CN109983722B - 混合自动重传请求反馈方法及装置 - Google Patents

混合自动重传请求反馈方法及装置 Download PDF

Info

Publication number
CN109983722B
CN109983722B CN201680091004.2A CN201680091004A CN109983722B CN 109983722 B CN109983722 B CN 109983722B CN 201680091004 A CN201680091004 A CN 201680091004A CN 109983722 B CN109983722 B CN 109983722B
Authority
CN
China
Prior art keywords
information
target data
feedback information
data
noise ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680091004.2A
Other languages
English (en)
Other versions
CN109983722A (zh
Inventor
姜玥
朱有团
胡宏杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN109983722A publication Critical patent/CN109983722A/zh
Application granted granted Critical
Publication of CN109983722B publication Critical patent/CN109983722B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Abstract

本发明公开了一种混合自动重传请求反馈方法及装置,属于通信技术领域。该混合自动重传请求反馈方法用于接收端,接收端接收到发送端发送的数据信息后,可以在数据信息中的目标数据未被校验时,确定目标数据的测量值,然后根据测量值生成反馈信息,之后,向发送端发送反馈信息,使得发送端能够根据反馈信息确定是否需要重传目标数据,由于每次发送反馈信息的总时间减少,消耗的TTI更短,所以本发明解决了现有技术无法满足低时延业务需求的问题,能够满足低时延业务需求,用于数据传输。

Description

混合自动重传请求反馈方法及装置
技术领域
本发明涉及通信技术领域,特别涉及一种混合自动重传请求反馈方法及装置。
背景技术
混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)反馈方法广泛应用于多种无线通信系统中,比如宽带码分多址(Wideband Code Division MultipleAccess,WCDMA)系统和长期演进(Long Term Evolution,LTE)等。HARQ反馈方法能够很好地补偿无线移动信道的时变和多径衰落对信号传输的影响,提高系统的鲁棒性。
现有技术中有一种HARQ反馈方法,通过该方法,接收端在接收到发送端发送的数据后,对该数据依次进行译码和循环冗余校验(Cyclic Redundancy Check,CRC),并根据校验结果向发送端发送反馈信息。当该反馈信息携带有肯定应答(Acknowledgement,ACK)时,表示数据发送成功,发送端可以发送新的数据;当该反馈信息携带有否定应答(NegativeAcknowledgement,NACK)时,表示发送端需要重传数据,即需要重新发送上一次的数据。
发明人在实现本发明的过程中,发现上述方法至少存在如下缺陷:接收端在对接收到的数据进行译码和CRC,并向发送端发送反馈信息需要消耗较长的传输时间,无法满足低时延业务需求。
发明内容
为了解决现有技术无法满足低时延业务需求的问题,本发明实施例提供了一种混合自动重传请求反馈方法及装置。所述技术方案如下:
第一方面,提供了一种混合自动重传请求反馈方法,用于接收端,该方法包括:接收发送端发送的数据信息,数据信息包括目标数据;在数据信息中的目标数据未被校验时,确定目标数据的测量值,该测量值用于指示物理信道传输目标数据的可靠度;根据测量值生成反馈信息,该反馈信息携带有肯定应答ACK或否定应答NACK;向发送端发送反馈信息,以便于发送端根据该反馈信息确定是否需要重传目标数据。
由于接收端能够在数据信息中的目标数据未被校验时,确定目标数据的测量值,并根据该测量值向发送端发送反馈信息,使得发送端能够根据该反馈信息确定是否需要重传目标数据,相较于现有技术,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息,所以每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
可选的,该测量值可以为物理信道的信噪比的ACMI的值、数据信息的信息统计量及物理信道的信干噪比等等。
可选的,该接收端为无线通信系统中的基站或用户设备。
可选的,测量值为用于指示数据信息被均衡处理后物理信道的信噪比的第一质量值,根据测量值生成反馈信息,包括:当第一质量值小于质量阈值时,生成携带有NACK的反馈信息;当第一质量值不小于质量阈值时,生成携带有ACK的反馈信息,其中,质量阈值根据目标数据的编码方式、码块长度和码率中的至少一个确定。
接收端可以根据目标数据的编码方式、码块长度和码率中的至少一个确定质量阈值,通过第一质量值对接收到的目标数据进行非校验判决,这样一来,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息。所以接收端每次发送反馈信息的总时间减少,消耗的TTI更短。
可选的,第一质量值为ACMI的值,质量阈值为目标数据的符号传输速率,确定目标数据的测量值,包括:确定物理信道的比特交织编码调制(Bit-Interleaved CodedModulation,BICM)容量;根据BICM容量和目标数据的重传合并方式,确定ACMI的值。
接收端可以采用ACMI和目标数据的符号传输速率对接收到的目标数据进行非校验判决,减少了发送反馈信息的总时间,缩短了消耗的TTI。
可选的,目标数据的重传合并方式为追加合并CC方式或增量冗余IR合并方式。接收端可以根据目标数据的重传合并方式确定相应的ACMI的值。
示例的,当目标数据的重传合并方式为CC方式时,如果ACMICC<R1,接收端生成携带有NACK的反馈信息,如果ACMICC≥R1,接收端生成携带有ACK的反馈信息。其中,R1为目标数据的符号传输速率,ACMICC为当目标数据的重传合并方式为CC方式时的ACMI;当目标数据的重传合并方式为IR合并方式时,如果ACMIIR<R1,接收端生成携带有NACK的反馈信息;如果ACMICC≥R1,接收端生成携带有ACK的反馈信息,其中,ACMIIR为当目标数据的重传合并方式为IR合并方式时的ACMI。
可选的,测量值为数据信息的信息统计量,根据测量值生成反馈信息,包括:根据信息统计量确定目标数据的信息错误率;当信息错误率大于错误率阈值时,生成携带有NACK的反馈信息;当信息错误率不大于错误率阈值时,生成携带有ACK的反馈信息,其中,错误率阈值根据目标数据的编码方式、码块长度和码率中的至少一个确定。
接收端可以根据目标数据的编码方式、码块长度和码率中的至少一个确定错误率阈值,通过信息错误率对接收到的目标数据进行非校验判决,这样一来,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息。所以接收端每次发送反馈信息的总时间减少,消耗的TTI更短。
可选的,信息统计量可以为数据信息被解调处理后的信息统计量或被译码处理后的信息统计量。
可选的,信息错误率可以为码字错误率或平均比特错误率。
示例的,当信息错误率为码字错误率时,如果Pω>Pω,t,接收端生成携带有NACK的反馈信息。如果Pω≤Pω,t,接收端生成携带有ACK的反馈信息。其中,Pω为码字错误率,Pω,t为预先设置的码字错误率对应的错误率阈值;当信息错误率为平均比特错误率时,如果Pb>Pb,t,接收端生成携带有NACK的反馈信息。如果Pb≤Pb,t,接收端生成携带有ACK的反馈信息。其中,Pb为平均比特错误率,Pb,t为预先设置的平均比特错误率对应的错误率阈值。
可选的,测量值为物理信道的信干噪比,根据测量值生成反馈信息,包括:当信干噪比小于信干噪比阈值时,生成携带有NACK的反馈信息;当信干噪比不小于信干噪比阈值时,生成携带有ACK的反馈信息。其中,信干噪比阈值根据目标数据的编码方式、码块长度和码率中的至少一个确定。
接收端可以根据目标数据的编码方式、码块长度和码率中的至少一个确定信干噪比阈值,通过物理信道的信干噪比对接收到的目标数据进行非校验判决,这样一来,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息。所以接收端每次发送反馈信息的总时间减少,消耗的TTI更短。
示例的,当信干噪比为数据信息被均衡处理前物理信道的信干噪比时,如果SINR1<ThresholdTBS,接收端生成携带有NACK的反馈信息;如果SINR1≥ThresholdTBS,接收端生成携带有ACK的反馈信息。其中,SINR1为数据信息被均衡处理前物理信道的信干噪比,ThresholdTBS为该信干噪比对应的信干噪比阈值。
当信干噪比为数据信息被均衡处理后物理信道的信干噪比时,以SC-FDMA系统为例,如果SINRSC-FDMA<ThresholdTBS,接收端生成携带有NACK的反馈信息;如果SINRSC-FDMA≥ThresholdTBS,接收端生成携带有ACK的反馈信息。其中,SINRSC-FDMA为数据信息被均衡处理后物理信道的信干噪比,ThresholdTBS为该信干噪比对应的信干噪比阈值。
可选的,信干噪比阈值可以根据信干噪比、调制编码策略MCS表格和误块率BLER曲线确定。
可选的,测量值为物理信道的信干噪比,根据测量值生成反馈信息,包括:获取物理信道上传输块大小TBS;根据信干噪比确定物理信道的数据传输速率;当TBS小于数据传输速率时,生成携带有NACK的反馈信息;当TBS不小于数据传输速率时,生成携带有ACK的反馈信息。
接收端可以通过物理信道上TBS和物理信道的信干噪比,对接收到的目标数据进行非校验判决,这样一来,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息。所以接收端每次发送反馈信息的总时间减少,消耗的TTI更短。
可选的,信干噪比为数据信息被均衡处理前物理信道的信干噪比。
示例的,当信干噪比为数据信息被均衡处理前物理信道的信干噪比时,如果TBS<Rate,接收端生成携带有NACK的反馈信息;如果TBS≥Rate,接收端生成携带有ACK的反馈信息。其中,TBS为物理信道上传输块大小,Rate为物理信道的数据传输速率。
本发明实施例中的混合自动重传请求反馈方法可以缩短HARQ周期,减少HARQ进程,实现快速执行HARQ反馈,达到快速重传数据的效果。该方法能够在低时延业务场景下增加数据重传次数,获取多次的解调信息,对多次的解调信息进行合并,进而获取HARQ增益。该方法还可以运用于现有技术中的迭代检测中,比如数据传输过程中的解调迭代及译码迭代等,简化检测过程,提高检测结果准确度;也可以用于HARQ合并过程中,简化合并过程,提高校验准确度。
第二方面,提供了一种混合自动重传请求反馈装置,用于接收端,该混合自动重传请求反馈装置包括至少一个模块,该至少一个模块用于实现上述第一方面所提供的混合自动重传请求反馈方法。
第三方面,提供了一种混合自动重传请求反馈装置,用于接收端,该混合自动重传请求反馈装置包括:至少一个处理器、存储器、通讯模块、至少一个通信总线和通讯天线。其中,通信总线用于实现这些组件之间的连接通信。通讯模块可以用于远距通信。通讯天线用于接收和发送通讯信号。处理器用于执行存储器中存储的应用程序,该应用程序包括第一方面所述的混合自动重传请求反馈方法。
上述本发明实施例第二与第三方面所获得的技术效果与第一方面中对应的技术手段所获得的技术效果近似,在这里不再赘述。
综上所述,本发明实施例提供的技术方案带来的有益效果是:
由于接收端能够在数据信息中的目标数据未被校验时,确定目标数据的测量值,并根据该测量值向发送端发送反馈信息,使得发送端能够根据该反馈信息确定是否需要重传目标数据,相较于现有技术,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息,所以每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
附图说明
图1-1是本发明各个实施例所涉及的一种实施环境的示意图;
图1-2是现有技术中数据传输的示意图;
图2是本发明实施例提供的一种混合自动重传请求反馈方法的流程图;
图3-1是本发明实施例提供的一种混合自动重传请求反馈方法的流程图;
图3-2是本发明实施例提供的一种接收端确定目标数据的测量值的流程图;
图4是本发明实施例提供的一种混合自动重传请求反馈方法的流程图;
图5是本发明实施例提供的一种混合自动重传请求反馈方法的流程图;
图6是本发明实施例提供的一种混合自动重传请求反馈方法的流程图;
图7是本发明实施例提供的一种混合自动重传请求反馈装置的结构示意图;
图8是本发明实施例提供的又一种混合自动重传请求反馈装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
请参考图1-1,其示出了本申请各个实施例所涉及的一种实施环境的示意图。该实施环境可以包括发送端01和接收端02。该发送端01和接收端02采用HARQ反馈技术进行数据传输。示例的,该发送端01可以为基站(Base Station,BS),也可以为用户设备(UserEquipment,UE),还可以为其他支持HARQ反馈技术的设备。该接收端02可以为BS或UE等支持HARQ反馈技术的设备。本发明实施例中传输的数据为设备物理层待传输的数据。本发明实施例对通信系统的制式不做限定。
具体的,如图1-2所示,待传输的数据依次由编码模块和调制模块进行处理,处理后的数据经信道输出至信道估计模块。信道估计模块对数据进行处理,并将数据输出至均衡模块。均衡模块进行信道估计和数据补偿后将数据输出至解调模块。解调模块对数据进行解调处理,再将处理后的数据输出至译码模块。数据经译码模块输出至CRC模块,CRC模块再对数据进行校验,并向发送端发送反馈信息。解调模块可以将处理结果反馈至均衡模块和信道估计模块,完成解调迭代。译码模块可以将处理结果反馈至均衡模块和信道估计模块,完成译码迭代。由调制模块处理的数据还可以由其他模块进行处理,处理后的数据再经过信道传输至信道估计模块。
关于发送端和接收端之间的各个模块的作用可以参考现有技术,本发明实施例对此不再赘述。
在本发明实施例中,接收端(如BS)在接收到发送端(如UE)发送的数据信息(该数据信息包括目标数据)后,可以在数据信息中的目标数据未被校验时,确定该目标数据的测量值。该测量值用于指示物理信道传输目标数据的可靠度。接收端可以根据测量值生成反馈信息(该反馈信息携带有ACK或NACK),并向发送端发送该反馈信息。发送端再根据该反馈信息确定是否需要重传目标数据。比如,当该反馈信息携带有ACK时,发送端确定该目标数据已发送成功,可以发送新的数据;当该反馈信息携带有NACK时,发送端确定需要重传目标数据。该过程无需接收端对目标数据执行校验处理,消耗的传输时间间隔(TransmissionTime Interval,TTI)更短,能够满足低时延业务需求。
图2是本发明实施例提供的一种混合自动重传请求反馈方法的流程图,该方法可以用于图1-1所示的实施环境。如图2所示,该方法可以包括:
步骤201、发送端向接收端发送数据信息。
该数据信息包括目标数据。该发送端可以为UE,也可以为BS。示例的,当发送端为UE,接收端为BS时,UE向BS发送数据信息。
步骤202、在数据信息中的目标数据未被校验时,接收端确定目标数据的测量值。
该测量值用于指示物理信道传输目标数据的可靠度。示例的,该测量值可以为物理信道信噪比的累计的条件互信息(Accumulated Conditional Mutual Information,ACMI)的值、数据信息的信息统计量及物理信道的信干噪比等等。
步骤203、接收端根据测量值生成反馈信息。
该反馈信息携带有ACK或NACK。比如当反馈信息携带有ACK时,表示目标数据已发送成功,发送端可以向接收端发送新的数据;当反馈信息携带有NACK时,表示发送端需要重传目标数据。
步骤204、接收端向发送端发送反馈信息。
接收端根据测量值生成反馈信息后,将反馈信息发送至发送端。
步骤205、发送端根据反馈信息确定是否需要重传目标数据。
由于反馈信息携带有ACK或NACK,所以发送端能够根据反馈信息确定是否需要重传目标数据。
综上所述,本发明实施例提供的混合自动重传请求反馈方法,由于接收端能够在数据信息中的目标数据未被校验时,确定目标数据的测量值,并根据该测量值向发送端发送反馈信息,使得发送端能够根据该反馈信息确定是否需要重传目标数据,相较于现有技术,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息,所以每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
图3-1是本发明实施例提供的一种混合自动重传请求反馈方法的流程图,该方法可以用于图1-1所示的实施环境。如图3-1所示,该方法可以包括:
步骤301、发送端向接收端发送数据信息。执行步骤302。
该数据信息包括目标数据。该发送端可以为UE,也可以为BS。当发送端为UE时,接收端为BS;当发送端为BS时,接收端为UE。
步骤302、在数据信息中的目标数据未被校验时,接收端确定目标数据的测量值,该测量值为用于指示数据信息被均衡处理后物理信道的信噪比的第一质量值。
该测量值用于指示物理信道传输目标数据的可靠度。示例的,该测量值可以为用于指示数据信息被均衡处理后物理信道的信噪比的第一质量值。
示例的,该第一质量值可以为ACMI的值。ACMI是一种信道质量信息,关于ACMI的说明可以参考现有技术。
相应的,如图3-2所示,步骤302可以包括:
步骤3021、确定物理信道的BICM容量。
具体的,接收端可以根据公式(1)确定物理信道本次传输数据的BICM容量:
Figure GPA0000266753050000101
其中,Cχ(SNR)为BICM容量,χ为调制星座图,SNR为物理信道的信噪比,L为目标数据的符号比特数,v为噪声,Bl(x)为符号x的第l比特,
Figure GPA0000266753050000102
为假设的发送符号,
Figure GPA0000266753050000103
为符号
Figure GPA0000266753050000104
的第l比特,1≤l≤L,C为v和x之和,表示包含噪声的信号。公式(1)等号右边中的SNR需要估算,其余变量是已知的。采用公式(1)确定BICM容量的具体过程以及估算SNR的具体过程可以参考现有技术,本发明实施例在此不再赘述。
进一步的,为了简化计算过程,可以采用最大化对数最大后验概率(即Max-Log-MAP)算法对公式(1)中的
Figure GPA0000266753050000105
Figure GPA0000266753050000106
进行化简:
Figure GPA0000266753050000107
Figure GPA0000266753050000111
所以,公式(1)可以化简为:
Figure GPA0000266753050000112
其中,Cχ(SNR)为BICM容量,χ为调制星座图,SNR为物理信道的信噪比,L为目标数据的符号比特数,v为噪声,Bl(x)为符号x的第l比特,
Figure GPA0000266753050000113
为假设的发送符号,
Figure GPA0000266753050000114
为符号
Figure GPA0000266753050000115
的第l比特,C为v和x之和,表示包含噪声的信号。公式(2)等号右边中的SNR需要估算,其余变量是已知的。关于Max-Log-MAP算法可以参考现有技术。
步骤3022、根据BICM容量和目标数据的重传合并方式,确定ACMI的值。
可选的,目标数据的重传合并方式为追加合并(即CC)方式或增量冗余(Incremental Redundancy,IR)合并方式。当目标数据的重传合并方式为CC方式时,可以采用公式(3)确定ACMI的值:
Figure GPA0000266753050000116
其中,K为目标数据的重传次数,1≤k≤K,SNR为物理信道的信噪比,χ为调制星座图。
当目标数据的重传合并方式为IR合并方式时,可以采用公式(4)确定ACMI的值:
Figure GPA0000266753050000117
其中,K为目标数据的重传次数,1≤k≤K,SNR为物理信道的信噪比,χ为调制星座图。
步骤303、当第一质量值小于质量阈值时,接收端生成携带有NACK的反馈信息。执行步骤305。
其中,质量阈值根据目标数据的编码方式、码块长度和码率中的至少一个确定。
示例的,质量阈值可以为目标数据的符号传输速率。具体的,可以根据码率和符号比特数,采用公式(5)计算目标数据的符号传输速率:
R1=L·Na/Nc (5)
其中,R1为目标数据的符号传输速率,L为目标数据的符号比特数,Na为目标数据的信息比特数,Nc为目标数据被编码后的比特数,Na/Nc为物理信道上传输块大小(TransportBlock Size,TBS)的码率。
示例的,当目标数据的重传合并方式为CC方式时,如果ACMICC<R1,接收端生成携带有NACK的反馈信息。其中,R1为目标数据的符号传输速率,ACMICC为当目标数据的重传合并方式为CC方式时的ACMI。
当目标数据的重传合并方式为IR合并方式时,如果ACMIIR<R1,接收端生成携带有NACK的反馈信息。其中,R1为目标数据的符号传输速率,ACMIIR为当目标数据的重传合并方式为IR合并方式时的ACMI。
步骤304、当第一质量值不小于质量阈值时,接收端生成携带有ACK的反馈信息。执行步骤305。
示例的,当目标数据的重传合并方式为CC方式时,如果ACMICC≥R1,接收端生成携带有ACK的反馈信息。R1为目标数据的符号传输速率,ACMICC为当目标数据的重传合并方式为CC方式时的ACMI。
当目标数据的重传合并方式为IR合并方式时,如果ACMIIR≥R1,接收端生成携带有ACK的反馈信息。R1为目标数据的符号传输速率,ACMIIR为当目标数据的重传合并方式为IR合并方式时的ACMI。
为了进一步提高判断结果的准确性,在另一种可实施方式中,当目标数据的重传合并方式为CC方式时,如果α·ACMICC<R1,接收端生成携带有NACK的反馈信息。如果α·ACMICC≥R1,接收端生成携带有ACK的反馈信息。同样的,当目标数据的重传合并方式为IR合并方式时,如果α·ACMIIR<R1,接收端生成携带有NACK的反馈信息。如果α·ACMIIR≥R1,接收端生成携带有ACK的反馈信息。其中,调整因子α的大小可以根据实际应用来调整,α的默认值为1,α可以略小于1。
需要补充说明的是,步骤303和步骤304无先后顺序,步骤303和步骤304为不同的并列处理方式。在执行了步骤302后,或者执行步骤303,或者执行步骤304。
步骤305、接收端向发送端发送反馈信息。执行步骤306。
接收端生成携带有ACK或NACK的反馈信息之后,将该反馈信息发送至发送端,以便于发送端根据该反馈信息确定是否需要重传目标数据。
示例的,当目标数据的重传合并方式为CC方式时,如果ACMICC<R1,接收端生成携带有NACK的反馈信息,接收端将携带有NACK的反馈信息发送至发送端,发送端根据该反馈信息中的NACK确定需要向接收端重传目标数据。
步骤306、发送端根据反馈信息确定是否需要重传目标数据。
发送端根据反馈信息确定是否需要向接收端重传目标数据。当需要重传目标数据时,发送端将该目标数据再次发送至接收端;当不需要重传目标数据时,发送端向接收端发送新的数据。
本发明实施例中,接收端通过ACMI对接收到的目标数据进行非校验判决,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息。所以接收端每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
综上所述,本发明实施例提供的混合自动重传请求反馈方法,由于接收端能够在数据信息中的目标数据未被校验时,确定目标数据的测量值,并根据该测量值向发送端发送反馈信息,使得发送端能够根据该反馈信息确定是否需要重传目标数据,该测量值为ACMI,相较于现有技术,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息,所以接收端每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
图4是本发明实施例提供的一种混合自动重传请求反馈方法的流程图,该方法可以用于图1-1所示的实施环境。如图4所示,该方法可以包括:
步骤401、发送端向接收端发送数据信息。执行步骤402。
该数据信息包括目标数据。该发送端可以为UE,也可以为BS。当发送端为UE时,接收端为BS;当发送端为BS时,接收端为UE。
步骤402、在数据信息中的目标数据未被校验时,接收端确定目标数据的测量值,该测量值为数据信息的信息统计量。执行步骤403。
测量值用于指示物理信道传输目标数据的可靠度。示例的,该测量值可以为数据信息的信息统计量。
示例的,信息统计量可以为数据信息被解调处理后的信息统计量(即解调软值),或者,信息统计量可以为数据信息被译码处理后的信息统计量(即译码软值)。
现以该信息统计量为数据信息被解调处理后的信息统计量为例进行说明。数据信息被解调处理后的信息统计量也称作对数似然比(L0g-Likelihood Ratio,LLR)解调软值,LLR解调软值采用公式(6)来表示:
Figure GPA0000266753050000141
其中,
Figure GPA0000266753050000142
为比特uk的LLR解调软值,uk为发送端对目标数据进行编码后得到的比特,P(uk=+1|y)表示接收端在接收到比特y后接收到的uk=+1的概率,P(uk=-1|y)表示接收端在接收到比特y后接收到的uk=-1的概率。关于公式(6)可以参考现有技术。
步骤403、接收端根据信息统计量确定目标数据的信息错误率。
示例的,信息错误率为码字错误率或平均比特错误率。其中,平均比特错误率指的是一个传输块内所有比特错误概率的平均值。
当信息错误率为码字错误率时,接收端可以采用公式(7)确定目标数据的码字错误率:
Figure GPA0000266753050000143
其中,Pω为码字错误率,Z为传输的码字长度,1≤k≤Z,
Figure GPA0000266753050000144
为比特uk的LLR解调软值。
当信息错误率为平均比特错误率时,接收端可以采用公式(8)确定目标数据的平均比特错误率:
Figure GPA0000266753050000145
其中,Pb为平均比特错误率,Z为传输的码字长度,1≤k≤Z,
Figure GPA0000266753050000146
为比特uk的LLR解调软值。
步骤404、当信息错误率大于错误率阈值时,接收端生成携带有NACK的反馈信息。执行步骤406。
其中,错误率阈值可以根据目标数据的编码方式、码块长度和码率中的至少一个确定。
此外,错误率阈值也可以根据物理信道上TBS等参数来设置,具体设置过程可以参考现有技术,在此不再赘述。
示例的,当信息错误率为码字错误率时,如果Pω>Pω,t,接收端生成携带有NACK的反馈信息。其中,Pω为码字错误率,Pω,t为预先设置的码字错误率对应的错误率阈值。
当信息错误率为平均比特错误率时,如果Pb>Pb,t,接收端生成携带有NACK的反馈信息。Pb为平均比特错误率,Pb,t为预先设置的平均比特错误率对应的阈值。
步骤405、当信息错误率不大于错误率阈值时,接收端生成携带有ACK的反馈信息。执行步骤406。
当信息错误率为码字错误率时,如果Pω≤Pω,t,接收端生成携带有ACK的反馈信息。其中,Pω为码字错误率,Pω,t为预先设置的码字错误率对应的错误率阈值。
当信息错误率为平均比特错误率时,如果Pb≤Pb,t,接收端生成携带有ACK的反馈信息。其中,Pb为平均比特错误率,Pb,t为预先设置的平均比特错误率对应的错误率阈值。
需要补充说明的是,步骤404和步骤405无先后顺序,步骤404和步骤405为不同的并列处理方式。在执行了步骤403后,或者执行步骤404,或者执行步骤405。
步骤406、接收端向发送端发送反馈信息。执行步骤407。
接收端生成携带有ACK或NACK的反馈信息之后,将该反馈信息发送至发送端,以便于发送端根据该反馈信息确定是否需要重传目标数据。
示例的,当信息错误率为码字错误率时,如果Pω≤Pω,t,接收端生成携带有ACK的反馈信息,接收端将携带有ACK的反馈信息发送至发送端。发送端根据该反馈信息中的ACK确定不需要向接收端重传目标数据,而是向接收端发送新的数据。
步骤407、发送端根据反馈信息确定是否需要重传目标数据。
发送端根据反馈信息确定是否需要向接收端重传目标数据。当需要重传目标数据时,发送端将该目标数据再次发送至接收端;当不需要重传目标数据时,发送端向接收端发送新的数据。
本发明实施例中,接收端通过信息错误率(如码字错误率或平均比特错误率)对接收到的目标数据进行非校验判决。接收端无需对目标数据执行校验处理,再向发送端发送反馈信息,所以接收端每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
综上所述,本发明实施例提供的混合自动重传请求反馈方法,由于接收端能够在数据信息中的目标数据未被校验时,确定目标数据的测量值,并根据该测量值向发送端发送反馈信息,使得发送端能够根据该反馈信息确定是否需要重传目标数据,该测量值为信息错误率,相较于现有技术,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息,所以接收端每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
图5是本发明实施例提供的一种混合自动重传请求反馈方法的流程图,该方法可以用于图1-1所示的实施环境。如图5所示,该方法可以包括:
步骤501、发送端向接收端发送数据信息。执行步骤502。
该数据信息包括目标数据。该发送端可以为UE,也可以为BS。当发送端为UE时,接收端为BS;当发送端为BS时,接收端为UE。
步骤502、在数据信息中的目标数据未被校验时,接收端确定目标数据的测量值,该测量值为物理信道的信干噪比。
测量值用于指示物理信道传输目标数据的可靠度。示例的,该测量值可以为物理信道的信干噪比。
示例的,该信干噪比可以为数据信息被均衡处理前物理信道的信干噪比,或者,该信干噪比可以为数据信息被均衡处理后物理信道的信干噪比。
一方面,当信干噪比为数据信息被均衡处理前物理信道的信干噪比时,接收端可以采用公式(9)~(12)确定该信干噪比。具体的,先采用公式(9)计算信道估计值:
Figure GPA0000266753050000161
其中,
Figure GPA0000266753050000162
为信道估计值,Nc为子载波个数,0≤l≤NC-1,yl为信道估计中导频位置符号,αl为导频符号,
Figure GPA0000266753050000163
为导频符号αl的共轭值。
再采用公式(10)计算物理信道的噪声估计值:
Figure GPA0000266753050000164
其中,
Figure GPA0000266753050000165
为物理信道的噪声估计值,Nc为子载波个数,0≤l≤NC-1,yl为信道估计中导频位置符号,
Figure GPA0000266753050000166
为信道估计值。
接着采用公式(11)计算信道估计模块输出的符号的功率估计值:
Figure GPA0000266753050000167
其中,
Figure GPA0000266753050000168
为符号的功率估计值,Nc为子载波个数,0≤l≤NC-1,yl为信道估计中导频位置符号,
Figure GPA0000266753050000169
为物理信道的噪声估计值。
最后采用公式(12)计算数据信息被均衡处理前物理信道的信干噪比:
Figure GPA00002667530500001610
其中,SINR1为数据信息被均衡处理前物理信道的信干噪比,
Figure GPA00002667530500001611
为符号的功率估计值,
Figure GPA00002667530500001612
为物理信道的噪声估计值。
另一方面,当信干噪比为数据信息被均衡处理后物理信道的信干噪比时,示例的,对于单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)系统来说,接收端可以采用公式(13)计算该信干噪比:
Figure GPA0000266753050000171
其中,SINRSC-FDMA为数据信息被均衡处理后物理信道的信干噪比,ρ为数据信息被均衡处理后时域的等效信道因子。
示例的,对于正交频分复用技术(Orthogonal Frequency DivisionMultiplexing,OFDM)系统来说,接收端可以采用公式(14)计算该信干噪比:
Figure GPA0000266753050000172
其中,SINROFDM为数据信息被均衡处理后物理信道的信干噪比,ω为用于传输数据信息的子载波上的加权系数,H为子载波上的信道因子,Ru为估计的干扰噪声相关矩阵。
步骤503、当信干噪比小于信干噪比阈值时,接收端生成携带有NACK的反馈信息。执行步骤505。
其中,信干噪比阈值根据目标数据的编码方式、码块长度和码率中的至少一个确定。具体的,可以根据信干噪比、调制编码策略(Modulation and Coding Scheme,MCS)表格和误块率(block error rate,BLER)曲线确定信干噪比阈值。现有技术中,在传输目标数据时,通常采用MCS表格记录目标数据的编码方式和码率等参数。该MCS表格对应多个TBS,每个TBS具有一条BLER曲线。接收端根据多条BLER曲线可以设置与MCS表格对应的信干噪比阈值。该信干噪比阈值即为信干噪比(该信干噪比为数据信息被均衡处理前物理信道的信干噪比,或数据信息被均衡处理后物理信道的信干噪比)对应的门限值。关于MCS表格和BLER曲线可以参考现有技术。
示例的,当信干噪比为数据信息被均衡处理前物理信道的信干噪比时,如果SINR1<ThresholdTBS,接收端生成携带有NACK的反馈信息。其中,SINR1为数据信息被均衡处理前物理信道的信干噪比,ThresholdTBS为该信干噪比对应的信干噪比阈值。
当信干噪比为数据信息被均衡处理后物理信道的信干噪比时,以SC-FDMA系统为例,如果SINRSC-FDMA<ThresholdTBS,接收端生成携带有NACK的反馈信息。其中,SINRSC-FDMA为数据信息被均衡处理后物理信道的信干噪比,ThresholdTBS为该信干噪比对应的信干噪比阈值。
步骤504、当信干噪比不小于信干噪比阈值时,接收端生成携带有ACK的反馈信息。执行步骤505。
示例的,当信干噪比为数据信息被均衡处理前物理信道的信干噪比时,如果SINR1≥ThresholdTBS,接收端生成携带有ACK的反馈信息。SINR1为数据信息被均衡处理前物理信道的信干噪比,ThresholdTBS为该信干噪比对应的信干噪比阈值。
当信干噪比为数据信息被均衡处理后物理信道的信干噪比时,以SC-FDMA系统为例,如果SINRSC-FDMA≥ThresholdTBS,接收端生成携带有ACK的反馈信息。其中,SINRSC-FDMA为数据信息被均衡处理前物理信道的信干噪比,ThresholdTBS为该信干噪比对应的信干噪比阈值。
需要补充说明的是,步骤503和步骤504无先后顺序,步骤503和步骤504为不同的并列处理方式。在执行了步骤502后,或者执行步骤503,或者执行步骤504。
步骤505、接收端向发送端发送反馈信息。执行步骤506。
接收端生成携带有ACK或NACK的反馈信息之后,将该反馈信息发送至发送端,以便于发送端根据该反馈信息确定是否需要重传目标数据。
示例的,当信干噪比为数据信息被均衡处理前物理信道的信干噪比时,如果SINR1<ThresholdTBS,接收端生成携带有NACK的反馈信息。发送端根据该反馈信息中的NACK确定需要向接收端重传目标数据。
步骤506、发送端根据反馈信息确定是否需要重传目标数据。
发送端根据反馈信息确定是否需要向接收端重传目标数据。当需要重传目标数据时,发送端将该目标数据再次发送至接收端,当不需要重传目标数据时,发送端向接收端发送新的数据。
本发明实施例中,接收端通过物理信道的信干噪比对接收到的目标数据进行非校验判决,该信干噪比可以为数据信息被均衡处理前物理信道的信干噪比,或数据信息被均衡处理后物理信道的信干噪比。接收端无需对目标数据执行校验处理,再向发送端发送反馈信息,所以接收端每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
综上所述,本发明实施例提供的混合自动重传请求反馈方法,由于接收端能够在数据信息中的目标数据未被校验时,确定目标数据的测量值,并根据该测量值向发送端发送反馈信息,使得发送端能够根据该反馈信息确定是否需要重传目标数据,该测量值为物理信道的信干噪比,相较于现有技术,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息,所以每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
图6是本发明实施例提供的一种混合自动重传请求反馈方法的流程图,该方法可以用于图1-1所示的实施环境。如图6所示,该方法可以包括:
步骤601、发送端向接收端发送数据信息。执行步骤602。
数据信息包括目标数据。该发送端可以为UE,也可以为BS。当发送端为UE时,接收端为BS;当发送端为BS时,接收端为UE。
步骤602、在数据信息中的目标数据未被校验时,接收端确定目标数据的测量值,该测量值为物理信道的信干噪比。执行步骤603。
该测量值用于指示物理信道传输目标数据的可靠度。该测量值可以为物理信道的信干噪比。
示例的,该信干噪比可以为数据信息被均衡处理前物理信道的信干噪比,或数据信息被均衡处理后物理信道的信干噪比。
一方面,当信干噪比为数据信息被均衡处理前物理信道的信干噪比时,接收端可以采用上述公式(9)~(12)确定该信干噪比SINR1
另一方面,当信干噪比为数据信息被均衡处理后物理信道的信干噪比时,示例的,对于SC-FDMA系统来说,接收端可以采用公式(13)计算该信干噪比SINRSC-FDMA;对于OFDM系统来说,接收端可以采用公式(14)计算该信干噪比SINROFDM
步骤603、接收端获取物理信道上TBS。执行步骤604。
接收端获取物理信道上TBS的具体过程可以参考现有技术,本发明实施例对此不再赘述。
步骤604、接收端根据信干噪比确定物理信道的数据传输速率。
示例的,当信干噪比为数据信息被均衡处理前物理信道的信干噪比时,接收端可以采用公式(15)确定物理信道的数据传输速率。
Figure GPA0000266753050000191
其中,Rate为物理信道的数据传输速率,Tsymbol为信道估计模块输出符号的时间长度,W为系统带宽,βmax为最大的普效率,普效率的单位为比特每秒每赫兹(bit/s/Hz),SINR1为数据信息被均衡处理前物理信道的信干噪比,μ为回退因子,βmax和μ均可以自由调整。
步骤605、当TBS小于数据传输速率时,接收端生成携带有NACK的反馈信息。执行步骤607。
示例的,当信干噪比为数据信息被均衡处理前物理信道的信干噪比时,如果TBS<Rate,接收端生成携带有NACK的反馈信息。其中,TBS为物理信道上传输块大小,Rate为物理信道的数据传输速率。
步骤606、当TBS不小于数据传输速率时,接收端生成携带有ACK的反馈信息。执行步骤607。
示例的,当信干噪比为数据信息被均衡处理前物理信道的信干噪比时,如果TBS≥Rate,接收端生成携带有ACK的反馈信息。其中,TBS为物理信道上传输块大小,Rate为物理信道的数据传输速率。
需要补充说明的是,步骤605和步骤606无先后顺序,步骤605和步骤606为不同的并列处理方式。在执行了步骤604后,或者执行步骤605,或者执行步骤606。
步骤607、接收端向发送端发送反馈信息。执行步骤608。
接收端生成携带有ACK或NACK的反馈信息之后,将该反馈信息发送至发送端,以便于发送端根据该反馈信息确定是否需要重传目标数据。
示例的,当信干噪比为数据信息被均衡处理前物理信道的信干噪比时,如果TBS<Rate,接收端生成携带有NACK的反馈信息。发送端根据该反馈信息中的NACK确定需要向接收端重传目标数据。
步骤608、发送端根据反馈信息确定是否需要重传目标数据。
发送端根据反馈信息确定是否需要向接收端重传目标数据。当需要重传目标数据时,发送端将该目标数据再次发送至接收端,当不需要重传目标数据时,发送端向接收端发送新的数据。
本发明实施例中,接收端通过物理信道上TBS和物理信道的信干噪比,对接收到的目标数据进行非校验判决。该信干噪比可以为数据信息被均衡处理前物理信道的信干噪比,或数据信息被均衡处理后物理信道的信干噪比。该方法中,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息,所以接收端每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
需要说明的是,本发明实施例提供的混合自动重传请求反馈方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
综上所述,本发明实施例提供的混合自动重传请求反馈方法,由于接收端能够在数据信息中的目标数据未被校验时,确定目标数据的测量值,并根据该测量值向发送端发送反馈信息,使得发送端能够根据该反馈信息确定是否需要重传目标数据,该测量值为物理信道的信干噪比,相较于现有技术,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息,所以每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
需要补充说明的是,本发明实施例提供的混合自动重传请求反馈方法,可以运用于现有技术中的迭代检测中,比如数据传输过程中的解调迭代,译码迭代等,简化了检测过程,提高了检测结果准确度;也可以用于HARQ合并过程中,HARQ合并指的是重传的数据与历史数据的合并,该方法简化了合并过程,提高了校验准确度,具体可以参考图3-1。另外,本发明实施例对通信系统的制式不做限定。
目前的无线通信系统为了满足低时延业务需求,期望采用更短的TTI,比如5G系统为了降低时延,采用的TTI的长度通常为0.1毫秒,该TTI的长度是LTE系统中TTI的长度的1/10。在低时延业务需求下,需要接收端快速执行HARQ反馈,现有技术中很难进行数据重传,或者只能重传1次数据,直接影响了HARQ增益(HARQ增益指的是对多次独立传输相同的数据产生的解调信息进行合并处理得到的分集增益)。
现有技术中,接收端在接收到发送端发送的数据后,对该数据依次进行译码和CRC,并根据校验结果向发送端发送反馈信息。当该反馈信息携带有NACK时,表示发送端需要重传数据,即需要重新发送上一次的数据。之后,接收端会将重传的数据与历史数据(即上一次发送的数据)进行合并处理,再对合并后的数据进行检测,完成HARQ反馈。接收端完成CRC,向发送端发送反馈信息所需用的时间较长,消耗的TTI较长,导致HARQ周期较长,HARQ进程(HARQ进程用于控制数据传输)较多,很可能就无法满足低时延业务需求。而本发明实施例提供的混合自动重传请求反馈方法,是一种基于非CRC的HARQ重传机制,通过该机制能够快速执行HARQ反馈,进而快速重传数据。该方法能够在低时延业务场景下增加数据重传次数,获取多次的解调信息,对多次的解调信息进行合并,进而获取HARQ增益。该方法满足了低时延业务需求。
下述为本申请的装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
图7是本发明实施例提供的一种混合自动重传请求反馈装置700的结构示意图。该装置用于接收端。示例的,该装置可以通过软件、硬件或者两者的结合实现成为图1-1所示实施环境中的接收端的部分或全部。如图7所示,该装置700包括:
接收模块710,用于接收发送端发送的数据信息,该数据信息包括目标数据。
确定模块720,用于在数据信息中的目标数据未被校验时,确定目标数据的测量值,该测量值用于指示物理信道传输目标数据的可靠度。
生成模块730,用于根据测量值生成反馈信息,该反馈信息携带有ACK或NACK。
发送模块740,用于向发送端发送反馈信息,以便于发送端根据反馈信息确定是否需要重传目标数据。
在一种可实现方式中,测量值为用于指示数据信息被均衡处理后物理信道的信噪比的第一质量值,相应的,生成模块730,用于:
当第一质量值小于质量阈值时,生成携带有NACK的反馈信息;
当第一质量值不小于质量阈值时,生成携带有ACK的反馈信息。
其中,质量阈值根据目标数据的编码方式、码块长度和码率中的至少一个确定。
其中,第一质量值可以为ACMI的值,质量阈值可以为目标数据的符号传输速率,相应的,确定模块720,用于:
确定物理信道的BICM容量;
根据BICM容量和目标数据的重传合并方式,确定ACMI的值。
可选的,目标数据的重传合并方式为CC方式或IR合并方式。
在一种可实现方式中,测量值为数据信息的信息统计量,相应的,生成模块730,用于:
根据信息统计量确定目标数据的信息错误率;
当信息错误率大于错误率阈值时,生成携带有NACK的反馈信息;
当信息错误率不大于错误率阈值时,生成携带有ACK的反馈信息。
其中,错误率阈值根据目标数据的编码方式、码块长度和码率中的至少一个确定。
可选的,信息统计量为数据信息被解调处理后的信息统计量或被译码处理后的信息统计量。
可选的,信息错误率为码字错误率或平均比特错误率。
在一种可实现方式中,测量值为物理信道的信干噪比,相应的,生成模块730,用于:
当信干噪比小于信干噪比阈值时,生成携带有NACK的反馈信息。
当信干噪比不小于信干噪比阈值时,生成携带有ACK的反馈信息。
其中,信干噪比阈值根据目标数据的编码方式、码块长度和码率中的至少一个确定。
可选的,信干噪比阈值可以根据信干噪比、MCS表格和BLER曲线确定信干噪比阈值。
在一种可实现方式中,测量值为物理信道的信干噪比,相应的,生成模块730,用于:
获取物理信道上TBS;
根据信干噪比确定物理信道的数据传输速率;
当TBS小于数据传输速率时,生成携带有NACK的反馈信息;
当TBS不小于数据传输速率时,生成携带有ACK的反馈信息。
可选的,信干噪比为数据信息被均衡处理前物理信道的信干噪比。
此外,图7中各模块的具体工作过程可以参考图2、图3-1、图4、图5或图6所示的实施方式进行说明。如接收模块710用于执行上述实施例中的步骤201,确定模块720用于执行上述实施例中的步骤202,生成模块730用于执行上述实施例中的步骤203,发送模块740用于执行上述实施例中的步骤204。
综上所述,本发明实施例提供的混合自动重传请求反馈装置,由于接收端能够在数据信息中的目标数据未被校验时,确定目标数据的测量值,并根据该测量值向发送端发送反馈信息,使得发送端能够根据该反馈信息确定是否需要重传目标数据,相较于现有技术,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息,所以每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
图8是本发明实施例提供的又一种混合自动重传请求反馈装置800的结构示意图。该装置用于接收端,该接收端可以为图1-1所示实施环境中的接收端。应该理解的是,该混合自动重传请求反馈装置可以具有比图8中所示的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。图8中所示出的各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。现以图8所示的混合自动重传请求反馈装置为例进行具体的说明。如图8所示,该混合自动重传请求反馈装置包括至少一个处理器801、存储器802、通讯模块803、至少一个通信总线804和通讯天线805。该混合自动重传请求反馈装置还包括其他功能性的构件,比如:电池模组、有线/无线充电结构等。通信总线804用于实现这些组件之间的连接通信。存储器802可能包含非易失性固态存储器和/或动力学的非易失性存储设备,如闪速存储器、可转动的磁盘驱动器。通讯模块803可以用于远距通信,如全球移动通信系统(Global System For MobileCommunications,GSM)、码分多址(Code division multiple access,CDMA)、通用分组无线服务(General Packet Radio Service,GPRS)、增强型数据速率GSM演进(Enhanced DataRate for GSM Evolution,EDGE)、3G技术如宽带码分多址(Wideband Code DivisionMultiple Access,WCDMA)、时分同步码分多址(Time Division-Synchronous CodeDivision Multiple Access,TD-SCDMA)、4G技术如LTE、5G技术等。通讯天线805用于接收和发送通讯信号。
具体的,存储器802包含操作系统8021和应用程序8022。操作系统8021包含各种操作系统程序,用于实现基于硬件的各项操作;应用程序8022包含各种应用程序,用于实现各种应用功能,比如目标数据的测量值确定程序和反馈信息生成程序,这些程序能够使接收端在数据信息中的目标数据未被校验时,确定目标数据的测量值,根据测量值生成反馈信息。其中,该测量值用于指示物理信道传输目标数据的可靠度,该反馈信息携带有ACK或NACK。
处理器801通过通信总线804与各个模块和部件通信。处理器801可以执行存储器802中存储的应用程序来实现接收端,使得接收端实现上述混合自动重传请求反馈方法。
本发明实施例提供的混合自动重传请求反馈装置通过上述各个执行模块的配合实现图2、图3-1、图4、图5或图6所示的方法实施例,图7所示的装置实施例中接收端完成的各项功能及步骤。如上文中图7的确定模块720和生成模块730,可以是由处理器801执行存储器802中存储的应用程序来实现;图7的接收模块710和发送模块740可以是由通讯模块803和通讯天线805来实现。
综上所述,本发明实施例提供的混合自动重传请求反馈装置,由于接收端能够在数据信息中的目标数据未被校验时,确定目标数据的测量值,并根据该测量值向发送端发送反馈信息,使得发送端能够根据该反馈信息确定是否需要重传目标数据。相较于现有技术,接收端无需对目标数据执行校验处理,再向发送端发送反馈信息,所以每次发送反馈信息的总时间减少,消耗的TTI更短,因此,能够满足低时延业务需求。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的混合自动重传请求反馈方法和混合自动重传请求反馈装置,可以通过其它的方式实现。例如,以上所描述的混合自动重传请求反馈装置实施例仅仅是示意性的,例如,混合自动重传请求反馈装置中各个模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (22)

1.一种混合自动重传请求反馈方法,其特征在于,用于接收端,所述方法包括:
接收发送端发送的数据信息,所述数据信息包括目标数据;
在所述数据信息中的目标数据未被校验时,确定所述目标数据的测量值,所述测量值用于指示物理信道传输所述目标数据的可靠度;
根据所述测量值生成反馈信息,所述反馈信息携带有肯定应答ACK或否定应答NACK;
向所述发送端发送所述反馈信息,以便于所述发送端根据所述反馈信息确定是否需要重传所述目标数据。
2.根据权利要求1所述的方法,其特征在于,所述测量值为用于指示所述数据信息被均衡处理后所述物理信道的信噪比的第一质量值,所述第一质量值包括累计的条件互信息ACMI的值,所述根据所述测量值生成反馈信息,包括:
当所述第一质量值小于质量阈值时,生成携带有所述NACK的反馈信息;
当所述第一质量值不小于所述质量阈值时,生成携带有所述ACK的反馈信息;
其中,所述质量阈值根据所述目标数据的编码方式、码块长度和码率中的至少一个确定。
3.根据权利要求2所述的方法,其特征在于,所述质量阈值为所述目标数据的符号传输速率,所述确定所述目标数据的测量值,包括:
确定所述物理信道的比特交织编码调制BICM容量;
根据所述BICM容量和所述目标数据的重传合并方式,确定所述ACMI的值。
4.根据权利要求3所述的方法,其特征在于,
所述目标数据的重传合并方式为追加合并CC方式或增量冗余IR合并方式。
5.根据权利要求1所述的方法,其特征在于,所述测量值为所述数据信息的信息统计量,所述根据所述测量值生成反馈信息,包括:
根据所述信息统计量确定所述目标数据的信息错误率;
当所述信息错误率大于错误率阈值时,生成携带有所述NACK的反馈信息;
当所述信息错误率不大于所述错误率阈值时,生成携带有所述ACK的反馈信息;
其中,所述错误率阈值根据所述目标数据的编码方式、码块长度和码率中的至少一个确定。
6.根据权利要求5所述的方法,其特征在于,
所述信息统计量为所述数据信息被解调处理后的信息统计量或被译码处理后的信息统计量。
7.根据权利要求5或6所述的方法,其特征在于,所述信息错误率为码字错误率或平均比特错误率。
8.根据权利要求1所述的方法,其特征在于,所述测量值为所述物理信道的信干噪比,所述根据所述测量值生成反馈信息,包括:
当所述信干噪比小于信干噪比阈值时,生成携带有所述NACK的反馈信息;
当所述信干噪比不小于所述信干噪比阈值时,生成携带有所述ACK的反馈信息;
其中,所述信干噪比阈值根据所述目标数据的编码方式、码块长度和码率中的至少一个确定。
9.根据权利要求8所述的方法,其特征在于,所述信干噪比阈值根据所述信干噪比、调制编码策略MCS表格和误块率BLER曲线确定。
10.根据权利要求1所述的方法,其特征在于,所述测量值为所述物理信道的信干噪比,所述根据所述测量值生成反馈信息,包括:
获取所述物理信道上传输块大小TBS;
根据所述信干噪比确定所述物理信道的数据传输速率;
当所述TBS小于所述数据传输速率时,生成携带有所述NACK的反馈信息;
当所述TBS不小于所述数据传输速率时,生成携带有所述ACK的反馈信息。
11.根据权利要求9或10所述的方法,其特征在于,所述信干噪比为所述数据信息被均衡处理前所述物理信道的信干噪比。
12.一种混合自动重传请求反馈装置,其特征在于,用于接收端,所述装置包括:
接收模块,用于接收发送端发送的数据信息,所述数据信息包括目标数据;
确定模块,用于在所述数据信息中的目标数据未被校验时,确定所述目标数据的测量值,所述测量值用于指示物理信道传输所述目标数据的可靠度;
生成模块,用于根据所述测量值生成反馈信息,所述反馈信息携带有肯定应答ACK或否定应答NACK;
发送模块,用于向所述发送端发送所述反馈信息,以便于所述发送端根据所述反馈信息确定是否需要重传所述目标数据。
13.根据权利要求12所述的装置,其特征在于,所述测量值为用于指示所述数据信息被均衡处理后所述物理信道的信噪比的第一质量值,所述第一质量值包括累计的条件互信息ACMI的值,所述生成模块,用于:
当所述第一质量值小于质量阈值时,生成携带有所述NACK的反馈信息;
当所述第一质量值不小于所述质量阈值时,生成携带有所述ACK的反馈信息;
其中,所述质量阈值根据所述目标数据的编码方式、码块长度和码率中的至少一个确定。
14.根据权利要求13所述的装置,其特征在于,所述质量阈值为所述目标数据的符号传输速率,所述确定模块,用于:
确定所述物理信道的比特交织编码调制BICM容量;
根据所述BICM容量和所述目标数据的重传合并方式,确定所述ACMI的值。
15.根据权利要求14所述的装置,其特征在于,
所述目标数据的重传合并方式为追加合并CC方式或增量冗余IR合并方式。
16.根据权利要求12所述的装置,其特征在于,所述测量值为所述数据信息的信息统计量,所述生成模块,用于:
根据所述信息统计量确定所述目标数据的信息错误率;
当所述信息错误率大于错误率阈值时,生成携带有所述NACK的反馈信息;
当所述信息错误率不大于所述错误率阈值时,生成携带有所述ACK的反馈信息;
其中,所述错误率阈值根据所述目标数据的编码方式、码块长度和码率中的至少一个确定。
17.根据权利要求16所述的装置,其特征在于,
所述信息统计量为所述数据信息被解调处理后的信息统计量或被译码处理后的信息统计量。
18.根据权利要求16或17所述的装置,其特征在于,所述信息错误率为码字错误率或平均比特错误率。
19.根据权利要求12所述的装置,其特征在于,所述测量值为所述物理信道的信干噪比,所述生成模块,用于:
当所述信干噪比小于信干噪比阈值时,生成携带有所述NACK的反馈信息;
当所述信干噪比不小于所述信干噪比阈值时,生成携带有所述ACK的反馈信息;
其中,所述信干噪比阈值根据所述目标数据的编码方式、码块长度和码率中的至少一个确定。
20.根据权利要求19所述的装置,其特征在于,所述信干噪比阈值根据所述信干噪比、调制编码策略MCS表格和误块率BLER曲线确定。
21.根据权利要求12所述的装置,其特征在于,所述测量值为所述物理信道的信干噪比,所述生成模块,用于:
获取所述物理信道上传输块大小TBS;
根据所述信干噪比确定所述物理信道的数据传输速率;
当所述TBS小于所述数据传输速率时,生成携带有所述NACK的反馈信息;
当所述TBS不小于所述数据传输速率时,生成携带有所述ACK的反馈信息。
22.根据权利要求20或21所述的装置,其特征在于,所述信干噪比为所述数据信息被均衡处理前所述物理信道的信干噪比。
CN201680091004.2A 2016-12-07 2016-12-07 混合自动重传请求反馈方法及装置 Active CN109983722B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108893 WO2018103014A1 (zh) 2016-12-07 2016-12-07 混合自动重传请求反馈方法及装置

Publications (2)

Publication Number Publication Date
CN109983722A CN109983722A (zh) 2019-07-05
CN109983722B true CN109983722B (zh) 2020-09-11

Family

ID=62490613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680091004.2A Active CN109983722B (zh) 2016-12-07 2016-12-07 混合自动重传请求反馈方法及装置

Country Status (4)

Country Link
US (1) US10841048B2 (zh)
EP (1) EP3540996B1 (zh)
CN (1) CN109983722B (zh)
WO (1) WO2018103014A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111034290B (zh) * 2017-08-18 2023-08-04 松下电器(美国)知识产权公司 终端和通信方法
US11438795B2 (en) * 2019-06-27 2022-09-06 Qualcomm Incorporated HARQ process identification
US11705949B2 (en) * 2020-04-24 2023-07-18 Qualcomm Incorporated Techniques for channel state information report transmission triggered by negative acknowledgment (NACK)
CN114337941B (zh) * 2021-11-26 2024-02-02 中国航空无线电电子研究所 一种多包合并传输harq系统中的信道资源分配方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1925383A (zh) * 2006-08-15 2007-03-07 华为技术有限公司 一种数据包重传方法及发送装置和重传系统
CN101286825A (zh) * 2007-04-11 2008-10-15 松下电器产业株式会社 实现基于可靠性的混合自动重传的方法、发送端和系统
CN104780029A (zh) * 2014-01-14 2015-07-15 华为技术有限公司 一种混合自动重传请求方法及相关装置
WO2016165131A1 (zh) * 2015-04-17 2016-10-20 华为技术有限公司 一种信息反馈的方法、设备和系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434459B1 (ko) * 2000-06-27 2004-06-05 삼성전자주식회사 이동통신 시스템에서 패킷의 전송 제어방법 및 장치
US7373112B2 (en) * 2003-08-08 2008-05-13 Intel Corporation Trained data transmission for communication systems
US7564867B2 (en) * 2003-08-19 2009-07-21 Alcatel-Lucent Usa Inc. Enhanced uplink data transmission
KR20070083775A (ko) * 2004-10-28 2007-08-24 마츠시타 덴끼 산교 가부시키가이샤 데이터 통신 장치, 데이터 수신 장치, 데이터 송신 장치 및재송 제어 방법
US7933602B1 (en) * 2007-10-02 2011-04-26 Sprint Spectrum L.P. Method and system for controlling the rate of vertical handoff operations
JP4911780B2 (ja) * 2007-12-20 2012-04-04 シャープ株式会社 無線通信システム、受信装置及び受信方法
CN101924617B (zh) * 2009-06-11 2014-07-16 中兴通讯股份有限公司 基于混合自动重传请求的译码合并方法与装置
US9319928B2 (en) * 2012-01-18 2016-04-19 Texas Instruments Incorporated Link adaptation for LTE uplink
US8855253B2 (en) * 2012-02-24 2014-10-07 Nokia Siemens Networks Oy Error prediction for two-stage receivers
JP2013201575A (ja) * 2012-03-23 2013-10-03 Kddi Corp 通信制御装置、通信制御方法および通信制御プログラム
US10523475B2 (en) * 2013-02-05 2019-12-31 Idac Holdings, Inc. Pulse-shaped orthogonal frequency division multiplexing
KR102050745B1 (ko) * 2013-02-28 2019-12-02 삼성전자 주식회사 무선통신 시스템에서 기지국과 단말 사이의 정보 송수신 방법 및 장치
CN103580803B (zh) * 2013-10-15 2016-08-10 中国人民解放军理工大学 基于网络编码的加权广播重传方法
US20150334715A1 (en) * 2014-05-14 2015-11-19 Innovative Sonic Corporation Method and apparatus for supporting for device-to-device (d2d) services in a wireless communication system
US10084578B2 (en) * 2014-11-03 2018-09-25 Qualcomm Incorporated Hybrid automatic repeat/request (HARQ) reliability in wireless communications
US9642154B2 (en) * 2015-01-29 2017-05-02 Motorola Solutions, Inc. Uplink broadband scheduling in the presence of narrowband interference
US9596638B2 (en) * 2015-02-11 2017-03-14 Apple Inc. Apparatus, systems and methods for improved link quality evaluation of mobile cellular systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1925383A (zh) * 2006-08-15 2007-03-07 华为技术有限公司 一种数据包重传方法及发送装置和重传系统
CN101286825A (zh) * 2007-04-11 2008-10-15 松下电器产业株式会社 实现基于可靠性的混合自动重传的方法、发送端和系统
CN104780029A (zh) * 2014-01-14 2015-07-15 华为技术有限公司 一种混合自动重传请求方法及相关装置
WO2016165131A1 (zh) * 2015-04-17 2016-10-20 华为技术有限公司 一种信息反馈的方法、设备和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Determining the Optimum Threshold Values of MCS Levels for Retransmission Packets in HARQ Schemes";Bang Chul Jung, Jae Kyun Kwon,Dan Keun Sung;《The 57th IEEE Semiannual Vehicular Technology Conference》;20030425;全文 *
"基于重传次数优化的HARQ技术研究";王蓉;《中国优秀硕士学位论文全文数据库 信息科技辑》;20150930;全文 *

Also Published As

Publication number Publication date
EP3540996A1 (en) 2019-09-18
WO2018103014A1 (zh) 2018-06-14
EP3540996B1 (en) 2022-10-26
CN109983722A (zh) 2019-07-05
US10841048B2 (en) 2020-11-17
US20190288804A1 (en) 2019-09-19
EP3540996A4 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
EP2274859B1 (en) Pre-emptive acknowledgement for data transmission in a communication system
EP2294745B1 (en) Reducing harq retransmissions using peak power management techniques
US8442168B2 (en) Interference cancellation with a time-sliced architecture
EP1647103B1 (en) Methods and apparatus for channel quality indicator determination
US10841048B2 (en) Hybrid automatic repeat request feedback method and apparatus
EP2416515B1 (en) Forward error correction decoding avoidance based on predicted code block reliability
JP5298648B2 (ja) 送信機及び受信機並びに送信方法及び受信方法
TWI434545B (zh) 用以增加混合自動重複請求(harq)協定之通量的方法及系統
JP5450809B2 (ja) 否定応答誤解釈時の自動再送要求伝送及び条件付き干渉除去を使用した無線通信システムにおける改良された信号受信
CN102546131B (zh) 无线链路信号的更软合并方法和设备
Miura et al. Low latency HARQ method using early retransmission before channel decoding based on superposition coding
US9473217B2 (en) Macro diversity using likelihood values
Gan et al. Instantaneous packet information based on-demand adaptive retransmission for HARQ
CN102833039B (zh) 运用于混合自动重传请求系统的大迭代接收方法
US20070047675A1 (en) Method and apparatus for scaling demodulated symbols for fixed point processing
JP5381405B2 (ja) 無線通信システム、無線通信装置及び制御装置
CN101527620A (zh) 数据重传方法、数据接收方法、通信系统和相关设备
CN113454937B (zh) 在无线通信系统中确定物理上行链路控制信道pucch不连续传输dtx的方法和装置
WO2018103011A1 (zh) 一种数据传输方法及通信设备
CN113170333B (zh) 一种利用信道估计数据检测局部非连续传输(dtx)的方法和装置
CN116827490A (zh) 一种信号检测方法、装置及电子设备
CN114650122A (zh) 物理上行共享信道不连续传输检测方法、装置及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant