CN109990845A - 一种磁流体和侧面去包层的三芯光纤磁场和温度传感结构 - Google Patents
一种磁流体和侧面去包层的三芯光纤磁场和温度传感结构 Download PDFInfo
- Publication number
- CN109990845A CN109990845A CN201910365892.8A CN201910365892A CN109990845A CN 109990845 A CN109990845 A CN 109990845A CN 201910365892 A CN201910365892 A CN 201910365892A CN 109990845 A CN109990845 A CN 109990845A
- Authority
- CN
- China
- Prior art keywords
- fibre
- optical waveguide
- core
- fibre core
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 91
- 239000011553 magnetic fluid Substances 0.000 title claims abstract description 43
- 230000008878 coupling Effects 0.000 claims abstract description 22
- 238000010168 coupling process Methods 0.000 claims abstract description 22
- 238000005859 coupling reaction Methods 0.000 claims abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims description 75
- 239000013307 optical fiber Substances 0.000 claims description 44
- 238000001514 detection method Methods 0.000 claims description 8
- 238000009529 body temperature measurement Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005253 cladding Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35309—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
- G01D5/35316—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35309—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
- G01D5/35319—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using other multiple wave interferometer
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明是一种基于磁流体的侧面去包层的三芯光纤磁场和温度传感结构。包括宽带光源1、1×3耦合器2、耦合模块3、三芯光纤传感结构4、耦合模块5、3×1耦合器6、探测器7,所述的三芯光纤传感结构4包括包层4(1)、纤芯4(2)、纤芯4(3)、写有FBG的纤芯4(4)、填充有磁流体的去包层区4(5)、石英玻璃毛细管4(6),纤芯4(2)、纤芯4(3)和填充有磁流体的去包层区4(5)形成MZI结构,写有FBG的纤芯4(4)是一个FBG结构,由于磁场和温度都会改变磁流体的折射率,使得输出光强发生变化,而FBG只受温度的调制,因此输出光波长的变化仅和温度有关,通过解调出输出光强和光波长的变化,可以实现磁场和温度的双参量测量。
Description
技术领域
本发明属于光纤传感技术领域,特别涉及一种基于磁流体的侧面去包层的三芯光纤磁场和温度传感结构,将磁流体和侧面去除包层的三芯光纤相结合,利用磁流体的折射率对磁场敏感的特性和FBG对温度敏感的特性,可以实现磁场和温度的双参量测量。
背景技术
磁传感器是可以将各种磁场和其变化的量转变成电信号输出的装置,自然界和人类社会生活的许多地方都存在磁场和与磁场有关的信息。利用人工设置的永久磁体产生的磁场,可作为许多信息的载体,因此,探测、采集、存储、转换、监控各种磁场和磁场中承载的各种信息的任务,自然就落在磁场传感器上。传统的磁场传感器,如霍尔传感器、磁阻传感器、磁通门传感器和感应线圈传感器等虽然具有较为成熟的技术,但是由于其功耗大、体积大、结构复杂、易于受电磁干扰、对周围环境要求高等特点,使其在一些领域难以应用,不能够满足探测需求。而光纤磁场传感器继承了光纤传感器的优点,具有体积小、耐腐蚀、抗电磁干扰能力强、便于分布式多点探测、全光传输等突出优点,已成为磁场传感领域的研究热点。基于光纤的磁场传感器有多种,如基于光纤光栅结构的磁场传感器、基于MZI的磁场传感器、基于倏逝波机理的磁场传感器和基于表面等离子体共振的磁场传感器等等,依据不同的传感性能可应用于不同的磁场合。
目前基于光纤的磁场传感器按照不同的传感机理主要有:基于磁致伸缩材料的光纤磁场传感器,主要利用磁致伸缩材料的磁致伸缩效应进行磁场传感;基于磁流体的光纤微结构磁场传感器,主要利用磁流体的磁致折射率可调特性实现磁场传感,由于磁流体的磁致折射率可调特性,磁流体的折射率在外加磁场下会发生变化,当外加磁场平行于传输光的方向时,磁流体的折射率随外加磁场的增加而增加,当外加磁场的方向垂直于传输光的方向时,磁流体的折射率随外加磁场的增加而减小,一般通过对光纤减薄包层,如利用微加工工艺去除包层或者采用包层腐蚀的细芯光纤,这样可以使使磁流体折射率接近光纤包层的折射率,然后利用石英玻璃毛细管将磁流体和微结构光纤封装,当存在磁场时,磁流体的折射率发生变化,从而包层折射率发生变化,进而影响输出光的波长,通过解调输出光的变化,实现磁场的探测。磁流体的折射率同时还会受温度的影响,从而影响测量结果,目前的报道中通过写入FBG,利用磁流体的折射率特性和FBG的温度敏感特性实现磁场和温度的双参量测量。
基于单模、单芯的光纤通信容量即将达到上限,为满足人们日益增长的对信息传输容量的需求,近年来,有关三芯光纤的相关研究比较多,三芯光纤是在包层中嵌入三个纤芯的特种光纤,将三芯光纤和磁流体相结合得到的磁场传感器结构简单,灵敏度高。
本发明采用将磁流体和侧面去除包层的三芯光纤相结合的光纤磁场传感结构,将磁流体和侧面去除包层的三芯光纤相结合,利用磁流体的折射率对磁场敏感的特性和FBG对温度敏感的特性,可以实现磁场和温度的双参量测量。
发明内容
本发明的目的在于提供一种基于磁流体的侧面去包层的三芯光纤磁场和温度传感结构,能实现对磁场的探测。
为实现上述目的,本发明采用如下技术方案:
本发明包括宽带光源1、1×3耦合器2、耦合模块3、三芯光纤传感结构4、耦合模块5、3×1耦合器6、探测器7,其特征在于:所述的1×3耦合器2包括输入光纤2(1)、输出光纤2(2)、输出光纤2(3)、输出光纤2(4);所述的耦合模块3包括光波导3(1)、光波导3(2)、光波导3(3),长3mm,宽1mm,高3mm;所述的三芯光纤传感结构4包括包层4(1)、纤芯4(2)、纤芯4(3)、写有FBG的纤芯4(4)、填充有磁流体的去包层区4(5)、石英玻璃毛细管4(6),包层4(1)的直径为125μm,纤芯4(2)的直径为9.6μm,纤芯4(3)的直径为6μm,写有FBG的纤芯4(4)的直径为9.6μm,FBG是利用飞秒激光直接刻写得到,周期为0.5μm,长度为500μm,纤芯4(2)和写有FBG的纤芯4(4)与纤芯4(3)形成的夹角为120°,纤芯4(2)和写有FBG的纤芯4(4)与纤芯4(3)的间距均为35.3μm,石英玻璃毛细管4(5)的外径1mm,内径0.3mm;所述的耦合模块5包括光波导5(1)、光波导5(2)、光波导5(3),长3mm,宽1mm,高3mm;所述的3×1耦合器6包括输入光纤6(1)、输入光纤6(2)、输入光纤6(3)、输出光纤6(4)。如图1所示,所述的宽带光源1与输入光纤2(1)耦合,输出光纤2(2)与光波导3(1)的前端耦合,输出光纤2(3)与光波导3(2)的前端耦合,输出光纤2(4)与光波导3(3)的前端耦合,光波导3(1)的后端与纤芯4(2)的前端耦合,光波导3(2)的后端与纤芯4(3)的前端耦合,光波导3(3)的后端与写有FBG的纤芯4(4)的前端耦合,纤芯4(2)的后端与光波导5(1)的前端耦合,纤芯4(3)的后端与光波导5(2)的前端耦合,写有FBG的纤芯4(4)的后端与光波导5(3)的前端耦合,光波导5(1)的后端与输入光纤6(1)耦合,光波导5(2)的后端与输入光纤6(2)耦合,光波导5(3)的后端与输入光纤6(3)耦合,输出光纤6(4)与探测器7耦合;所述的填充有磁流体的去包层区4(5)是利用飞秒激光在纤芯4(2)的上方刻蚀得到,深 22.4μm,长100μm,直径为96μm;所述的石英玻璃毛细管4(6)用来封装三芯光纤传感结构4,宽带光源1发出的光经过1×3耦合器2分成三路,纤芯4(2)中光作为探测光,纤芯4(3)中光作为参考光,还有一路光进入写有FBG的纤芯4(4),三束光经过3×1耦合器6汇合发生干涉,纤芯4(2)、纤芯4(3)和填充有磁流体的去包层区4(5)形成一个MZI结构,利用磁流体的可调折射率特性可实现磁场的测量,写有FBG的纤芯4(4)对温度敏感,可实现温度的测量。
所述的光波导3(1)与光波导3(2)前端相距0.5mm,后端相距35.3μm,光波导3(3)与光波导3(2)前端相距0.5mm,后端相距35.3μm,光波导3(1)和光波导3(3)的后端与光波导3(2)的后端形成的夹角为120°。
所述的光波导5(1)和光波导5(2)前端相距35.3μm,后端相距0.5mm,光波导5(3)和光波导5(2)前端相距35.3μm,后端相距0.5mm,光波导5(1)和光波导5(3)的前端与光波导5(2)的前端形成的夹角为120°。
附图说明
图1(a)为本发明所述的一种基于磁流体的侧面去包层的三芯光纤磁场和温度传感结构的结构示意图;
图1(b)为本发明所述的三芯光纤传感结构示意图;
图2为本发明所述的一种基于磁流体的侧面去包层的三芯光纤磁场和温度传感结构的截面图。
具体实施方式
下面将结合图1,对本发明的具体实施方式作进一步说明。
本发明是可以对磁场进行探测的一种基于磁流体的侧面去包层的三芯光纤磁场和温度传感结构,具体实施步骤如下:
步骤一:光纤端面预处理
用光纤切割机将三芯光纤的上下两个端面切平,然后利用超声波清洗机对光纤进行清洁。
步骤二:制备耦合模块
利用半导体微加工工艺制备两个规格一样的耦合模块,长3mm,宽1mm,高3mm,分别由三个光波导构成,三个光波导直径相同,为9μm,与侧面去包层的三芯光纤耦合的一端,外侧两个光波导与中间的光波导均相距35.3μm,外侧两个光波导与中间的光波导形成的夹角为120°;与耦合器相耦合的一端,外侧两个光波导与中间的光波导均相距0.5mm。
步骤三:飞秒激光刻写FBG
将处理好的三芯光纤固定在三维机械平台上,调节飞秒激光的参数设置,然后聚焦,用物镜聚焦后的飞秒激光焦点入射到三芯光纤侧面的一个纤芯中,同时,平行移动光纤,就会在纤芯内部形成0.5μm周期的波导结构,长度为500μm。
步骤四:三芯光纤侧面去包层
将处理好的三芯光纤固定在三维机械平台上,利用电脑控制三维方向的高精度移动。调节飞秒激光的参数设置,然后聚焦形成光斑,保持光斑的位置不变,控制平台的移动,带动光纤做相对于光斑的运动,使聚焦后的飞秒激光在光纤另外一个侧面扫描,去除包层,形成一个平面,即为去包层区,长度为100μm,深22.4μm,直径为96μm。
步骤五:填充磁流体
在光学显微镜下,将三芯光纤置于内径0.3mm,外径1mm的石英玻璃毛细管内,用紫外胶将侧面去包层的三芯光纤的一端固定于石英玻璃毛细管内,然后利用注射器将磁流体填充进石英玻璃毛细管内,最后用紫外胶将石英玻璃毛细管的另一个端口密封,这样就将浸在磁流体中的侧面去包层的三芯光纤密封在石英玻璃毛细管中。
本发明探测磁场的基本原理为:侧面去包层的三芯光纤,其中侧面去包层的纤芯和中间的纤芯形成MZI结构,写有FBG的纤芯作为温度补偿结构,宽带光源的光经过1×3耦合器分成三路分别进入三芯光纤的三个纤芯,侧面去包层的纤芯中的光,由于磁流体的折射率特性,受磁场的调制,作为探测光,中间纤芯的光作为参考光,写有FBG的纤芯中的光对温度敏感,只受温度的调制,三路光经过3×1耦合器汇合发生干涉,由于磁场和温度都会使磁流体的折射率发生变化,从而使输出光强发生变化,而FBG只受温度的调制,所以输出光的波长变化仅和温度有关,通过解调出输出光强和光波长的变化,可以实现磁场和温度的双参量测量。
Claims (3)
1.一种基于磁流体的侧面去包层的三芯光纤磁场和温度传感结构,包括宽带光源1、1×3耦合器2、耦合模块3、三芯光纤传感结构4、耦合模块5、3×1耦合器6、探测器7,其特征在于:所述的1×3耦合器2包括输入光纤2(1)、输出光纤2(2)、输出光纤2(3)、输出光纤2(4);所述的耦合模块3包括光波导3(1)、光波导3(2)、光波导3(3),长3mm,宽1mm,高3mm;所述的三芯光纤传感结构4包括包层4(1)、纤芯4(2)、纤芯4(3)、写有FBG的纤芯4(4)、填充有磁流体的去包层区4(5)、石英玻璃毛细管4(6),包层4(1)的直径为125μm,纤芯4(2)的直径为9.6μm,纤芯4(3)的直径为6μm,写有FBG的纤芯4(4)的直径为9.6μm,FBG是利用飞秒激光直接刻写得到,周期为0.5μm,长度为500μm,纤芯4(2)和写有FBG的纤芯4(4)与纤芯4(3)形成的夹角为120°,纤芯4(2)和写有FBG的纤芯4(4)与纤芯4(3)的间距均为35.3μm,石英玻璃毛细管4(5)的外径1mm,内径0.3mm;所述的耦合模块5包括光波导5(1)、光波导5(2)、光波导5(3),长3mm,宽1mm,高3mm;所述的3×1耦合器6包括输入光纤6(1)、输入光纤6(2)、输入光纤6(3)、输出光纤6(4);所述的宽带光源1与输入光纤2(1)耦合,输出光纤2(2)与光波导3(1)的前端耦合,输出光纤2(3)与光波导3(2)的前端耦合,输出光纤2(4)与光波导3(3)的前端耦合,光波导3(1)的后端与纤芯4(2)的前端耦合,光波导3(2)的后端与纤芯4(3)的前端耦合,光波导3(3)的后端与写有FBG的纤芯4(4)的前端耦合,纤芯4(2)的后端与光波导5(1)的前端耦合,纤芯4(3)的后端与光波导5(2)的前端耦合,写有FBG的纤芯4(4)的后端与光波导5(3)的前端耦合,光波导5(1)的后端与输入光纤6(1)耦合,光波导5(2)的后端与输入光纤6(2)耦合,光波导5(3)的后端与输入光纤6(3)耦合,输出光纤6(4)与探测器7耦合;所述的填充有磁流体的去包层区4(5)是利用飞秒激光在纤芯4(2)的上方刻蚀得到,深 22.4μm,长100μm,直径为96μm;所述的石英玻璃毛细管4(6)用来封装三芯光纤传感结构4,纤芯4(2)中光作为探测光,纤芯4(3)中光作为参考光,还有一路光进入写有FBG的纤芯4(4),纤芯4(2)、纤芯4(3)和填充有磁流体的去包层区4(5)形成一个MZI结构,利用磁流体的可调折射率特性可实现磁场的测量,写有FBG的纤芯4(4)对温度敏感,可实现温度的测量。
2.权利要求1所述的一种基于磁流体的侧面去包层的三芯光纤磁场和温度传感结构,所述的光波导3(1)与光波导3(2)前端相距0.5mm,后端相距35.3μm,光波导3(3)与光波导3(2)前端相距0.5mm,后端相距35.3μm,光波导3(1)和光波导3(3)的后端与光波导3(2)的后端形成的夹角为120°。
3.权利要求1所述的一种基于磁流体的侧面去包层的三芯光纤磁场和温度传感结构,所述的光波导5(1)和光波导5(2)前端相距35.3μm,后端相距0.5mm,光波导5(3)和光波导5(2)前端相距35.3μm,后端相距0.5mm,光波导5(1)和光波导5(3)的前端与光波导5(2)的前端形成的夹角为120°。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910365892.8A CN109990845A (zh) | 2019-05-05 | 2019-05-05 | 一种磁流体和侧面去包层的三芯光纤磁场和温度传感结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910365892.8A CN109990845A (zh) | 2019-05-05 | 2019-05-05 | 一种磁流体和侧面去包层的三芯光纤磁场和温度传感结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109990845A true CN109990845A (zh) | 2019-07-09 |
Family
ID=67135771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910365892.8A Pending CN109990845A (zh) | 2019-05-05 | 2019-05-05 | 一种磁流体和侧面去包层的三芯光纤磁场和温度传感结构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109990845A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111537923A (zh) * | 2020-06-15 | 2020-08-14 | 中国计量大学 | 包层刻矩形槽填充液体布拉格光纤光栅磁场探头 |
CN114088136A (zh) * | 2021-11-16 | 2022-02-25 | 哈尔滨工程大学 | 一种温湿度双参量传感器及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050232541A1 (en) * | 2003-08-01 | 2005-10-20 | Mihailov Stephen J | Optical fiber sensor based on retro-reflective fiber bragg gratings |
CN103278782A (zh) * | 2013-05-17 | 2013-09-04 | 天津理工大学 | 一种基于磁流体及微纳光纤倏逝场的磁场传感器 |
CN106125197A (zh) * | 2016-08-24 | 2016-11-16 | 北京交通大学 | 一种磁流体填充双芯光子晶体光纤的可调谐偏振分束器 |
CN106500740A (zh) * | 2016-10-21 | 2017-03-15 | 天津理工大学 | 一种基于磁场和温度的双参量光纤传感器及其制备方法 |
-
2019
- 2019-05-05 CN CN201910365892.8A patent/CN109990845A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050232541A1 (en) * | 2003-08-01 | 2005-10-20 | Mihailov Stephen J | Optical fiber sensor based on retro-reflective fiber bragg gratings |
CN103278782A (zh) * | 2013-05-17 | 2013-09-04 | 天津理工大学 | 一种基于磁流体及微纳光纤倏逝场的磁场传感器 |
CN106125197A (zh) * | 2016-08-24 | 2016-11-16 | 北京交通大学 | 一种磁流体填充双芯光子晶体光纤的可调谐偏振分束器 |
CN106500740A (zh) * | 2016-10-21 | 2017-03-15 | 天津理工大学 | 一种基于磁场和温度的双参量光纤传感器及其制备方法 |
Non-Patent Citations (1)
Title |
---|
赵月;曹晔;童峥嵘;王艳;: "可双参量同时测量的光纤磁场传感器", 光子学报, no. 12, 31 December 2016 (2016-12-31) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111537923A (zh) * | 2020-06-15 | 2020-08-14 | 中国计量大学 | 包层刻矩形槽填充液体布拉格光纤光栅磁场探头 |
CN114088136A (zh) * | 2021-11-16 | 2022-02-25 | 哈尔滨工程大学 | 一种温湿度双参量传感器及其制备方法和应用 |
CN114088136B (zh) * | 2021-11-16 | 2024-03-26 | 哈尔滨工程大学 | 一种温湿度双参量传感器及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103278782B (zh) | 一种基于磁流体及微纳光纤倏逝场的磁场传感器 | |
CN111443313B (zh) | 一种利用双光子飞秒激光直写技术3d打印的f-p磁场传感器及其制作方法 | |
CN209802407U (zh) | 一种磁流体和侧面去包层的三芯光纤磁场和温度传感结构 | |
CN102226725B (zh) | 一种壁中波导长周期光纤光栅传感器 | |
CN101832924B (zh) | 一种基于微芯光纤布拉格光栅的折射率传感器及其制备方法 | |
CN110455346A (zh) | 一种用于测量海水温盐深的光纤传感器 | |
CN208313826U (zh) | 一种基于多模干涉耦合的开放腔马赫-曾德尔光纤干涉仪 | |
CN103969221A (zh) | 基于单模-细芯-多模-单模结构的光纤折射率传感器 | |
CN111443312B (zh) | 一种利用双光子飞秒激光直写技术3d打印的高灵敏度磁场传感器及其制作方法 | |
CN102591039A (zh) | 石墨烯薄膜-d型光纤宽带光偏振器 | |
CN109990845A (zh) | 一种磁流体和侧面去包层的三芯光纤磁场和温度传感结构 | |
CN107515378A (zh) | 基于磁流体填充微结构光纤的Sagnac磁场传感器 | |
CN210427778U (zh) | 一种双芯光纤磁场传感探头 | |
CN110118539B (zh) | 一种克服温度干扰的光纤倾角传感器及方法 | |
CN112684387A (zh) | 一种磁流体填充的lpg—fbg双光纤光栅传感探头 | |
CN207181650U (zh) | 基于磁流体填充微结构光纤的Sagnac磁场传感器 | |
CN102737713B (zh) | 基于线性阵列多芯光纤的二维集成式光纤在线存储器 | |
CN109752798B (zh) | 基于同轴双波导光纤的光学纳米天线探测器及其制备方法 | |
CN202041212U (zh) | 一种用于三轴光纤陀螺的集成光学芯片 | |
CN102175239A (zh) | 一种用于三轴光纤陀螺的集成光学芯片 | |
CN212514973U (zh) | 利用双光子飞秒激光直写技术3d打印的f-p磁场传感器 | |
CN109991562B (zh) | 一种双芯光纤磁场传感探头 | |
CN105738007A (zh) | 一种双锥形聚合物光纤探头及其制备方法和温度传感器 | |
CN102364313A (zh) | 基于球形端面光纤微麦克逊干涉的高温传感方法 | |
CN214895752U (zh) | 一种磁流体填充的lpg—fbg双光纤光栅传感探头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |