CN109978260A - 混合交通流下网联车跟驰行为预测方法 - Google Patents

混合交通流下网联车跟驰行为预测方法 Download PDF

Info

Publication number
CN109978260A
CN109978260A CN201910233245.1A CN201910233245A CN109978260A CN 109978260 A CN109978260 A CN 109978260A CN 201910233245 A CN201910233245 A CN 201910233245A CN 109978260 A CN109978260 A CN 109978260A
Authority
CN
China
Prior art keywords
vehicle
connection vehicle
target network
imm
net
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910233245.1A
Other languages
English (en)
Other versions
CN109978260B (zh
Inventor
刘琳
王硕
李锐
李永福
姜定杰
杨谊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201910233245.1A priority Critical patent/CN109978260B/zh
Publication of CN109978260A publication Critical patent/CN109978260A/zh
Application granted granted Critical
Publication of CN109978260B publication Critical patent/CN109978260B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Signal Processing (AREA)
  • Marketing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Development Economics (AREA)
  • Medical Informatics (AREA)
  • Game Theory and Decision Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本发明涉及一种混合交通流下网联车跟驰行为预测方法,属于智能驾驶领域。通过考虑前导车的行驶状态对于目标网联车的直接影响,以及可通信范围内的网联车的行驶状态对目标网联车的直接影响,确定目标网联车的跟驰状态,所述行驶状态包括速度、位置和加速度。利用本发明的预测方法,在混合交通流环境下,驾驶员不仅可以直接感知到前车的行驶状态,还可以超视距感知可通信范围内的网联车辆的行驶信息,以致能够做出更适宜的驾驶决策,从而提高交通的稳定性和目标网联车的安全性、能效性和舒适性。

Description

混合交通流下网联车跟驰行为预测方法
技术领域
本发明属于智能驾驶领域,涉及一种混合交通流下网联车跟驰行为预测方法。
背景技术
网联技术能够提供全方位的感知,更好地服务于智能驾驶,近年来已成为智能交通发展的新方向,许多世界强国都加大了对网联技术的研究、部署和实施力度。如美国计划从2021年起,所有新出厂的汽车都将安装V2V通信装置。中国也在紧锣密鼓研发车间通信技术LTE-V2X,并预计到2020年,智能道路交通系统(ITS)建设取得积极进展,大城市、高速公路的车用无线通信网络(LTE-V2X)覆盖率达到90%。
因此,随着V2V、LET-V等新技术的部署实施,网联汽车离大规模应用已经为期不远。这也意味着在未来很长一段时间内,必将存在由网联车和非网联车组成的混合交通流。
在复杂的混合交通流环境下,网联车与非网联车随机分布,基于V2V、LTE-V2X等车联网技术的应用效果将受到一定影响,如何确定网联车在混合交通流环境下的跟驰状态,提高交通的稳定性和网联车的安全性、能效性和舒适性,实现“安全、高效、绿色、文明”的智能出行是目前存在的一大问题。
基于上述问题,在考虑车辆之间具有通信功能的前提下,许多学者对网联车的跟驰行为进行了广泛的研究。很多研究仅局限于V2V技术在纯网联车环境中的具体应用,即假设某一车队均具有V2V通信功能,研究车辆的跟驰行为。但是对于网联车的部署初期,即网联车渗透率较低时期,这些理论模型的实用性有待提高。同时这些模型只是考虑可通信范围内的网联车与其相邻车辆的相对行驶状态对目标网联车的间接影响,并且对于可通信范围内的任一辆车Cn,它只是将信息传递给它的后一辆车Cn-1,并依次传递。所以目标网联车的驾驶员不能同时收到可通信范围内网联车的信息,由于人的反应具有一定的滞后性,信息的传递将发生时延,对交通的稳定性有较大的影响。所以能否在考虑可通信范围内的网联车对目标网联车的直接影响的前提下,建立一个混合交通流环境下的网联车的跟驰模型,从而更符合实际情况(网联车与非网联车的混合交通流),减少信息时延的影响(可通信范围内的网联车直接对目标车的驾驶行为影响)是亟待解决的问题。
发明内容
有鉴于此,本发明的目的在于提供一种混合交通流下网联车跟驰行为预测方法,在混合交通流环境下,通过考虑前导车的行驶状态(速度,位置,加速度)对于目标网联车的直接影响,以及可通信范围内的网联车的行驶状态对目标网联车的直接影响,确定目标网联车的跟驰状态,从而提高交通的稳定性和目标网联车的安全性、能效性和舒适性。
为达到上述目的,本发明提供如下技术方案:
一种混合交通流下网联车跟驰行为预测方法,通过考虑前导车的行驶状态对于目标网联车的直接影响,以及可通信范围内的网联车的行驶状态对目标网联车的直接影响,确定目标网联车的跟驰状态,所述行驶状态包括速度、位置和加速度。
进一步,将目标网联车的加速度分为紧邻前车imm行驶状态对目标网联车的直接影响aimm和可通信范围内前向M辆网联车的行驶状态对目标网联车的直接影响af,以及后向N辆网联车的行驶状态对目标网联车的直接影响ab,即目标网联车cn的加速度为:
其中,η,γ,λ,为各个加速度的占比,η+γ+λ=1,simm和Δvimm是目标网联车cn和前车imm的间距和速度差,其中ximm表示前车imm的位置,xCn表示目标网联车cn的位置,limm表示目标网联车的前车imm的车长,vimm表示前车imm的速度,表示目标网联车cn的速度;分别为第Cn+k辆网联车与目标网联车cn的间距和速度差,即其中表示网联车Cn+k的位置,表示网联车Cn+k的车长,表示网联车Cn+k的速度,N为可通信范围内后向网联车的个数,为网联车Cn-i与前车的间距,为网联车Cn-i的期望车间间距;
采用智能驾驶者模型IDM对aimm进行描述:
其中a0为最大加速度,v0为期望速度,δ为自由加速度指数;
s*为最小期望间距,是关于vimm、安全时间间隔T和舒适减速度b0的函数:
引入可变权重系数表示前M辆网联车对目标网联车的影响程度,af表示为:
其中常数Kv,Ka为灵敏度系数,αk,βk为加权系数,是前M辆网联车与目标网联车间距的函数。
进一步,对于加速度ab,着重考虑驾驶员的舒适性,并将加速度的大小作为衡量舒适性的指标,将后向所有网联车作为一个整体,以整体的舒适性作为一个最优函数来考虑,函数的解即为满足条件模型的解ab,包括以下步骤:
首先确定后向任一网联车的加速度根据协同自适应巡航CooperativeAdaptive Cruise Control(CACC)模型,并利用ab进行动态反馈得出:
ξi表示后向的网联车Cn-i的行驶状态对于目标网联车的影响程度,与距离成反比,k0,k1,k2,分别为加速度参数,速度参数,和车间间距参数,为Cn-i网联车的期望车间距,其中Cn-i,imm为Cn-i网联车的前车,τ为驾驶员反应时间。
