CN109987774B - 一种净水器 - Google Patents

一种净水器 Download PDF

Info

Publication number
CN109987774B
CN109987774B CN201711478856.XA CN201711478856A CN109987774B CN 109987774 B CN109987774 B CN 109987774B CN 201711478856 A CN201711478856 A CN 201711478856A CN 109987774 B CN109987774 B CN 109987774B
Authority
CN
China
Prior art keywords
separation
water
electric field
outlet
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711478856.XA
Other languages
English (en)
Other versions
CN109987774A (zh
Inventor
陈建华
邓愿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Fotile Kitchen Ware Co Ltd
Original Assignee
Ningbo Fotile Kitchen Ware Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Fotile Kitchen Ware Co Ltd filed Critical Ningbo Fotile Kitchen Ware Co Ltd
Priority to CN201711478856.XA priority Critical patent/CN109987774B/zh
Publication of CN109987774A publication Critical patent/CN109987774A/zh
Application granted granted Critical
Publication of CN109987774B publication Critical patent/CN109987774B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明涉及一种净水器,包括位于前端的前过滤装置,其特征在于:还包括设置在前过滤装置后方的用于检测从前过滤装置流出的水中的有机物含量的有机物检测传感器,以及设置在有机物检测传感器后方的重金属离子检测分离装置。与现有技术相比,本发明的优点在于:不仅能检测水中有机物含量,还通过设置水中阳离子检测分离装置,将水中比荷不同的阳离子进行分离分流,再根据重金属离子比荷,对其中的一个分流子出口的水进行TDS值检测,可以准确有效检测到水中是否含有重金属离子;如果含有重金属,将该部分分流水作为废水排出,如果不含有重金属,则作为正常水流出。

Description

一种净水器
技术领域
本发明涉及一种净水器。
背景技术
目前净水机的水处理方式主要是依靠膜的形式进行处理,一种膜依靠过滤的方式把污染物截留,如PP棉、活性炭等,另一种膜是过滤后分流,如反渗透、超滤等,把一部分过滤后的水作为净化后的水排出,另外一部分就带着污染物作为废水排出。净水机一般都是通过分多级过滤来完成整个水净化的过程。目前市场上主要的核心过滤膜分为超滤、反渗透这两种膜。超滤膜可以保留水中的矿物质但不能过滤水中的重金属离子,反渗透膜可以过滤掉绝大部分的离子,但没有矿物质离子,变成了或接近纯净水。有部分在使用纳滤,保留一定矿物质离子,但又可以过滤掉大部分重金属离子。但无论是哪一种膜,均具有如下几个共同的特性:
1、过滤的效果是固定的,即膜的孔径决定了膜的过滤效果,而膜一旦成型,也就固定了过滤的孔径,不能适应不同的场合;
2、膜的过滤效果随着膜使用时间会长,效率变得低,孔径变小,随着使用时间加长,可能还会堵塞,最后还可能导致膜失效,需要更换膜;
3、膜是通过微孔过滤的,微孔会形成一定的水阻,孔径越小、水阻越大,一般而言,反渗透膜能过滤全部的离子,形成纯净水,孔径最小,因而水阻也最大,反渗透净水机一般都需要增压泵对进水口进行增压,才能保证一定的出水量。
发明内容
本发明所要解决的技术问题是针对上述现有技术提供一种能同时检测有机物含量和检测水中是否含有重金属并能对重金属进行分离的净水器。
本发明解决上述技术问题所采用的技术方案为:一种净水器,包括位于前端的前过滤装置,其特征在于:还包括设置在前过滤装置后方的用于检测从前过滤装置流出的水中的有机物含量的有机物检测传感器,以及设置在有机物检测传感器后方的重金属离子检测分离装置,该重金属离子检测分离装置包括
分离流道,分离流道具有入口和出口;
分离电场正极片,设置在分离流道内,靠近分离流道的出口,与外部稳压电源的正极连接;
分离电场负极片,设置在分离流道内,靠近分离流道的出口,与外部稳压电源的负极连接;
分离流道的入口设置在靠近分离电场负极片的前端部处;
分离电场正极片后端部和分离电场负极片后端部之间形成所述分离流道的出口,且分离流道的出口设有N块与分离电场正极片平行间隔设置的分流隔板,从而将分离流道的出口分为N+1个分流子出口,N的取值为大于等于2的自然数;将位于最中间的一个分流子出口或位于最中间两个分流子出口中任一个分流子出口流出的水作为重金属离子检测分离装置的第一出水;将从其余分流子出口流出的水进行混合,作为重金属离子检测分离装置的第二出水;
以及用于检测第一出水中TDS值的TDS传感器,如果TDS传感器检测到的TDS值小于等于预设阈值,则将第一出水和第二出水混合后作为净水器的正常出水;当TDS传感器检测到的TDS值大于预设阈值时,将第一出水作为净水器的废水,将第二出水作为净水器的正常出水。
N块分流隔板之间的距离可以相同,即N块分流隔板将分离流道的出口分为N+1个大小相同的分流子出口。
N块分流隔板之间的距离也可以不同,作为优选,所述N=2,其中第一块分流隔板与分离电场正极片之间的距离为:其中K为小于1大于0的常数,U为第二外部稳压电源正负极之间的电压,l为分离电场正极片或分离电场负极片的长度,v为水流经分离流道的水流速度,d为分离电场正极片和分离电场负极片之间的距离;的范围为1/15~1/8;
第二块分流隔板与分离电场正极片之间的距离为: 的范围为1/45~1/40;将从第一块分流隔板与第二块分流隔板之间形成的分流子出口流出的水作为重金属离子检测分离装置的第一出水;将从其余两个分流子出口流出的水进行混合,作为重金属离子检测分离装置的第二出水。
作为另一种优选,所述N=3,其中第一块分流隔板与分离电场正极片之间的距离为:其中K为小于1大于0的常数,U为第二外部稳压电源正负极之间的电压,l为分离电场正极片或分离电场负极片的长度,v为水流经分离流道的水流速度,d为分离电场正极片和分离电场负极片之间的距离;/>的范围为1/15~1/8;第二块分流隔板与分离电场正极片之间的距离为:/> 的范围为1/28~1/20;第三块分流隔板与分离电场正极片之间的距离为:/> 的范围为:1/45~1/40,将从第二块分流隔板与第三块分流隔板之间形成的分流子出口流出的水作为重金属离子检测分离装置的第一出水;将从其余三个分流子出口流出的水进行混合,作为重金属离子检测分离装置的第二出水;这样,、汞离子、铅离子等比荷在1/28~1/20至1/45~1/40之间的金属阳离子,则通过第一出水的TDS值就能检测到,如果TDS值大于预设阈值时,将第一出水作为净水器的废水,将第二出水作为净水器的正常出水。
考虑到附集电场和分离电场的电压过大时,容易导致水的电解,为了不至于使水电解,所述外部稳压电源正负极之间的电压小于等于2V。
分离电场负极片长度与分离电场正极片长度相同。
再改进,所述前过滤装置包括滤芯为PP棉的一级过滤单元,滤芯为活性炭的二级过滤单元,以及滤芯为超滤膜的三级过滤单元;一级过滤单元的入口与净水器的进水口连通,一级过滤单元的出口与二级过滤单元的入口连通,二级过滤单元的出口与三级过滤单元的入口连通,三级过滤单元的出口与有机物检测传感器的入口连通,有机物检测传感器的出口与重金属离子检测分离装置中分离流道的入口连通。
再改进,有机物检测传感器的出口与重金属离子检测分离装置中分离流道的入口之间设有流量计。
再改进,所述净水器还包括与流量计、有机物检测传感器及重金属离子检测分离装置中的TDS传感器连接的显示屏。
与现有技术相比,本发明的优点在于:不仅能检测水中有机物含量,还通过设置水中阳离子检测分离装置,将水中比荷不同的阳离子进行分离分流,再根据重金属离子比荷,对其中的一个分流子出口的水进行TDS值检测,可以准确有效检测到水中是否含有重金属离子;如果含有重金属,将该部分分流水作为废水排出,如果不含有重金属,则作为正常水流出。
附图说明
图1为本发明实施例一中净水器的过滤系统原理图。
图2为本发明实施例一中重金属离子检测分离装置的示意图。
图3为本发明实施例二中重金属离子检测分离装置的示意图。
图4为本发明实施例三中重金属离子检测分离装置的示意图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
如图1所示的净水器,包括位于前端的前过滤装置,设置在前过滤装置后方的用于检测从前过滤装置流出的水中的有机物含量的有机物检测传感器7,设置在有机物检测传感器后方的重金属离子检测分离装置,有机物检测传感器7的出口与重金属离子检测分离装置中分离流道的入口之间设有流量计8;以及与流量计8、有机物检测传感器7及重金属离子检测分离装置中的TDS传感器9连接的显示屏10。
本实施例中,前过滤装置包括滤芯为PP棉的一级过滤单元11,滤芯为活性炭的二级过滤单元12,以及滤芯为超滤膜的三级过滤单元13;一级过滤单元的入口与净水器的进水口连通,一级过滤单元的出口与二级过滤单元的入口连通,二级过滤单元的出口与三级过滤单元的入口连通,三级过滤单元的出口与有机物检测传感器的入口连通,有机物检测传感器的出口与重金属离子检测分离装置中分离流道的入口连通。
有机物检测传感器的结构采用现有技术常规结构,本实施例中采用专利号为201720316550.3中描述的结构,此处不再详述。
本实施例中,重金属离子检测分离装置包括,参见图2所示
分离流道1,分离流道具有入口和出口;
分离电场正极片2,设置在分离流道内,靠近分离流道的出口,与外部稳压电源的正极连接;
分离电场负极片3,设置在分离流道内,靠近分离流道的出口,与外部稳压电源的负极连接;分离电场负极片长度与分离电场正极片长度相同;
分离流道的入口设置在靠近分离电场负极片的前端部处;
分离电场正极片后端部和分离电场负极片后端部之间形成所述分离流道的出口,且分离流道的出口设有N块与分离电场正极片平行间隔设置的分流隔板6,从而将分离流道的出口分为N+1个分流子出口,N的取值为大于等于2的自然数;将位于最中间的一个分流子出口或位于最中间两个分流子出口中任一个分流子出口流出的水作为重金属离子检测分离装置的第一出水;将从其余分流子出口流出的水进行混合,作为重金属离子检测分离装置的第二出水;
以及用于检测第一出水中TDS值的TDS传感器9,如果TDS传感器9检测到的TDS值小于等于预设阈值,则将第一出水和第二出水混合后作为净水器的正常出水;当TDS传感器检测到的TDS值大于预设阈值时,将第一出水作为净水器的废水,将第二出水作为净水器的正常出水。
本实施例中,N=3,将自分离电场负极片至分离电场正极片之间的分流隔板依次记为第一块分流隔板、第二块分流隔板、第三块分流隔板,将从第二块分流隔板与第三块分流隔板之间形成的分流子出口流出的水作为重金属离子检测分离装置的第一出水;将从其余三个分流子出口流出的水进行混合,作为重金属离子检测分离装置的第二出水。
重金属离子检测分离装置的工作原理为:
水自分离流道的入口进入,在分离电场的作用下,水中的正离子向分离电场负极片移动,水中的负离子向在分离电场正极片移动。考虑过高电压容易导致水的电解,因此优先考虑输入的分离电场电压不能过大,一般应该低于2V以下。相同的电场对不同的离子迁移能力是不同的,主要是根据不同的荷电比来决定,在相同均匀电场下,离子在水流的带动下进入分离电场,分离流道的入口设置在靠近分离电场负极片的前端部处,使得所有阳离子的初始条件一致,在分离电场的作用下,水中的不同离子会在分离电场的作用下进行迁移,负离子向分离电场正极片运动,阳离子会向分离电场负极片运动,由于不同的离子具有不同的电荷和不同的原子量,正常水中主要的阳离子大部分为钙(Ca2+\原子量为20)、镁(Mg2+\离子原子量为20)、钠(Na+\原子量为11),还有其他一些微量的阳离子;但对于一些污染的水中,特别是重金属污染的水中,包含了大量的重金属离子,如铅(Pb2+\原子量为82)、汞(Hg2+\原子量为80)、银(Ag2+\原子量为47)、钡(Ba2+\原子量为56)、镉(Cd2+\原子量为48)等。不同的离子具有不同的比荷,如钙离子比荷为2/20,镉离子为2/48,铅离子为2/82,因此重金属离子的比荷相对比较小,特别是铅、汞等,而一般水中常见的阳离子如钙镁钠等比荷相对比较大。因此,在相同的分离电场、相同初速度情况下,不同比荷的离子移动的距离关系与比荷比成比例关系,即移动的距离与q/m相关,相同电场下,比荷大的阳离子移动速度快,比荷小的阳离子移动速度慢;特别是重金属离子由于比荷比较小,移动速度慢;通过出水口的分流槽,对水进行分流,从而可以对水中不同的阴阳离子进行分离,通过将从第二块分流隔板与第三块分流隔板之间形成的分流子出口流出的水作为重金属离子检测分离装置的第一出水;将从其余三个分流子出口流出的水进行混合,作为重金属离子检测分离装置的第二出水,就可以将大部分重金属离子分离并检测出来。
实施例二
与实施例一不同的是,三块分流隔板并非均匀间隔分布,参见图3所示,其中
第一块分流隔板与分离电场正极片之间的距离为:其中K为小于1大于0的常数,U为第二外部稳压电源正负极之间的电压,l为分离电场正极片或分离电场负极片的长度,v为水流经分离流道的水流速度,d为分离电场正极片和分离电场负极片之间的距离;/>的范围为1/15~1/8;这样,钙离子、钠离子等比荷在0至1/15~1/8之间的金属阳离子就可以从第一块分流隔板与分离流道内壁之间形成的分流子出口流出;
第二块分流隔板与分离电场正极片之间的距离为: 的范围为1/28~1/20;这样,银离子、镉离子等比荷在1/15~1/8至1/28~1/20之间的金属阳离子就可以从第一块分流隔板与第二块分流隔板之间形成的分流子出口流出;
第三块分流隔板与分离电场正极片之间的距离为: 的范围为:1/45~1/40;这样,钡离子、铅离子、汞离子等比荷在1/28~1/20至1/45~1/40之间的金属阳离子就可以从第二块分流隔板与第三块分流隔板之间形成的分流子出口流出。
此时,将从第二块分流隔板与第三块分流隔板之间形成的分流子出口流出的水作为重金属离子检测分离装置的第一出水,能更精确有效检测水中是否含有重金属离子,以及重金属离子的含量。
实施例三
与实施例二不同的是,分流隔板设有二块,参见图4所示,其中:
第一块分流隔板与分离电场正极片之间的距离为:其中K为小于1大于0的常数,U为第二外部稳压电源正负极之间的电压,l为分离电场正极片或分离电场负极片的长度,v为水流经分离流道的水流速度,d为分离电场正极片和分离电场负极片之间的距离;/>的范围为1/15~1/8;
第二块分流隔板与分离电场正极片之间的距离为: 的范围为1/45~1/40。
此时,将从第一块分流隔板与第二块分流隔板之间形成的分流子出口流出的水作为重金属离子检测分离装置的第一出水,能更精确有效检测水中是否含有重金属离子,以及重金属离子的含量,也能较为精确有效检测水中的重金属离子。

Claims (5)

1.一种净水器,包括位于前端的前过滤装置,其特征在于:还包括设置在前过滤装置后方的用于检测从前过滤装置流出的水中的有机物含量的有机物检测传感器,以及设置在有机物检测传感器后方的重金属离子检测分离装置,该重金属离子检测分离装置包括
分离流道,分离流道具有入口和出口;
分离电场正极片,设置在分离流道内,靠近分离流道的出口,与外部稳压电源的正极连接;
分离电场负极片,设置在分离流道内,靠近分离流道的出口,与外部稳压电源的负极连接;所述分离电场负极片长度与分离电场正极片长度相同;
分离流道的入口设置在靠近分离电场正极片的前端部处;
分离电场正极片后端部和分离电场负极片后端部之间形成所述分离流道的出口,且分离流道的出口设有N块与分离电场正极片平行间隔设置的分流隔板,从而将分离流道的出口分为N+1个分流子出口,N的取值为大于等于2的自然数;将位于最中间的一个分流子出口或位于最中间两个分流子出口中任一个分流子出口流出的水作为重金属离子检测分离装置的第一出水;将从其余分流子出口流出的水进行混合,作为重金属离子检测分离装置的第二出水;
以及用于检测第一出水中TDS值的TDS传感器,如果TDS传感器检测到的TDS值小于等于预设阈值,则将第一出水和第二出水混合后作为净水器的正常出水;当TDS传感器检测到的TDS值大于预设阈值时,将第一出水作为净水器的废水,将第二出水作为净水器的正常出水;
所述N=2或N=3;
当N=2时,第一块分流隔板与分离电场正极片之间的距离为:
其中K为小于1大于0的常数,U为第二外部稳压电源正负极之间的电压,l为分离电场正极片或分离电场负极片的长度,v为水流经分离流道的水流速度,d为分离电场正极片和分离电场负极片之间的距离;/>的范围为1/15~1/8;第二块分流隔板与分离电场正极片之间的距离为:/> 的范围为1/45~1/40;将从第一块分流隔板与第二块分流隔板之间形成的分流子出口流出的水作为重金属离子检测分离装置的第一出水;将从其余两个分流子出口流出的水进行混合,作为重金属离子检测分离装置的第二出水;
当N=3时,第一块分流隔板与分离电场正极片之间的距离为:
其中K为小于1大于0的常数,U为第二外部稳压电源正负极之间的电压,l为分离电场正极片或分离电场负极片的长度,v为水流经分离流道的水流速度,d为分离电场正极片和分离电场负极片之间的距离;/>的范围为1/15~1/8;第二块分流隔板与分离电场正极片之间的距离为:/> 的范围为1/28~1/20;第三块分流隔板与分离电场正极片之间的距离为:
的范围为:1/45~1/40,将从第二块分流隔板与第三块分流隔板之间形成的分流子出口流出的水作为重金属离子检测分离装置的第一出水;将从其余三个分流子出口流出的水进行混合,作为重金属离子检测分离装置的第二出水。
2.根据权利要求1所述的净水器,其特征在于:所述外部稳压电源正负极之间的电压小于等于2V。
3.根据权利要求1或2所述的净水器,其特征在于:所述前过滤装置包括滤芯为PP棉的一级过滤单元,滤芯为活性炭的二级过滤单元,以及滤芯为超滤膜的三级过滤单元;一级过滤单元的入口与净水器的进水口连通,一级过滤单元的出口与二级过滤单元的入口连通,二级过滤单元的出口与三级过滤单元的入口连通,三级过滤单元的出口与有机物检测传感器的入口连通,有机物检测传感器的出口与重金属离子检测分离装置中分离流道的入口连通。
4.根据权利要求3所述的净水器,其特征在于:有机物检测传感器的出口与重金属离子检测分离装置中分离流道的入口之间设有流量计。
5.根据权利要求4所述的净水器,其特征在于:所述净水器还包括与流量计、有机物检测传感器及重金属离子检测分离装置中的TDS传感器连接的显示屏。
CN201711478856.XA 2017-12-29 2017-12-29 一种净水器 Active CN109987774B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711478856.XA CN109987774B (zh) 2017-12-29 2017-12-29 一种净水器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711478856.XA CN109987774B (zh) 2017-12-29 2017-12-29 一种净水器

Publications (2)

Publication Number Publication Date
CN109987774A CN109987774A (zh) 2019-07-09
CN109987774B true CN109987774B (zh) 2024-01-19

Family

ID=67109702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711478856.XA Active CN109987774B (zh) 2017-12-29 2017-12-29 一种净水器

Country Status (1)

Country Link
CN (1) CN109987774B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105253965A (zh) * 2015-10-19 2016-01-20 江门市腾飞科技有限公司 一种利用电场吸附除去水中重金属的智能净水器
KR20160082744A (ko) * 2014-12-29 2016-07-11 코웨이 주식회사 탈이온 필터 장치 및 이를 포함하는 수처리기
CN106995247A (zh) * 2016-01-22 2017-08-01 宁波方太厨具有限公司 一种低钠健康水的制作装置和方法
CN206666253U (zh) * 2017-03-22 2017-11-24 佛山市顺德区美的饮水机制造有限公司 净水器和净水系统
CN207748967U (zh) * 2017-12-29 2018-08-21 宁波方太厨具有限公司 一种净水器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160082744A (ko) * 2014-12-29 2016-07-11 코웨이 주식회사 탈이온 필터 장치 및 이를 포함하는 수처리기
CN105253965A (zh) * 2015-10-19 2016-01-20 江门市腾飞科技有限公司 一种利用电场吸附除去水中重金属的智能净水器
CN106995247A (zh) * 2016-01-22 2017-08-01 宁波方太厨具有限公司 一种低钠健康水的制作装置和方法
CN206666253U (zh) * 2017-03-22 2017-11-24 佛山市顺德区美的饮水机制造有限公司 净水器和净水系统
CN207748967U (zh) * 2017-12-29 2018-08-21 宁波方太厨具有限公司 一种净水器

Also Published As

Publication number Publication date
CN109987774A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
CN109987684B (zh) 一种水中阴阳离子分离装置
CN109987755B (zh) 一种水过滤系统
CN208038199U (zh) 一种水过滤系统
CN207748967U (zh) 一种净水器
CN109987774B (zh) 一种净水器
CN109987757B (zh) 一种净水器
CN109987779B (zh) 一种水过滤系统
CN109987778B (zh) 一种水过滤系统
CN109987685B (zh) 一种水中阳离子分离装置
CN109987773B (zh) 一种水过滤系统
CN207877463U (zh) 一种净水器
CN207748898U (zh) 一种水中阳离子分离装置
CN109553204A (zh) 一种反渗透纯水机处理系统
CN109987776B (zh) 一种水过滤系统
CN207748987U (zh) 一种水过滤系统
CN109987775B (zh) 一种水过滤系统
CN104556303A (zh) 节水型反渗透膜净水机
CN208109811U (zh) 一种水质检测系统
CN207738497U (zh) 一种水中阴阳离子分离装置
CN111003766A (zh) 一种提高倒极速度的电渗析净水系统及净水器
CN207738575U (zh) 一种水过滤系统
CN208038225U (zh) 一种水过滤系统
CN207738558U (zh) 一种水过滤系统
CN104878809A (zh) 无负压净供一体供水设备
CN103880118A (zh) 一种实验室废水处理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant