CN109985668B - 一种壳聚糖杂化溴氧化铋微纳米多层级材料及其制备和应用 - Google Patents

一种壳聚糖杂化溴氧化铋微纳米多层级材料及其制备和应用 Download PDF

Info

Publication number
CN109985668B
CN109985668B CN201910356228.7A CN201910356228A CN109985668B CN 109985668 B CN109985668 B CN 109985668B CN 201910356228 A CN201910356228 A CN 201910356228A CN 109985668 B CN109985668 B CN 109985668B
Authority
CN
China
Prior art keywords
chitosan
bismuth
micro
hybridized
bismuth oxybromide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910356228.7A
Other languages
English (en)
Other versions
CN109985668A (zh
Inventor
王荣民
张展程
何玉凤
王雪雪
温明山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201910356228.7A priority Critical patent/CN109985668B/zh
Publication of CN109985668A publication Critical patent/CN109985668A/zh
Application granted granted Critical
Publication of CN109985668B publication Critical patent/CN109985668B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cosmetics (AREA)

Abstract

本发明公开了一种壳聚糖杂化溴氧化铋微纳米多层级材料的制备方法,是将壳聚糖分散液缓慢加入铋盐溶液中,磁力搅拌使其分散均匀;再在搅拌下向体系中缓慢加入溴盐溶液,搅拌分散均匀,然后将反应体系移入反应釜中,120~300℃水热反应6~20 h,抽滤分离产品,并用蒸馏水洗涤,真空干燥,即得到壳聚糖杂化溴氧化铋微纳米多层级材料。本发明以壳聚糖为模板导向剂和结构诱导剂,通过聚合物水热辅助使铋盐与溴盐结合形成溴氧化铋,并通过壳聚糖分子链段中氨基诱导促使溴氧化铋光催化材料具有高度暴露的晶面和丰富的氧空位,进而拓宽了该催化剂在可见光区的吸收,使得壳聚糖杂化溴氧化铋微纳米多层级光催化材料在模拟太阳光照射下具有很高的光催化活性。

Description

一种壳聚糖杂化溴氧化铋微纳米多层级材料及其制备和应用
技术领域
本发明涉及一种壳聚糖杂化溴氧化铋微纳米多层级材料的制备方法,主要作为光催化剂用于有机污染物的降解处理,属于复合材料技术领域和光催化技术领域。
背景技术
水资源在人类生产生活中是一种不可或缺的自然资源。然而,伴随着人类工业活动的频繁,水污染现象日益加剧,逐渐成为各国需要解决的主要环境问题。例如:纺织废水中的多种有机染料不仅是致癌物质,而且会抑制太阳光在水体中的传播,影响水体生物的光合作用。为了解决以上问题,科学家开发了诸如吸附、絮凝、膜过滤、光催化、电催化等诸多水处理方法,其关键是水处理用材料,如:吸附剂、催化剂、絮凝剂、分离膜等。近年来,半导体光催化材料因其具有快速、方便、低耗能等特点,发展成为水体染料去除领域的一类明星材料。然而,传统的半导体光催化剂存在光催化效果较差、催化剂寿命较低等问题。因此,开发低成本、高催化活性及可循环使用的水处理材料是目前该领域的发展方向。
作为一种廉价无毒的三元半导体材料,溴氧化铋(BiOBr)具有良好的化学稳定性、较为合适的带宽。溴氧化铋是一种潜力广阔的明星半导体光催化剂,广泛应用于光催化产氢、光催化N2固定、光催化水污染处理等领域。因此,已经开发了具有不同结构与形貌的溴氧化铋材料,例如:CN107855130A公开了一种具有太阳光固氮性能的光催化剂H-BiOBr,其在可见光照射下具有良好的固氮性能;CN108993550A公开了一种表面氧空位改性的溴氧化铋光催化剂的方法,该方法可在光催化剂表面构建较为稳定牢固的氧空位,通过半导体禁带宽度中构建阶梯,达到可见光范围内拥有较宽光吸收范围的效果;也合成了具有光催化活性花状形貌的溴氧化铋微米材料(CN107537521A)。然而,大部分溴氧化铋光催化剂存在活性位点较少等缺点,一些活性较高的溴氧化铋催化材料又存在操作繁琐、溶剂与辅助材料价格较高等问题。因此,开发一种简单、廉价、环保的方法,制备同时解决可见光区光吸收范围较小、催化剂比表面积较低活性位点较少两方面的问题,是溴氧化铋光催化材料发展的必然趋势。
发明内容
本发明目的是提供一种壳聚糖杂化溴氧化铋微纳米多层级材料的制备方法;
本发明另一目的是对上述壳聚糖杂化溴氧化铋微纳米多层级材料的结构和光催化性能进行分析研究。
一、壳聚糖杂化溴氧化铋微纳米多层级材料的制备
本发明壳聚糖杂化溴氧化铋微纳米多层级材料的制备方法,是将壳聚糖水/酸分散液缓慢加入铋盐水/酸溶液中,磁力搅拌使体系分散均匀;再在搅拌下向体系中缓慢加入溴盐水/酸溶液,搅拌分散均匀,然后将反应体系移入反应釜中,120~300℃水热反应6~20h,抽滤分离产品,并用蒸馏水洗涤,真空干燥,得到壳聚糖杂化溴氧化铋微纳米多层级材料。
所述壳聚糖分子量为5 ~20 kDa;所述铋盐为硝酸铋或溴化铋;壳聚糖与铋盐质量比为1:1~1:10。
所述溴盐为溴化钾、溴化钠、十六烷基溴化铵,溴盐与铋盐质量比为1:1~1:5。
二、壳聚糖杂化溴氧化铋微纳米多层级材料的形貌与结构
1、微观形貌
采用扫描电镜观察了壳聚糖杂化溴氧化铋微、纳米多层级材料的微观形貌,结果如图1所示。可以看出,壳聚糖杂化溴氧化铋微纳米多层级材料具有典型的微米花状形貌,是通过BiOBr纳米片自组装构成的。每个BiOBr纳米片厚度大约为15 nm,纳米片与片之间的间隙在50~100 nm不等,其自组装构成的BiOBr微米花直径在2~5 μm之间。这种特殊形貌的壳聚糖杂化溴氧化铋光催化材料具有较大的比表面积、丰富的活性位点、更好的吸附与光催化效果。
2、红外光谱分析
图2是壳聚糖杂化溴氧化铋微纳米多层级材料的红外谱图。从图中可知,在3500cm-1处出现的宽峰归因为O-H与N-H的弯曲振动吸收峰;在1624 cm-1处出现的吸收峰归因为C=O的伸缩振动吸收峰;在1380 cm-1处出现的吸收峰归因为C-O的弯曲振动吸收峰;在510cm-1处出现的吸收峰归因为Bi-O金属键的特征吸收峰。说明BiOBr与壳聚糖均存在于杂化材料中。
3、X射线衍射分析
图3是壳聚糖杂化溴氧化铋微纳米多层级材料的X射线衍射图。通过与BiOBr的标准卡片JCPDS 09-0393对比发现,通过壳聚糖水热辅助合成制备的BiOBr特征峰明显,没有出现杂质峰。这表明壳聚糖杂化溴氧化铋材料结晶情况良好,且无其它晶体杂质出现。同时,发现在32.2°处壳聚糖杂化溴氧化铋材料的(110)晶面衍射峰具有很强的信号,而在31.5°处(102)晶面衍射峰几乎不出现,表明在壳聚糖诱导下,BiOBr主要以暴露(110)晶面为主。同时在10.9°处(001)晶面的衍射峰信号十分微弱,这是由于(001)晶面的氧空位增加,晶体无序性升高所导致。说明通过壳聚糖水热辅助成功制备了花状壳聚糖杂化溴氧化铋微纳米多层级材料,同时该多层级材料具有丰富的氧空位。
三、壳聚糖杂化溴氧化铋微纳米多层级材料降解性能测试
为了测试壳聚糖杂化溴氧化铋微纳米多层级材料光催化活性,选用罗丹明B(RhB)为代表性有机污染物,进行光催化降解试验。称取一定量光催化材料,分散到50 mL的RhB溶液中,暗反应30 min达到吸附平衡。然后,在光反应器中光催化35 min,每隔一定时间取样5mL离心,上清液通过0.45 µm的滤膜,采用紫外可见分光光度法测定残余RhB的浓度,计算脱色率。
结果表明:壳聚糖杂化溴氧化铋微纳米多层级材料在暗反应30 min后对RhB的脱色率达到58.5%,光照35 min后脱色率达到99.6%,说明主要是光催化降解发挥作用。以上结果说明,本发明制备的壳聚糖杂化溴氧化铋微纳米多层级材料在模拟太阳光下对RhB具有很好的催化降解性能。
综上所述,本发明利用壳聚糖具有丰富的氨基、廉价易得、无毒、环保的特点,以其作为模板导向剂和结构诱导剂,通过聚合物水热辅助使铋盐与溴盐结合形成溴氧化铋(BiOBr),并通过壳聚糖分子链段中氨基诱导使溴氧化铋光催化材料具有高度暴露的(110)晶面和丰富的氧空位,进而拓宽了该催化剂在可见光区的吸收,使壳聚糖杂化溴氧化铋微纳米多层级光催化材料在模拟太阳光照射下具有很高的光催化活性,在光催化降解染料废水领域具有很好的应用前景。
附图说明
图1为壳聚糖杂化溴氧化铋微纳米多层级材料的扫描电镜图。
图2为壳聚糖杂化溴氧化铋微纳米多层级材料的红外吸收光谱图。
图3为壳聚糖杂化溴氧化铋微纳米多层级材料的X射线衍射图。
图4为壳聚糖杂化溴氧化铋微纳米多层级材料对RhB的光降解数据。
具体实施方式
下面通过具体实施例对本发明壳聚糖杂化溴氧化铋微纳米多层级材料的制备、性能作进一步说明。
实施例1
(1)取1.0 g分子量为15 kDa壳聚糖,加入20 mL硝酸溶液(2 mol/L)中,搅拌使其完全分散,得到壳聚糖分散液;
(2)取5.0 g硝酸铋,加入30 mL硝酸溶液(2 mol/L)中,搅拌使其完全溶解,得到硝酸铋溶液;
(3)取2.0 g十六烷基溴化铵,溶解于10 mL水中,搅拌使其完全溶解,得到溴盐溶液;
(4)在磁力搅拌下,将壳聚糖分散液缓慢加入硝酸铋溶液中,磁力搅拌20 min,以确保反应体系分散均匀;再在搅拌下将十六烷基溴化铵溶液在10 min内缓慢加入反应体系中,并搅拌反应40 min;然后,将反应体系移入PPL内衬不锈钢反应釜,在200℃水热反应9h,所得产品通过抽滤分离,并用蒸馏水洗涤6次,150℃真空干燥8 h,得到壳聚糖杂化溴氧化铋微纳米多层级材料。壳聚糖杂化溴氧化铋微纳米多层级材料对RhB模拟污染物的光催化降解后脱色率为98.9%。
实施例2
(1)取1.5 g分子量为20 kDa壳聚糖,加入30 mL醋酸溶液(10 wt%)中,搅拌使其完全分散,得到壳聚糖分散液;
(2)取3.0 g硝酸铋,加入30 mL冰醋酸溶液(10 wt%)中,搅拌使其完全溶解,得到硝酸铋溶液;
(3)取1.5 g溴化钾,溶解于10 mL水中,搅拌使其完全溶解,得到溴化钾溶液;
(4)在磁力搅拌下,将壳聚糖分散液缓慢加入硝酸铋溶液中,磁力搅拌20 min,以确保反应体系分散均匀;再在搅拌下将溴化钾溶液在5 min内缓慢加入反应体系中,并搅拌反应40 min;然后,将反应体系移入PPL内衬不锈钢反应釜,在120℃水热反应15 h,所得产品通过抽滤分离,并用蒸馏水洗涤6次,100℃真空干燥8 h,得到壳聚糖杂化溴氧化铋微纳米多层级材料。壳聚糖杂化溴氧化铋微纳米多层级材料对RhB模拟污染物的光催化降解后脱色率为99.3%。
实施例3
(1)取0.5 g分子量为5 kDa壳聚糖,加入15 mL硝酸溶液(4 mol/L)中,搅拌使其完全分散,得到壳聚糖分散液;
(2)取2.5 g溴化铋,加入25 mL醋酸溶液(10 wt%),搅拌使其完全溶解,得到硝酸铋溶液;
(3)取1.0 g十六烷基溴化铵,溶解于10 mL水溶液中,搅拌使其完全溶解,得到溴化钾溶液;
(4)在磁力搅拌下,将壳聚糖分散液缓慢加入硝酸铋溶液中,磁力搅拌30 min,以确保反应体系分散均匀;再在搅拌下将溴化钾溶液在15 min内缓慢加入反应体系中,并搅拌反应40 min;然后,将反应体系移入PPL内衬不锈钢反应釜,在220℃水热反应12 h,所得产品通过抽滤分离,并用蒸馏水洗涤6次,200℃真空干燥12 h,得到壳聚糖杂化溴氧化铋微纳米多层级材料。壳聚糖杂化溴氧化铋微纳米多层级材料对RhB模拟污染物的光催化降解后脱色率为97.9%。
实施例4
(1)取0.8 g分子量为10 kDa壳聚糖,加入10 mL醋酸溶液(10 wt%)中,搅拌使其完全分散,得到壳聚糖分散液;
(2)取2.0 g溴化铋,加入25 mL醋酸溶液(10 wt%)中,搅拌使其完全溶解,得到硝酸铋溶液;
(3)取2.0 g溴化钠,溶解于5 mL醋酸溶液(10 wt%)中,搅拌使其完全溶解,得到溴化钾溶液;
(4)在磁力搅拌下,将壳聚糖分散液缓慢加入硝酸铋溶液中,磁力搅拌50 min,以确保反应体系分散均匀;再在搅拌下将溴化钾溶液在15 min内缓慢加入反应体系中,并搅拌反应40 min;然后,将反应体系移入PPL内衬不锈钢反应釜,在220℃水热反应15 h,所得产品通过抽滤分离,并用蒸馏水洗涤8次,50℃真空干燥6 h,得到壳聚糖杂化溴氧化铋微纳米多层级材料。壳聚糖杂化溴氧化铋微纳米多层级材料对RhB模拟污染物的光催化降解后脱色率为99.6%。

Claims (3)

1.一种壳聚糖杂化溴氧化铋微纳米多层级材料的制备方法,是将壳聚糖水/酸分散液缓慢加入铋盐水/酸溶液中,磁力搅拌使体系分散均匀;再在搅拌下向体系中缓慢加入溴盐水/酸溶液,搅拌分散均匀,然后将反应体系移入反应釜中,120~300℃水热反应6~20 h,抽滤分离产品,并用蒸馏水洗涤,真空干燥,得到壳聚糖杂化溴氧化铋微纳米多层级材料;所述壳聚糖与铋盐质量比为1:1~1:10;溴盐与铋盐质量比为1:1~1:5;所述铋盐为硝酸铋、溴化铋;所述溴盐为溴化钾、溴化钠、十六烷基溴化铵。
2.如权利要求1所述一种壳聚糖杂化溴氧化铋微纳米多层级材料的制备方法,其特征在于:所述壳聚糖分子量为5~20 kDa。
3.如权利要求1所述方法制备的壳聚糖杂化溴氧化铋微纳米多层级材料作为光催化剂的应用。
CN201910356228.7A 2019-04-29 2019-04-29 一种壳聚糖杂化溴氧化铋微纳米多层级材料及其制备和应用 Expired - Fee Related CN109985668B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910356228.7A CN109985668B (zh) 2019-04-29 2019-04-29 一种壳聚糖杂化溴氧化铋微纳米多层级材料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910356228.7A CN109985668B (zh) 2019-04-29 2019-04-29 一种壳聚糖杂化溴氧化铋微纳米多层级材料及其制备和应用

Publications (2)

Publication Number Publication Date
CN109985668A CN109985668A (zh) 2019-07-09
CN109985668B true CN109985668B (zh) 2021-12-17

Family

ID=67135524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910356228.7A Expired - Fee Related CN109985668B (zh) 2019-04-29 2019-04-29 一种壳聚糖杂化溴氧化铋微纳米多层级材料及其制备和应用

Country Status (1)

Country Link
CN (1) CN109985668B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813326B (zh) * 2019-12-06 2022-06-14 西北师范大学 一种C掺杂BiOBr微球光催化剂的制备方法
CN110813325A (zh) * 2019-12-06 2020-02-21 西北师范大学 一种BiOCl中空微球光催化剂的制备方法
CN112108161B (zh) * 2020-10-15 2023-02-14 上海纳米技术及应用国家工程研究中心有限公司 快速制备钒酸铋/溴氧化铋纳米片异质结光催化剂的方法及其产品和应用
CN114425371B (zh) * 2021-12-21 2023-06-20 北京建筑大学 一种生物表面活性剂诱导铋基光催化材料自组装的方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117391A (zh) * 2014-08-01 2014-10-29 太原理工大学 一种用于分解水制氢的光电催化膜制备
CN109481727A (zh) * 2018-09-30 2019-03-19 佛山市华健科创科技有限公司 一种光催化抗菌水凝胶敷料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117391A (zh) * 2014-08-01 2014-10-29 太原理工大学 一种用于分解水制氢的光电催化膜制备
CN109481727A (zh) * 2018-09-30 2019-03-19 佛山市华健科创科技有限公司 一种光催化抗菌水凝胶敷料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"BiOBr 微纳米材料的制备及其光催化降解含酚废水的研究";季璐璐等;《无机盐工业》;20180831;第50卷(第8期);第78-81页 *
"Photocatalytic mineralization and degradation kinetics of ampicillinand oxytetracycline antibiotics using graphene sand composite andchitosan supported BiOCl";Bhanu Priya et al.;《Journal of Molecular Catalysis A: Chemical》;20160725;第423卷;摘要、第2.2节和图1 *
"The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange";Zheng Jiang et al.;《Journal of Photochemistry and Photobiology A: Chemistry》;20100321;第212卷;第8-13页 *
"花状BiOBr催化剂制备及对废水底物降解的光催化特性";杨家添等;《生态与农村环境学报》;20161231;第32卷(第5期);第818-825页 *

Also Published As

Publication number Publication date
CN109985668A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
CN109985668B (zh) 一种壳聚糖杂化溴氧化铋微纳米多层级材料及其制备和应用
He et al. Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi2WO6 nanosheet under direct sunlight
Huo et al. A direct Z-scheme oxygen vacant BWO/oxygen-enriched graphitic carbon nitride polymer heterojunction with enhanced photocatalytic activity
Zhang et al. A direct Z-scheme BiOBr/TzDa COF heterojunction photocatalyst with enhanced performance on visible-light driven removal of organic dye and Cr (VI)
Shi et al. Stable, metal-free, visible-light-driven photocatalyst for efficient removal of pollutants: mechanism of action
Xu et al. Molecularly imprinted TiO 2 hybridized magnetic Fe 3 O 4 nanoparticles for selective photocatalytic degradation and removal of estrone
Chen et al. Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light
Wen et al. Progress reports of metal-phenolic network engineered membranes for water treatment
Sun et al. Ultrasound-assisted synthesis of a feathery-shaped BiOCl with abundant oxygen vacancies and efficient visible-light photoactivity
CN110813326B (zh) 一种C掺杂BiOBr微球光催化剂的制备方法
Qiu et al. A recyclable nanosheet of Mo/N-doped TiO2 nanorods decorated on carbon nanofibers for organic pollutants degradation under simulated sunlight irradiation
Wang et al. Constructing direct Z-scheme heterojunction g-C3N5/BiOBr for efficient photocatalytic CO2 reduction with H2O
Wei et al. Dual defect sites of nitrogen vacancy and cyano group synergistically boost the activation of oxygen molecules for efficient photocatalytic decontamination
CN113457710A (zh) PDI/g-C3N4/Bi2WO6复合光催化剂及制备方法和应用
Su et al. Heterostructured Bi2O2CO3/rGO/PDA photocatalysts with superior activity for organic pollutant degradation: Structural characterization, reaction mechanism and economic assessment
Chen et al. Efficient degradation of ciprofloxacin by Cu2O/g-C3N4 heterostructures with different morphologies driven under the visible light
Wang et al. Fe-complex modified cellulose acetate composite membrane with excellent photo-Fenton catalytic activity
CN110813325A (zh) 一种BiOCl中空微球光催化剂的制备方法
Jiang et al. Facile preparation of Porous aromatic frameworks PAF-56 membranes for nanofiltration of dyes solutions
Zhang et al. Modification of polyvinylidene fluoride membrane with different shaped α-Fe2O3 nanocrystals for enhanced photocatalytic oxidation performance
Wang et al. Casein templated synthesis of porous perovskite and its application in visible-light photocatalytic degradation of methylene blue
Xu et al. TiO2@ NH2-MIL-125 (Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr (VI) reduction
Liu et al. Assembling BiOBr nanoplates on MIL-125 (Ti)–NH2 via group linkage towards effective dye-contaminated water purification
Qing et al. Facile synthesis of PA photocatalytic membrane based on C-PANI@ BiOBr heterostructures with enhanced photocatalytic removal of 17β-estradiol
CN101696109B (zh) 二氧化钛介孔微球的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211217

CF01 Termination of patent right due to non-payment of annual fee