=-ΛT(θ)G(θ)Λ(θ)-ΛT(θ)GT(θ)Λ(θ)
the following relationships can be derived from equations (11) and (12):
wherein:
Δ14=C2(θ)Y(θ)+D(θ)Dk(θ)C1(θ)Y(θ)+D(θ)Ck(θ)Y4(θ)
the following variable substitutions are made:
equation (14) can be written as:
according to the above inference, formula (13) is converted to formula (9) in theorem 1; according to the formula (8), the closed-loop time-lag LPV system is asymptotically stable under the action of the memorized H-infinity dynamic output feedback controller, and simultaneously meets the H-infinity performance index.
Preferably, consider that step C comprises:
in order to reduce conservatism, a new convex optimization method is selected, and parameterized linear matrix inequalities with finite dimensions are given at the vertex of a given bounded multi-cell LPV system;
theorem 2 for a closed-loop time-lapse multi-cell LPV system (3), it is assumed that there is a given positive scalar γ and a symmetric positive matrixMatrix Q of appropriate dimension1,Q2,S1i,S2i,Xi,Yi,Ui ΔijEquations (16) and (17) are satisfied:
wherein:
Γ20=-I-Ui,Γ21=-Yi T-Yi
the time-lag LPV system satisfying the formula (2) has a memory H ∞ dynamic output feedback controller coefficient matrix which can be obtained by the formula (10); wherein:
preferably, step D is considered to comprise:
if the above inequalities (16) and (17) have feasible solutions, the pairFull rank decomposition to obtain matrix X4(theta) and Y4(θ); further obtain the memory HOutput feedback controller gain matrix:
wherein:
as seen from the above, in the design method of the time-lag LPV system with the memory H ∞ output feedback controller in the invention, for the time-lag LPV model of the vibration control system in the milling process of the milling machine, the problem of solving the memory H ∞ output feedback controller is converted into the problem of solving the linear matrix inequality, the parameter dependent matrices X4 and Y4 are obtained by solving the inequality, and the parameter matrix in the controller K is finally determined, so that the memory H ∞ output feedback controller can be designed;
compared with the prior art, the controller has the advantages that the controller does not depend on the state information measured in real time, has the characteristics of interference attenuation, stable robustness and closed-loop response meeting the requirements, and has good dynamic performance and robustness, so that the precision of a cut workpiece is higher, and the cut surface is smoother.
Drawings
FIG. 1 shows a memory H of a time-lapse LPV systemOutputting a flow schematic diagram of a design method of a feedback controller;
FIG. 2 is a graph of the position change curves and rate of change curves of two modules without disturbance under the action of a memorized H ∞ output feedback controller;
FIG. 3 is a graph of the position change curves and the change rate curves of two modules after disturbance is added under the action of a memorized H ∞ output feedback controller;
FIG. 4 is a graph of position change and rate of change for two modules without a controller under initial conditions;
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail below with reference to the accompanying drawings and examples;
in the invention, a time-lag LPV system with memory H is providedThe design method of the output feedback controller is suitable for a time-lag LPV system for vibration control in the milling process of a milling machine;
FIG. 1 shows a time-lapse LPV system with memory H according to the present inventionFIG. 1 shows a flow chart of a design method of an output feedback controller, in which a time-lag LPV system in an embodiment of the present invention has a memory of HThe design method of the output feedback controller comprises the following steps:
step one, abstracting a vibration control system in the milling process of a milling machine into a multi-cell time-delay LPV model, and obtaining a standard form of a problem solved by an H-infinity output feedback controller with memory of a time-delay LPV system through model conversion;
in the technical scheme of the invention, the system can be abstracted into a time-lag LPV model;
for example, in a preferred embodiment of the present invention, the step one includes:
considering a vibration control system in the milling process of a milling machine, abstracting to a state space model of a time-delay LPV system:
wherein the system statex1,x2The position of the tool and the machine tool, τ, respectively>0 is a known time lag constant, phi (rho) is given initial conditions, and the system matrix and the time delay h (theta (t)) are assumed to be functions of a time-varying parameter theta (t); for convenience of description, the following terms theta, thetai(where i ═ 1,. cndot., s) is substituted for θ (t), θi(t);
The LPV system described above was converted into a multicellular LPV model as follows:
with regard to the system (1),is the set of bounded convex polyhedral vertex systems in which the system is located, (A)i,A1i,B1i,B2i,C1i,C2i,Di,D1i,D2i) The ith vertex system, i ═ 1,2, …, N, representing the system, for the LPV system, a robust memorised H ∞ dynamic output feedback controller K was designed, considering the introduction of a lag term in the feedback control rate:
wherein: a. thek、Bk、Ck、DkIs a matrix of controller parameters, x, to be determinedk(t)∈RnIs the state of the controller, u (t) is the control input; substituting the controller K into the time-delay LPV system to obtain a closed-loop time-delay LPV system C:
wherein:
Ccl(θ)=[C2(θ)+D(θ)Dk(θ)C1(θ) D(θ)Ck(θ)]
Ccl1(θ)=[D(θ)Dk(θ)C1(θ) 0],Dcl(θ)=D2(θ)
therefore, the problem of designing the H ∞ output feedback controller K with memory as described above for LPV systems can be summarized as: a memory H-infinity dynamic output feedback controller (2) is designed, so that the closed-loop system (3) meets the following indexes in all value ranges of a scheduling parameter theta:
(1) the closed loop system is internally stable;
(2) h ∞ performance index: for disturbance input signal w (t), a performance index gamma is given>0, closed loop transfer function T from disturbance input w (T) to controlled output z (T)wzH of(s)The norm ratio gamma is small, namely that:
that is, if A is obtainedk,Bk,Ck,DkCan obtain the memory HA dynamic output feedback controller;
therefore, through the model conversion, the solved memory H can be obtainedA standard form of dynamic output feedback controller.
Step two, introducing a relaxation matrix variable and a quadratic Lyapunov functional, and converting the problem of memorized H infinity robust dynamic output feedback control meeting the expected performance index into a problem of finite dimensional convex optimization in a linear matrix inequality framework;
in the technical scheme of the invention, in order to determine the existence of the memory HIf the robust dynamic output feedback controller exists and is stable, the problem solved by the controller of the time-delay LPV system can be converted into a convex optimization problem for solving a linear matrix inequality;
for example, preferably, in the embodiment of the present invention, lemma 1 and lemma 2 can be introduced first:
lemma 1. for system (1), if there is a symmetric positive definite matrix P (θ), matrix Q satisfies the linear matrix inequality (4)
The closed loop system asymptotically stabilizes;
wherein,
2, for the system (1), if a symmetric positive definite matrix P (theta), a matrix Q and a given positive scalar gamma are existed, so that the linear matrix inequality (5) is established, the system is asymptotically stable and meets the H infinity performance index;
wherein,
from the above, it is understood that sufficient conditions for the closed-loop time-lag LPV system (3) to be asymptotically stable and satisfy the H ∞ performance index γ are that a symmetric positive definite matrix P (θ) exists, that the matrix Q and a given positive scalar γ satisfy the inequality (5), and that a symmetric block matrix of an appropriate dimension is usedThe inequality (5) is subjected to congruent transformation to obtain an inequality (6):
wherein:
the matrix inequality (6) can be written as:
according to lemma 3, for the arbitrary matrices M, N and the identity matrix I of the appropriate dimension, the following conditions are equivalent:
(1).
(2) there is a relaxation matrix G of appropriate dimensions such that the following holds
Therein, let matrix GT=[G1(θ) 0 0 0 G2(θ)]Then the above formula can be converted into inequality (7)
Wherein:
inference 2 for a closed-loop time-lapse LPV system (3), if there is a continuously differentiable symmetric positive definite matrix function P (theta), a symmetric positive definite matrix Q, a symmetric matrix G1(theta) and G2(θ) and a given positive scalar γ, satisfy LMI (8):
the system asymptotically stabilizes and satisfies HPerformance index;
wherein:
theorem 1 for closed-loop time-lag multi-cell LPV system (3), if continuous differentiable symmetrical positive definite matrix function existsAnd an appropriate dimension matrix Q1,Q2,S1(θ),S2(θ),X(θ),Y(θ),U(θ), Andand a given positive scalar γ, satisfying LMI (9):
wherein:
Γ19=-X(θ)-XT(θ),
Γ20=-I-U(θ),Γ21=-YT(θ)-Y(θ)
the time-lag LPV system satisfying the formula (2) has a memory H ∞ dynamic output feedback controller coefficient matrix which can be obtained by the following formula, wherein the matrix X4And Y4FromSolving by full rank decomposition;
wherein:
to obtain the above inequality (9), assume G1=G2G is reversible and is denoted as W ═ G > 0-1And the matrices G and W are partitioned as:
defining:
the following operational relationships can be readily obtained from the above definitions:
left-hand diag { Lambda over inequality (8)T(θ) I I I ΛT(θ) I ΛT(theta), right-multiplying the matrix diag { Λ (theta) IILambda (theta) ILambda (theta) }, to obtain a linear matrix inequality (13):
wherein:
Δ2=ΛT(θ)GT(θ)Acl1(θ),Δ3=ΛT(θ)GT(θ)Bcl(θ),
Δ8=-ΛT(θ)G(θ)Λ(θ)-ΛT(θ)GT(θ)Λ(θ)
the following relationships can be derived from equations (11) and (12):
the following variable substitutions are made:
wherein:
Δ14=C2(θ)Y(θ)+D(θ)Dk(θ)C1(θ)Y(θ)+D(θ)Ck(θ)Y4(θ)
equation (14) can be written as:
wherein:
according to the above inference, formula (13) is converted to formula (9) in theorem 1; according to the formula (8), the closed-loop time-lag LPV system has the advantages that the parameters are secondarily stabilized under the action of the memorized H-infinity dynamic output feedback controller, and the H-infinity performance index is simultaneously met;
therefore, the problem solved by the controller of the time-lag LPV system can be converted into a convex optimization problem for solving a linear matrix inequality; when the linear matrix inequality has a solution, a memory H ∞ output feedback controller exists and is stable.
Selecting a new convex optimization method, and giving a parameterized linear matrix inequality with finite dimension at the vertex of a given multi-cell LPV system;
in the embodiment of the present invention, the third step may be implemented by using various specific implementations, and one implementation of the third step will be taken as an example to describe in detail the technical solution of the present invention;
for example, in a preferred embodiment of the present invention, the third step includes:
in order to reduce conservatism, a new convex optimization method is selected, and parameterized linear matrix inequalities with finite dimensions are given at the vertex of a given bounded multi-cell LPV system;
theorem 2 for a closed-loop time-lapse multi-cell LPV system (3), it is assumed that there is a given positive scalar γ and a symmetric positive matrixMatrix Q of appropriate dimension1,Q2,S1i,S2i,Xi,Yi,Ui ΔijEquations (16) and (17) are satisfied:
wherein:
Γ20=-I-Ui,Γ21=-Yi T-Yi
the time-lag LPV system satisfying the formula (2) has a memory H ∞ dynamic output feedback controller coefficient matrix which can be obtained by the formula (9);
wherein:
when the linear matrix inequality in the inequality (16) and the inequality (17) has a solution, a memory H infinity dynamic output feedback controller exists.
Solving the linear matrix inequality to obtain corresponding positive definite parameter dependent matrixes X4 and Y4; sequentially calculating gain A of feedback controller with memory H infinity dynamic outputk,Bk,Ck,DkThereby obtaining a feedback controller K with memory H infinity output;
in the technical solution of the present invention, the step four can be implemented by using various specific embodiments; the technical scheme of the invention will be described in detail below by taking one implementation manner thereof as an example;
for example, in a preferred embodiment of the present invention, the fourth step includes:
if the inequalities (16) and (17) are feasible, the memory H-infinity output feedback controller exists and is stable, and the LMI tool kit in the MATLAB judges whether the existence condition of the controller is satisfied, so that the corresponding positive definite parameter dependent matrixes X, Y and U can be obtained by solving the linear matrix inequalities;
to pairFull rank decomposition to obtain matrix X4(theta) and Y4(θ); memory H can be determined using the formula described belowParameters in the output feedback controller K:
wherein:
in summary, in the design of the time-lag LPV system with the memory H-infinity output feedback controller, aiming at a time-lag LPV model of a vibration control system in the milling process of a milling machine, the problem of solving the memory H-infinity output feedback controller is converted into the problem of solving a linear matrix inequality, parameter dependent matrixes X4 and Y4 are obtained through solving the inequality, and a parameter matrix in a controller K is finally determined, so that the memory H-infinity output feedback controller can be designed, the stability of the system can be ensured, the H-infinity performance index can be met, and the dynamic performance and the robustness are good; to further illustrate the superiority of the present invention, relevant simulation data are provided: h-infinity performance index γ 1.3587 and a parameter dependent memorized H-infinity output feedback controller parameter matrix:
CK1=[3.5526 1.3313 8.2361 9.9666],DK1=-4.6587
CK2=[12.71 -49.11 1.667 30.4025],DK2=-4.1305
in addition, FIG. 2 is a graph of the position change curves and the change rate curves of two modules without disturbance under the action of the memorized H ∞ output feedback controller; FIG. 3 is a graph of the position change curves and the change rate curves of two modules after disturbance is added under the action of a memorized H ∞ output feedback controller; comparing fig. 2 and fig. 3, it is found that the H ∞ output feedback controller with memory can effectively reduce the influence of disturbance on the system, and improve the cutting accuracy and surface smoothness of the workpiece; by way of comparison, FIG. 4 further demonstrates the effectiveness of the feedback controller with memory output of the present design;
in addition, because the method has certain universality, a memory H-infinity output feedback controller can be designed for all practical physical systems which can be abstracted into a time-lag LPV model by using the method so as to achieve a good control effect;
it will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrative embodiments, and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof; the present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein, and any reference signs in the claims are not intended to be construed as limiting the claim concerned;
furthermore, it should be understood that although the present description refers to embodiments, not every embodiment may contain only a single embodiment, and such description is for clarity only, and those skilled in the art should integrate the description, and the embodiments may be combined as appropriate to form other embodiments understood by those skilled in the art.

Claims (5)

1. Time-lag LPV system with memory HA method of designing an output feedback controller, the method comprising:
A. abstracting a vibration control system of a milling process of a milling machine into a time-lag multi-cell LPV model, and obtaining the memory H of the time-lag LPV system through model conversionOutputting a standard form of the feedback controller solution problem;
B. the relaxation matrix variable and the secondary Lyapunov functional are introduced, so that the memory H meeting the expected performance index is realizedConversion of dynamic output feedback control problem into linear matrixThe problem of finite dimension convex optimization within the framework of equations;
C. selecting a new convex optimization method, and giving a finite-dimension parameterized linear matrix inequality at the vertex of a given multi-cell LPV system;
D. solving the linear matrix inequality to obtain corresponding positive definite parameter dependent matrixes X4 and Y4; sequentially calculating to obtain memory HGain A of dynamic output feedback controllerk,Bk,Ck,DkThereby determining that there is a memory HAnd outputting the feedback controller K.
2. The design method of time-lag LPV system with memory H ∞ output feedback controller of claim 1, wherein said step A includes:
considering a vibration control system in the milling process of a milling machine, abstracting to a state space model of a time-delay LPV system:
wherein x (t) e RnIs a state variable, u (t) e RrFor control input, y (t) e RpIs the measurement output, z (t) e RrIs the modulated output, w (t) e RqFor disturbance input, τ>0 is a known time lag constant, phi (rho) is given initial conditions, and the system matrix and the time delay h (theta (t)) are assumed to be functions of a time-varying parameter theta (t); for convenience of description, the following terms theta, thetai(where i ═ 1,. cndot., s) is substituted for θ (t), θi(t);
The LPV system described above was converted into a multicellular LPV model as follows:
with regard to the system (1),is the set of bounded convex polyhedral vertex systems in which the system is located, (A)i,A1i,B1i,B2i,C1i,C2i,Di,D1i,D2i) An ith vertex system of the system is shown, i is 1,2, …, N, and for an LPV system, a robust memorial H is designed by considering the introduction of a time lag term in a feedback control rateDynamic output feedback controller K:
wherein: a. thek、Bk、Ck、DkIs a matrix of controller parameters, x, to be determinedk(t)∈RnIs the state of the controller, u (t) is the control input; substituting the controller K into the time-delay LPV system to obtain a closed-loop time-delay LPV system:
wherein:
Ccl(θ)=[C2(θ)+D(θ)Dk(θ)C1(θ) D(θ)Ck(θ)]
Ccl1(θ)=[D(θ)Dk(θ)C1(θ) 0],Dcl(θ)=D2(θ)
thus, the LPV system design described above has a memory HThe problem of the output feedback controller K can be summarized as: design of memory HAnd dynamically outputting the feedback controller (2) to ensure that the closed-loop system (3) meets the following indexes in all value ranges of the scheduling parameter theta:
(1) the closed loop system is internally stable;
(2) h ∞ performance index: for disturbance input signal w (t), a performance index gamma is given>0, closed loop transfer function T from disturbance input w (T) to controlled output z (T)wzH of(s)The norm ratio gamma is small, namely that:
3. the design method of time-lag LPV system with memory H ∞ output feedback controller of claim 1, wherein said step B comprises:
lemma 1. for system (1), if there is a symmetric positive definite matrix P (θ), matrix Q satisfies the linear matrix inequality (4)
The closed loop system asymptotically stabilizes;
wherein,
2, for the system (1), if a symmetric positive definite matrix P (theta), a matrix Q and a given positive scalar gamma are existed, so that an inequality (5) is established, the system is asymptotically stable and meets the H-infinity performance index;
wherein,
from the above, it is understood that sufficient conditions for the closed-loop time-lag LPV system (3) to be asymptotically stable and satisfy the H ∞ performance index γ are that a symmetric positive definite matrix P (θ) exists, that the matrix Q and a given positive scalar γ satisfy the inequality (5), and that a symmetric block matrix of an appropriate dimension is usedThe inequality (5) is subjected to congruent transformation to obtain an inequality (6):
wherein:
the matrix inequality (6) can be written as:
according to lemma 3, for the arbitrary matrices M, N and the identity matrix I of the appropriate dimension, the following conditions are equivalent:
(1).
(2) there is a relaxation matrix G of appropriate dimensions such that the following holdsTherein, let matrix GT=[G1(θ) 0 0 0 G2(θ)]Then the above formula can be converted into inequality (7)
Wherein:
inference 2 for a closed-loop time-lapse LPV system (3), if there is a continuously differentiable symmetric positive definite matrix function P (theta), a symmetric positive definite matrix Q, a symmetric matrix G1(theta) and G2(θ) and a given positive scalar γ, satisfy LMI (8):
the system asymptotically stabilizes and satisfies HPerformance index;
wherein:
theorem 1 for closed-loop time-lag multi-cell LPV system (3), if continuous differentiable symmetrical positive definite matrix function existsAnd an appropriate dimension matrix Q1,Q2,S1(θ),S2(θ),X(θ),Y(θ),U(θ), Andand a given positive scalar γ, satisfying LMI (9):
wherein:
Γ20=-I-U(θ),Γ21=-YT(θ)-Y(θ)
then the formula (A) is satisfied2) The time-lag LPV system with memory H infinity dynamic output feedback controller coefficient matrix can be obtained by the following formula, wherein the matrix X4And Y4FromSolving by full rank decomposition;
wherein:
wherein, to obtain the above inequality (9), assume G1=G2G is reversible and is denoted as W ═ G > 0-1
And the matrices G and W are denoted in blocks as:
defining:
the following operational relationships can be readily obtained from the above definitions:
left-hand diag { Lambda over inequality (8)T(θ) I I I ΛT(θ) I ΛT(theta), multiplying diag { Λ (theta) IILambda (theta) ILambda (theta) }rightwardto obtain a matrix inequality (13):
wherein:
Δ2=ΛT(θ)GT(θ)Acl1(θ),Δ3=ΛT(θ)GT(θ)Bcl(θ),
Δ8=-ΛT(θ)G(θ)Λ(θ)-ΛT(θ)GT(θ)Λ(θ)
the following relationships can be derived from equations (11) and (12):
wherein:
Δ14=C2(θ)Y(θ)+D(θ)Dk(θ)C1(θ)Y(θ)+D(θ)Ck(θ)Y4(θ)
the following variable substitutions are made:
equation (14) can be written as:
according to the above inference, formula (13) is converted to formula (9) in theorem 1; according to the formula (8), the closed-loop time-lag LPV system is asymptotically stable under the action of the memorized H-infinity dynamic output feedback controller, and simultaneously meets the H-infinity performance index.
4. The time-lag LPV system with memory H ∞ output feedback controller design method of claim 1, wherein said step C comprises:
in order to reduce conservatism, a new convex optimization method is selected, and parameterized linear matrix inequalities with finite dimensions are given at the vertex of a given bounded multi-cell LPV system;
theorem 2 for a closed-loop time-lapse multi-cell LPV system (3), it is assumed that there is a given positive scalar γ and a symmetric positive matrixMatrix Q of appropriate dimension1,Q2,S1i,S2i,Xi,Yi,Ui ΔijEquations (16) and (17) are satisfied:
wherein:
the time-lag LPV system satisfying the formula (2) has a memory H ∞ dynamic output feedback controller coefficient matrix which can be obtained by the formula (10);
wherein:
5. the lag LPV system with memory H ∞ output feedback controller design method of claim 1, wherein said step D comprises:
if the above inequalities (16) and (17) have feasible solutions, the pairFull rank decomposition to obtain matrix X4(theta) and Y4(θ); further obtain the memory HOutput feedback controller gain matrix:
wherein:
CN201910269377.XA 2019-04-03 2019-04-03 Design method of feedback controller with memory H-infinity output of time-lag LPV system Expired - Fee Related CN109991849B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910269377.XA CN109991849B (en) 2019-04-03 2019-04-03 Design method of feedback controller with memory H-infinity output of time-lag LPV system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910269377.XA CN109991849B (en) 2019-04-03 2019-04-03 Design method of feedback controller with memory H-infinity output of time-lag LPV system

Publications (2)

Publication Number Publication Date
CN109991849A true CN109991849A (en) 2019-07-09
CN109991849B CN109991849B (en) 2022-05-24

Family

ID=67132390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910269377.XA Expired - Fee Related CN109991849B (en) 2019-04-03 2019-04-03 Design method of feedback controller with memory H-infinity output of time-lag LPV system

Country Status (1)

Country Link
CN (1) CN109991849B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158241A (en) * 2020-01-15 2020-05-15 哈尔滨工程大学 Time-lag correlation H-infinity control method of linear singular system with uncertain time lag

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3522201A (en) * 2000-04-20 2001-10-25 Lucent Technologies Inc. Obtaining pilot phase offset time delay parameter for a wireless terminal of an integrated wireless-global positioning system
CN102955428A (en) * 2012-11-14 2013-03-06 华侨大学 LPV (linear parameter varying) model based PI (peripheral interface) control method for meeting set point tracking and disturbance rejection performances
WO2014201455A1 (en) * 2013-06-14 2014-12-18 Larimore Wallace E A method and system of dynamic model identification for monitoring and control of dynamic machines with variable structure or variable operation conditions
CN105182743A (en) * 2015-07-23 2015-12-23 北京航空航天大学 Robust H-infinity-based variable-gain decoupling control method
CN106371313A (en) * 2016-09-22 2017-02-01 哈尔滨理工大学 Design method of memory state H-infinity state feedback controller of time-delay LPV (linear parameter variable) system
CN107153752A (en) * 2017-06-13 2017-09-12 哈尔滨工业大学 A kind of robust identification method of linear variation parameter's time lag system of metric data missing at random
CN108319147A (en) * 2018-03-13 2018-07-24 江南大学 One kind has the H of the networking Linear Parameter-Varying Systems of short time-delay and data packetloss∞Fault tolerant control method
CN108388133A (en) * 2018-03-21 2018-08-10 北京航空航天大学 A kind of positive system Dynamic Output Feedback anti-interference control method based on positive full micr oprocessorism
CN108427288A (en) * 2018-04-25 2018-08-21 江南大学 One kind has the H of the networking Linear Parameter-Varying Systems of time-vary delay system∞Fault tolerant control method
CN108549238A (en) * 2018-05-16 2018-09-18 重庆大学 Robust Variable gain control method based on polytope LPV system Buck converters
CN108983618A (en) * 2018-09-17 2018-12-11 江南大学 PMSM robust H based on convex polytope∞Output feedback ontrol design method
CN109507886A (en) * 2018-12-26 2019-03-22 南京航空航天大学 For the Robust Prediction fault tolerant control method of time-delay uncertainties system actuators failure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3522201A (en) * 2000-04-20 2001-10-25 Lucent Technologies Inc. Obtaining pilot phase offset time delay parameter for a wireless terminal of an integrated wireless-global positioning system
CN102955428A (en) * 2012-11-14 2013-03-06 华侨大学 LPV (linear parameter varying) model based PI (peripheral interface) control method for meeting set point tracking and disturbance rejection performances
WO2014201455A1 (en) * 2013-06-14 2014-12-18 Larimore Wallace E A method and system of dynamic model identification for monitoring and control of dynamic machines with variable structure or variable operation conditions
CN105182743A (en) * 2015-07-23 2015-12-23 北京航空航天大学 Robust H-infinity-based variable-gain decoupling control method
CN106371313A (en) * 2016-09-22 2017-02-01 哈尔滨理工大学 Design method of memory state H-infinity state feedback controller of time-delay LPV (linear parameter variable) system
CN107153752A (en) * 2017-06-13 2017-09-12 哈尔滨工业大学 A kind of robust identification method of linear variation parameter's time lag system of metric data missing at random
CN108319147A (en) * 2018-03-13 2018-07-24 江南大学 One kind has the H of the networking Linear Parameter-Varying Systems of short time-delay and data packetloss∞Fault tolerant control method
CN108388133A (en) * 2018-03-21 2018-08-10 北京航空航天大学 A kind of positive system Dynamic Output Feedback anti-interference control method based on positive full micr oprocessorism
CN108427288A (en) * 2018-04-25 2018-08-21 江南大学 One kind has the H of the networking Linear Parameter-Varying Systems of time-vary delay system∞Fault tolerant control method
CN108549238A (en) * 2018-05-16 2018-09-18 重庆大学 Robust Variable gain control method based on polytope LPV system Buck converters
CN108983618A (en) * 2018-09-17 2018-12-11 江南大学 PMSM robust H based on convex polytope∞Output feedback ontrol design method
CN109507886A (en) * 2018-12-26 2019-03-22 南京航空航天大学 For the Robust Prediction fault tolerant control method of time-delay uncertainties system actuators failure

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
JUN-LING WANG等: "DELAY-DEPENDENT H, CONTROL FOR LPV SYSTEMS WITH MIXED TIME-VARYING DELAYS", 《PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MACHINE LAMING AND CYBERNETICS》 *
JUN-LING WANG等: "DELAY-DEPENDENT H, CONTROL FOR LPV SYSTEMS WITH MIXED TIME-VARYING DELAYS", 《PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MACHINE LAMING AND CYBERNETICS》, 29 August 2004 (2004-08-29), pages 626 - 631, XP010760437, DOI: 10.1109/ICMLC.2004.1380767 *
ROHIT ZOPE等: "Delay-dependent H∞ control for LPV systems with fast-varying time delays", 《2012 AMERICAN CONTROL CONFERENCE》, 29 July 2012 (2012-07-29), pages 775 - 780 *
李雪萍: "时滞LPV系统有记忆输出反馈控制器设计", 《中国优秀博硕士学位论文全文数据库(硕士)》 *
李雪萍: "时滞LPV系统有记忆输出反馈控制器设计", 《中国优秀博硕士学位论文全文数据库(硕士)》, 15 January 2019 (2019-01-15), pages 140 - 77 *
黄金杰等: "多胞LPV模型的Buck变换器鲁棒增益调度控制", 《电机与控制学报》 *
黄金杰等: "多胞LPV模型的Buck变换器鲁棒增益调度控制", 《电机与控制学报》, vol. 22, no. 1, 1 January 2018 (2018-01-01), pages 93 - 99 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158241A (en) * 2020-01-15 2020-05-15 哈尔滨工程大学 Time-lag correlation H-infinity control method of linear singular system with uncertain time lag
CN111158241B (en) * 2020-01-15 2022-07-15 哈尔滨工程大学 Time-lag correlation H-infinity control method of linear singular system with uncertain time lag

Also Published As

Publication number Publication date
CN109991849B (en) 2022-05-24

Similar Documents

Publication Publication Date Title
CN110209148B (en) Fault estimation method of networked system based on description system observer
CN113095497B (en) Finite time synchronization method and device for fractional order quaternary memristor neural network
CN106325075B (en) The H of a kind of delay linear and time Parameters variation discrete system∞Control method
Du et al. Fault tolerant control for switched linear systems
Liu et al. Establishing a reliable mechanism model of the digital twin machining system: An adaptive evaluation network approach
Cerone et al. Bounding the parameters of linear systems with input backlash
Bi et al. Operator-based robust control for nonlinear uncertain systems with unknown backlash-like hysteresis
Yi et al. Constrained PI tracking control for output probability distributions based on two-step neural networks
Koo et al. Robust fuzzy controller for large-scale nonlinear systems using decentralized static output-feedback
Bemporad et al. The explicit solution of constrained LP-based receding horizon control
CN109991849B (en) Design method of feedback controller with memory H-infinity output of time-lag LPV system
Hu et al. Implementation of Real‐Time Machining Process Control Based on Fuzzy Logic in a New STEP‐NC Compatible System
Alif et al. Design of Robust $ H_ {\infty} $ Reduced-Order Unknown-Input Filter for a Class of Uncertain Linear Neutral Systems
Foo et al. On reproducing existing controllers as model predictive controllers
CN110768234B (en) Peak filtering method for direct-current micro-grid system with uncertainty feed constant-power load
Fransson et al. Nonconservative robust control: optimized and constrained sensitivity functions
Oberschelp et al. Multirate simulation of mechatronic systems
Hearne An approach to resolving the parameter sensitivity problem in system dynamics methodology
Mansouri et al. Decentralized observers for a class of large‐scale singular systems via LMI
Ruhil et al. Inverse problem for abstract delay differential equation with impulsive effects
Cichy et al. Iterative learning control of the electrostatic microbridge actuator
CN116244894B (en) Power system transient simulation method and system based on large step length
CN107194083B (en) Lyapunov time lag stability criterion optimization method based on redundancy item discrimination
Schäfer Semantic reasoning for automated factory planning
CN116415434B (en) Screw tap processing technique and system for high-strength steel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220524

CF01 Termination of patent right due to non-payment of annual fee