将整体的舒适性作为一个最优函数,基于此,需满足这样的目标函数:即CACC车组内所有车辆的累计加速度或者减速度平方的和最小,简化形式为进行简化,令其中即求为了满足上述目标函数,对进行求导:
令k3=-k0
所以带入得:
本发明的有益效果在于:利用本发明的预测方法,在混合交通流环境下,驾驶员不仅可以直接感知到前车的行驶状态,还可以超视距感知可通信范围内的网联车辆的行驶信息,以致能够做出更适宜的驾驶决策,从而提高交通的稳定性和目标网联车的安全性、能效性和舒适性。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为本发明所述混合交通流下网联车跟驰行为预测方法的模型示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
在复杂的混合交通流环境下,网联车与非网联车随机分布,基于V2V、LTE-V2X等车联网技术的应用效果将受到一定影响,如何确定网联车在混合交通流环境下的跟驰状态,提高交通的稳定性和网联车的安全性、能效性和舒适性,实现“安全、高效、绿色、文明”的智能出行。
在混合交通流环境下,驾驶员不仅可以直接感知到前车的行驶状态,还可以超视距感知可通信范围内的网联车辆的行驶信息,以致能够做出更适宜的驾驶决策,从而提高交通的稳定性和目标网联车的安全性、能效性和舒适性。因此,本模型将目标网联车的加速度将目标网联车的加速度分为紧邻前车imm行驶状态对目标网联车的直接影响aimm和可通信范围内前向M辆网联车的行驶状态对目标网联车的直接影响af,以及后向N辆网联车的行驶状态对目标网联车的直接影响ab
如图1所示,基于这个思路,为一种混合交通流下网联车跟驰行为预测方法,车辆跟驰模型最重要的是确定车辆的加速度,一般情况下可用车辆加速度模型来描述车辆的跟驰状态,通过考虑前导车的行驶状态对于目标网联车的直接影响,以及可通信范围内的网联车的行驶状态对目标网联车的直接影响,确定目标网联车的跟驰状态,所述行驶状态包括速度、位置和加速度;
将目标网联车的加速度分为紧邻前车imm行驶状态对目标网联车的直接影响aimm和可通信范围内前向M辆网联车的行驶状态对目标网联车的直接影响af,以及后向N辆网联车的行驶状态对目标网联车的直接影响ab,即目标网联车cn的加速度为:
其中,其中,η,γ,λ,为各个加速度的占比,η+γ+λ=1,simm和Δvimm是目标网联车cn和前车imm的间距和速度差,simm=ximm-xCn-limm其中ximm表示前车imm的位置,xCn表示目标网联车cn的位置,limm表示目标网联车的前车imm的车长,vimm表示前车imm的速度,表示目标网联车cn的速度;分别为网联车Cn+k与目标网联车cn的间距和速度差,即其中表示网联车Cn+k的位置,,表示网联车Cn+k的车长,,表示网联车Cn+k的速度,N为可通信范围内后向网联车的个数,为网联车Cn-i与前车的间距,为网联车Cn-i的期望车间间距;;
采用智能驾驶者模型IDM对aimm进行描述:
其中a0为最大加速度,v0为期望速度,δ为自由加速度指数;
s*为最小期望间距,是关于vimm,安全时间间隔T,和舒适减速度b0的函数:
引入可变权重系数表示前M辆网联车的影响程度,af表示为:
其中常数Kv,Ka为灵敏度系数,αk,βk为加权系数,是前M辆网联车与目标网联车间距的函数。
对于加速度ab,着重考虑驾驶员的舒适性,并将加速度的大小作为衡量舒适性的指标,将后向所有网联车作为一个整体,以整体的舒适性作为一个最优函数来考虑,函数的解即为满足条件模型的解ab,包括以下步骤:
首先确定后向任一网联车的加速度根据协同自适应巡航CooperativeAdaptive Cruise Control(CACC)模型,并利用ab进行动态反馈得出:
ξi表示后向的网联车Cn-i的行驶状态对于目标网联车的影响程度,与距离成反比,k0,k1,k2,分别为加速度参数,速度参数,和车间间距参数,为Cn-i网联车的期望车间距,其中Cn-i,tmmm为Cn-i网联车的前车,τ为驾驶员反应时间;
将整体的舒适性作为一个最优函数,基于此,需满足这样的目标函数:即CACC车组内所有车辆的累计加速度或者减速度平方的和最小,简化形式为进行简化,令其中即求
为了满足上述目标函数,对进行求导:
令k3=-k0
所以带入得:
利用本发明的预测方法,在混合交通流环境下,驾驶员不仅可以直接感知到前车的行驶状态,还可以超视距感知可通信范围内的网联车辆的行驶信息,以致能够做出更适宜的驾驶决策,从而提高交通的稳定性和目标网联车的安全性、能效性和舒适性。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

1.一种混合交通流下网联车跟驰行为预测方法,其特征在于:通过考虑前导车的行驶状态对于目标网联车的直接影响,以及可通信范围内的网联车的行驶状态对目标网联车的直接影响,确定目标网联车的跟驰状态,所述行驶状态包括速度、位置和加速度。
2.根据权利要求1所述的混合交通流下网联车跟驰行为预测方法,其特征在于:将目标网联车的加速度分为紧邻前车imm行驶状态对目标网联车的直接影响aimm和可通信范围内前向M辆网联车的行驶状态对目标网联车的直接影响af,以及后向N辆网联车的行驶状态对目标网联车的直接影响ab,即目标网联车cn的加速度为:
其中,其中,η,γ,λ,为各个加速度的占比,η+γ+λ=1,simm和Δvimm是目标网联车cn和前车imm的间距和速度差,simm=ximm-xCn-limm其中ximm表示前车imm的位置,xCn表示目标网联车cn的位置,limm表示目标网联车的前车imm的车长,vimm表示前车imm的速度,表示目标网联车cn的速度;分别为网联车Cn+k与目标网联车cn的间距和速度差,即 其中表示网联车Cn+k的位置,表示网联车Cn+k的车长,表示网联车Cn+k的速度,N为可通信范围内后向网联车的个数,为网联车Cn-i与前车的间距,为网联车Cn-i的期望车间间距;
采用智能驾驶者模型IDM对aimm进行描述:
其中a0为最大加速度,v0为期望速度,δ为自由加速度指数;
s*为最小期望间距,是关于vimm,安全时间间隔T,和舒适减速度b0的函数:
引入可变权重系数表示前M辆网联车对目标网联车的影响程度,af表示为:
其中常数Kv,Ka为灵敏度系数,αk,βk为加权系数,是前M辆网联车与目标网联车间距的函数。
3.根据权利要求2所述的混合交通流下网联车跟驰行为预测方法,其特征在于:对于加速度ab,着重考虑驾驶员的舒适性,并将加速度的大小作为衡量舒适性的指标,将后向所有网联车作为一个整体,以整体的舒适性作为一个最优函数来考虑,函数的解即为满足条件模型的解ab,包括以下步骤:
首先确定后向任一网联车的加速度根据协同自适应巡航CACC模型,并利用ab进行动态反馈得出:
ξi表示后向的网联车Cn-i的行驶状态对于目标网联车的影响程度,与距离成反比,k0,k1,k2,分别为加速度参数,速度参数,和车间间距参数,为Cn-i网联车的期望车间距,其中Cn-i,imm为Cn-i网联车的前车,τ为驾驶员反应时间,
将整体的舒适性作为一个最优函数,并满足目标函数:CACC车组内所有车辆的累计加速度或者减速度平方的和最小,简化形式为进行简化,令其中即求为了满足上述目标函数,对进行求导:
令k3=-k0
所以带入得:
CN201910233245.1A 2019-03-26 2019-03-26 混合交通流下网联车跟驰行为预测方法 Active CN109978260B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910233245.1A CN109978260B (zh) 2019-03-26 2019-03-26 混合交通流下网联车跟驰行为预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910233245.1A CN109978260B (zh) 2019-03-26 2019-03-26 混合交通流下网联车跟驰行为预测方法

Publications (2)

Publication Number Publication Date
CN109978260A true CN109978260A (zh) 2019-07-05
CN109978260B CN109978260B (zh) 2023-02-21

Family

ID=67080757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910233245.1A Active CN109978260B (zh) 2019-03-26 2019-03-26 混合交通流下网联车跟驰行为预测方法

Country Status (1)

Country Link
CN (1) CN109978260B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110750877A (zh) * 2019-09-27 2020-02-04 西安理工大学 一种Apollo平台下的车辆跟驰行为预测方法
CN110979309A (zh) * 2019-12-23 2020-04-10 北京航空航天大学 一种考虑驾驶人感知误差的车辆跟驰模型稳定性控制方法
CN111284489A (zh) * 2020-03-24 2020-06-16 吉林大学 智能网联汽车随机预测巡航控制系统
CN111445015A (zh) * 2020-06-15 2020-07-24 之江实验室 一种智能网联环境下非网联车位置估计方法
CN112562316A (zh) * 2020-11-04 2021-03-26 中山大学 一种基于acp理论的智能网联车平行驾驶控制方法
CN112907937A (zh) * 2021-02-03 2021-06-04 湖南大学 一种考虑后车信息的混合车辆队列控制方法及系统
CN113066282A (zh) * 2021-02-26 2021-07-02 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种面向混行环境下车辆跟驰耦合关系建模方法及系统
CN113391548A (zh) * 2021-04-27 2021-09-14 同济大学 一种用于网联车自动驾驶的交叉口引导方法、装置及介质
CN115424433A (zh) * 2022-07-21 2022-12-02 重庆大学 一种多车型的混合交通中网联车辆跟驰行为刻画方法
CN116030632A (zh) * 2023-02-10 2023-04-28 西南交通大学 一种面向混合交通流的性能指标计算方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2969175B1 (ja) * 1998-06-02 1999-11-02 建設省土木研究所長 走行支援道路システムの合流制御システムにおける本線交通流予測方法
WO2017177969A1 (en) * 2016-04-15 2017-10-19 Podway Ltd System for and method of maximizing utilization of a closed transport system in an on-demand network
US20190102689A1 (en) * 2017-10-03 2019-04-04 International Business Machines Corporation Monitoring vehicular operation risk using sensing devices
CN110570049A (zh) * 2019-09-19 2019-12-13 西南交通大学 一种高速公路混合交通流汇流协同优化底层控制方法
CN113222382A (zh) * 2021-04-30 2021-08-06 河海大学 一种车联网环境异质车流换道影响路段通过能力确定方法
CN113920740A (zh) * 2021-11-16 2022-01-11 重庆邮电大学 一种联合车辆关联度和博弈论的车路协同驾驶系统及方法
CN114495499A (zh) * 2022-01-21 2022-05-13 东南大学 一种多目标智能网联车辆协同优化控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2969175B1 (ja) * 1998-06-02 1999-11-02 建設省土木研究所長 走行支援道路システムの合流制御システムにおける本線交通流予測方法
WO2017177969A1 (en) * 2016-04-15 2017-10-19 Podway Ltd System for and method of maximizing utilization of a closed transport system in an on-demand network
US20190102689A1 (en) * 2017-10-03 2019-04-04 International Business Machines Corporation Monitoring vehicular operation risk using sensing devices
CN110570049A (zh) * 2019-09-19 2019-12-13 西南交通大学 一种高速公路混合交通流汇流协同优化底层控制方法
CN113222382A (zh) * 2021-04-30 2021-08-06 河海大学 一种车联网环境异质车流换道影响路段通过能力确定方法
CN113920740A (zh) * 2021-11-16 2022-01-11 重庆邮电大学 一种联合车辆关联度和博弈论的车路协同驾驶系统及方法
CN114495499A (zh) * 2022-01-21 2022-05-13 东南大学 一种多目标智能网联车辆协同优化控制方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GOWRI ASAITHAMBI ET AL.: "Analysis and Modeling of Vehicle Following Behavior in Mixed Traffic Conditions", 《TRANSPORTATION RESEARCH PROCEDIA》 *
LIU, L ET AL.: "Car-following behavior of connected vehicles in a mixed traffic flow: modeling and stability analysis", 《2018 IEEE 8TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER)》 *
WEN-XING ZHU ET AL.: "Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model", 《PHYSICA A》 *
YUNZE WANG ET AL.: "A Car-Following Model for Mixed Traffic Flows in Intelligent Connected Vehicle Environment Considering Driver Response Characteristics", 《SUSTAINABILITY》 *
秦严严等: "混有自适应巡航控制汽车的交通流通行能力分析", 《山东科技大学学报(自然科学版)》 *
邱志军等: "网联环境下高速公路辅助驾驶车辆编队评估", 《中国公路学报》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110750877B (zh) * 2019-09-27 2024-05-03 西安理工大学 一种Apollo平台下的车辆跟驰行为预测方法
CN110750877A (zh) * 2019-09-27 2020-02-04 西安理工大学 一种Apollo平台下的车辆跟驰行为预测方法
CN110979309A (zh) * 2019-12-23 2020-04-10 北京航空航天大学 一种考虑驾驶人感知误差的车辆跟驰模型稳定性控制方法
CN111284489A (zh) * 2020-03-24 2020-06-16 吉林大学 智能网联汽车随机预测巡航控制系统
CN111445015A (zh) * 2020-06-15 2020-07-24 之江实验室 一种智能网联环境下非网联车位置估计方法
CN112562316A (zh) * 2020-11-04 2021-03-26 中山大学 一种基于acp理论的智能网联车平行驾驶控制方法
CN112907937A (zh) * 2021-02-03 2021-06-04 湖南大学 一种考虑后车信息的混合车辆队列控制方法及系统
CN113066282A (zh) * 2021-02-26 2021-07-02 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种面向混行环境下车辆跟驰耦合关系建模方法及系统
CN113391548A (zh) * 2021-04-27 2021-09-14 同济大学 一种用于网联车自动驾驶的交叉口引导方法、装置及介质
CN115424433A (zh) * 2022-07-21 2022-12-02 重庆大学 一种多车型的混合交通中网联车辆跟驰行为刻画方法
CN115424433B (zh) * 2022-07-21 2023-10-03 重庆大学 一种多车型的混合交通中网联车辆跟驰行为刻画方法
CN116030632A (zh) * 2023-02-10 2023-04-28 西南交通大学 一种面向混合交通流的性能指标计算方法及系统
CN116030632B (zh) * 2023-02-10 2023-06-09 西南交通大学 一种面向混合交通流的性能指标计算方法及系统

Also Published As

Publication number Publication date
CN109978260B (zh) 2023-02-21

Similar Documents

Publication Publication Date Title
CN109978260A (zh) 混合交通流下网联车跟驰行为预测方法
Ersal et al. Connected and automated road vehicles: state of the art and future challenges
Zhang et al. Vehicular communication networks in the automated driving era
CN108595823A (zh) 一种联合驾驶风格和博弈理论的自主车换道策略的计算方法
CN112233413B (zh) 一种面向智能网联车辆的多车道时空轨迹优化方法
CN102737503B (zh) 一种车联网环境下公交车动态调度的通信连通性分析方法
CN114495527B (zh) 一种混合交通环境下网联交叉口车路协同优化方法及系统
CN107798861A (zh) 一种车辆协作式编队行驶方法及系统
Liu et al. Enhancing the fuel-economy of V2I-assisted autonomous driving: A reinforcement learning approach
CN109003467A (zh) 一种防止车辆碰撞的方法、装置及系统
CN109410561A (zh) 一种高速路车辆匀异质编队行驶控制方法
CN105577771B (zh) 一种基于车车通信和车路通信的车辆协同驾驶方法
DE102017107794A1 (de) Fahrzeugpriorisierungssystem
CN105930625A (zh) Q学习结合神经网络的智能驾驶行为决策系统的设计方法
CN103956045A (zh) 利用半实物仿真技术手段实现车队协同驾驶的方法
Li et al. Vehicle-mounted base station for connected and autonomous vehicles: Opportunities and challenges
CN110782650B (zh) 基于自适应事件触发的车流分布式协同编队控制方法
CN108944943A (zh) 一种基于风险动态平衡理论的弯道跟驰模型
CN108694841A (zh) 一种基于v2x技术的智能车辆通行路口红绿灯方法
CN104106104A (zh) 用于基于集体的导航的方法和设备
CN110363986A (zh) 一种基于车车博弈与行车势场力的集中式合流区车辆速度优化方法
CN112099349A (zh) 一种车辆队列最优协同控制方法
CN110992676A (zh) 一种道路通行能力与网联自动驾驶车当量系数估计方法
CN103956066B (zh) 多车协同快速通过道路瓶颈口的方法
CN111899509A (zh) 一种基于车路信息耦合的智能网联汽车状态向量计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant