CN109977902A - 一种基于深度学习的建筑施工车辆识别方法 - Google Patents

一种基于深度学习的建筑施工车辆识别方法 Download PDF

Info

Publication number
CN109977902A
CN109977902A CN201910267984.2A CN201910267984A CN109977902A CN 109977902 A CN109977902 A CN 109977902A CN 201910267984 A CN201910267984 A CN 201910267984A CN 109977902 A CN109977902 A CN 109977902A
Authority
CN
China
Prior art keywords
model
convolutional neural
neural networks
construction
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910267984.2A
Other languages
English (en)
Inventor
刘西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910267984.2A priority Critical patent/CN109977902A/zh
Publication of CN109977902A publication Critical patent/CN109977902A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/584Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于深度学习的建筑施工车辆识别方法,步骤为:1、采集施工现场所使用每个施工车辆种类的数据,并进行分类;2、根据采集每个种类施工车辆的数据并建立相对应种类的施工车辆数据库;3、将每个种类施工车辆数据库中的数据集进行转化,搭建相应的多标签卷积神经网络模型,并对该模型进行参数初始化;4、训练多标签卷积神经网络模型;5、判断训练后的多标签卷积神经网络模型是否满足要求;6、对已经训练好的多标签卷积神经网络模型进行测试评估;7、判断测试评估后是否满足标准;8、输出最终的多标签卷积神经网络模型与参数,该模型与参数运用到后续对施工车辆进行识别。本发明识别准确率高,更方便施工现场的施工车辆管理。

Description

一种基于深度学习的建筑施工车辆识别方法
技术领域
本发明属于建筑施工技术领域,特别涉及一种基于深度学习的建筑施工车辆识别方法。
背景技术
建筑行业就是一个围绕建筑的设计、施工、装修、管理而展开的行业。城市建筑是构成城市的一个重要部分,而建筑不仅仅只是一个供人们住宿休息,娱乐消遣的人工作品,它从很大的方面上与我们的经济、文化和生活相关联。因此建筑施工行业显得尤为重要。
在建筑施工过程中会运用到很多特殊的施工车辆,比如吊车、铲车、货车、混凝土搅拌车、物料运输车等诸多种类的施工车辆。这些施工车辆区别于普通家用型车辆,现有的模型都无法直接用来对于施工车辆进行识别,无法更换的对于施工现场的各种种类的施工车辆进行管理。
发明内容
发明目的:针对现有技术中存在的问题,提供一种识别准确率高,并且更方便对于后续施工现场的施工车辆进行管理的基于深度学习的建筑施工车辆识别方法。
技术方案:为解决上述技术问题,本发明提供一种基于深度学习的建筑施工车辆识别方法,包括如下步骤:
(1)采集施工现场所使用每个施工车辆种类的数据,并进行分类;
(2)根据采集每个种类施工车辆的数据并建立相对应种类的施工车辆数据库;
(3)将每个种类施工车辆数据库中的数据集进行转化,搭建相应的多标签卷积神经网络模型,并对该模型进行参数初始化;
(4)训练多标签卷积神经网络模型;
(5)判断训练后的多标签卷积神经网络模型是否满足要求,如果满足则进入步骤(6),如果不满足要求则返回步骤(4);
(6)对已经训练好的多标签卷积神经网络模型进行测试评估;
(7)判断测试评估后是否满足标准,如果满足则进入步骤(8)如果不满足则补入数据更新模型返回步骤(3);
(8)输出最终的多标签卷积神经网络模型与参数,将该模型与参数运用到后续对施工车辆进行识别。
进一步的,所述步骤(4)中训练多标签卷积神经网络模型的具体步骤如下:
(4.1)初始化模型各个参数;
(4.2)读取当前步数的训练图像到网络层;
(4.3)让图像流在网络模型中进行前馈传导,获得训练误差;根据当前网络参数值,从第一个卷积层开始不断对读取的各个图像依次进行卷积和池化运算操作,直到网络输出各分类器的训练损失值;
(4.4)判断步骤(4.3)中输出的训练损失值是否达到训练损失值要求或达到设定步数,如果达到则进入步骤(4.5),如果没有达到则根据网络损失值,则按照误差反向传播的方法,获得各层参数的变化量,并进行相应层的参数更新用于下一步数的前馈运算,最后返回步骤(4.2);
(4.5)输出网络参数模型。
进一步的,所述步骤(4.1)中初始化模型各个参数的方法包括常量初始化和高斯分布初始化。
进一步的,所述步骤(6)中对已经训练好的多标签卷积神经网络模型进行测试评估的具体步骤如下:
(6.1)将网络参数模型加载到多标签卷积神经网络模型中;
(6.2)读取当前步数的测试图像到网络层;
(6.3)将当前步数的测试图像依次按照模型结构和训练得到的参数,进行卷积等前馈运算操作,通过分类器部分输出各个图像对应的预测类别,并输出预测类别;
(6.4)判断当前步数是否达到遍历全部测试集图像所需要的最少步数,如果达到则输出当前保存的所有图像的标签数据并进入步骤(6.5);如果没有达到则返回步骤(6.2);
(6.5)将前面记录的所有测试集图像的预测类别与各个图像对应的实际类别进行对比,统计获得该模型参数下的测试集分类准确率。
进一步的,所述步骤(3)中的多标签卷积神经网络模型由数据输入、特征提取和分类器三个部分组成。
与现有技术相比,本发明的优点在于:
本发明能够针对建筑施工过程中会运用到很多特殊的施工车辆,进行分类,并构建每个种类施工车辆的学习模型,运用这些学习模型可以直接用来对于施工车辆进行识别,更好的对施工现场的各种种类的施工车辆进行管理。且识别率更加精确,误差低。
具体实施方式
下面结合具体实施方式,进一步阐明本发明。本发明描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的其他实施例,都属于本发明所保护的范围。
本发明提供一种基于深度学习的建筑施工车辆识别方法,包括如下步骤:
(1)采集施工现场所使用每个施工车辆种类的数据,并进行分类;
(2)根据采集每个种类施工车辆的数据并建立相对应种类的施工车辆数据库;
(3)将每个种类施工车辆数据库中的数据集进行转化,搭建相应的多标签卷积神经网络模型,并对该模型进行参数初始化;
(4)训练多标签卷积神经网络模型;
(5)判断训练后的多标签卷积神经网络模型是否满足要求,如果满足则进入步骤(6),如果不满足要求则返回步骤(4);
(6)对已经训练好的多标签卷积神经网络模型进行测试评估;
(7)判断测试评估后是否满足标准,如果满足则进入步骤(8)如果不满足则补入数据更新模型返回步骤(3);
(8)输出最终的多标签卷积神经网络模型与参数,将该模型与参数运用到后续对施工车辆进行识别。
进一步的,所述步骤(4)中训练多标签卷积神经网络模型的具体步骤如下:
(4.1)初始化模型各个参数;
(4.2)读取当前步数的训练图像到网络层;
(4.3)让图像流在网络模型中进行前馈传导,获得训练误差;根据当前网络参数值,从第一个卷积层开始不断对读取的各个图像依次进行卷积和池化运算操作,直到网络输出各分类器的训练损失值;
(4.4)判断步骤(4.3)中输出的训练损失值是否达到训练损失值要求或达到设定步数,如果达到则进入步骤(4.5),如果没有达到则根据网络损失值,则按照误差反向传播的方法,获得各层参数的变化量,并进行相应层的参数更新用于下一步数的前馈运算,最后返回步骤(4.2);
(4.5)输出网络参数模型。
进一步的,所述步骤(4.1)中初始化模型各个参数的方法包括常量初始化和高斯分布初始化。
进一步的,所述步骤(6)中对已经训练好的多标签卷积神经网络模型进行测试评估的具体步骤如下:
(6.1)将网络参数模型加载到多标签卷积神经网络模型中;
(6.2)读取当前步数的测试图像到网络层;
(6.3)将当前步数的测试图像依次按照模型结构和训练得到的参数,进行卷积等前馈运算操作,通过分类器部分输出各个图像对应的预测类别,并输出预测类别;
(6.4)判断当前步数是否达到遍历全部测试集图像所需要的最少步数,如果达到则输出当前保存的所有图像的标签数据并进入步骤(6.5);如果没有达到则返回步骤(6.2);
(6.5)将前面记录的所有测试集图像的预测类别与各个图像对应的实际类别进行对比,统计获得该模型参数下的测试集分类准确率。
进一步的,所述步骤(3)中的多标签卷积神经网络模型由数据输入、特征提取和分类器三个部分组成。

Claims (5)

1.一种基于深度学习的建筑施工车辆识别方法,其特征在于,包括如下步骤:
采集施工现场所使用每个施工车辆种类的数据,并进行分类;
根据采集每个种类施工车辆的数据并建立相对应种类的施工车辆数据库;
将每个种类施工车辆数据库中的数据集进行转化,搭建相应的多标签卷积神经网络模型,并对该模型进行参数初始化;
训练多标签卷积神经网络模型;
判断训练后的多标签卷积神经网络模型是否满足要求,如果满足则进入步骤(6),如果不满足要求则返回步骤(4);
对已经训练好的多标签卷积神经网络模型进行测试评估;
判断测试评估后是否满足标准,如果满足则进入步骤(8)如果不满足则补入数据更新模型返回步骤(3);
输出最终的多标签卷积神经网络模型与参数,将该模型与参数运用到后续对施工车辆进行识别。
2.根据权利要求1所述的一种基于深度学习的建筑施工车辆识别方法,其特征在于,所述步骤(4)中训练多标签卷积神经网络模型的具体步骤如下:
(4.1)初始化模型各个参数;
(4.2)读取当前步数的训练图像到网络层;
(4.3)让图像流在网络模型中进行前馈传导,获得训练误差;根据当前网络参数值,从第一个卷积层开始不断对读取的各个图像依次进行卷积和池化运算操作,直到网络输出各分类器的训练损失值;
(4.4)判断步骤(4.3)中输出的训练损失值是否达到训练损失值要求或达到设定步数,如果达到则进入步骤(4.5),如果没有达到则根据网络损失值,则按照误差反向传播的方法,获得各层参数的变化量,并进行相应层的参数更新用于下一步数的前馈运算,最后返回步骤(4.2);
(4.5)输出网络参数模型。
3.根据权利要求1所述的一种基于深度学习的建筑施工车辆识别方法,其特征在于,所述步骤(4.1)中初始化模型各个参数的方法包括常量初始化和高斯分布初始化。
4.根据权利要求1所述的一种基于深度学习的建筑施工车辆识别方法,其特征在于,所述步骤(6)中对已经训练好的多标签卷积神经网络模型进行测试评估的具体步骤如下:
(6.1)将网络参数模型加载到多标签卷积神经网络模型中;
(6.2)读取当前步数的测试图像到网络层;
(6.3)将当前步数的测试图像依次按照模型结构和训练得到的参数,进行卷积等前馈运算操作,通过分类器部分输出各个图像对应的预测类别,并输出预测类别;
(6.4)判断当前步数是否达到遍历全部测试集图像所需要的最少步数,如果达到则输出当前保存的所有图像的标签数据并进入步骤(6.5);如果没有达到则返回步骤(6.2);
(6.5)将前面记录的所有测试集图像的预测类别与各个图像对应的实际类别进行对比,统计获得该模型参数下的测试集分类准确率。
5.根据权利要求1所述的一种基于深度学习的建筑施工车辆识别方法,其特征在于,所述步骤(3)中的多标签卷积神经网络模型由数据输入、特征提取和分类器三个部分组成。
CN201910267984.2A 2019-04-03 2019-04-03 一种基于深度学习的建筑施工车辆识别方法 Withdrawn CN109977902A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910267984.2A CN109977902A (zh) 2019-04-03 2019-04-03 一种基于深度学习的建筑施工车辆识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910267984.2A CN109977902A (zh) 2019-04-03 2019-04-03 一种基于深度学习的建筑施工车辆识别方法

Publications (1)

Publication Number Publication Date
CN109977902A true CN109977902A (zh) 2019-07-05

Family

ID=67082927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910267984.2A Withdrawn CN109977902A (zh) 2019-04-03 2019-04-03 一种基于深度学习的建筑施工车辆识别方法

Country Status (1)

Country Link
CN (1) CN109977902A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111160131A (zh) * 2019-12-12 2020-05-15 哈尔滨工业大学 基于计算机视觉的施工车辆精准智能辨识方法
CN113037646A (zh) * 2021-03-04 2021-06-25 西南交通大学 一种基于深度学习的列车通信网络流量识别方法
CN113674244A (zh) * 2021-08-20 2021-11-19 中汽创智科技有限公司 一种图像检测方法、装置、存储介质和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108009525A (zh) * 2017-12-25 2018-05-08 北京航空航天大学 一种基于卷积神经网络的无人机对地特定目标识别方法
CN108664924A (zh) * 2018-05-10 2018-10-16 东南大学 一种基于卷积神经网络的多标签物体识别方法
CN108921054A (zh) * 2018-06-15 2018-11-30 华中科技大学 一种基于语义分割的行人多属性识别方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108009525A (zh) * 2017-12-25 2018-05-08 北京航空航天大学 一种基于卷积神经网络的无人机对地特定目标识别方法
CN108664924A (zh) * 2018-05-10 2018-10-16 东南大学 一种基于卷积神经网络的多标签物体识别方法
CN108921054A (zh) * 2018-06-15 2018-11-30 华中科技大学 一种基于语义分割的行人多属性识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
董超俊等: "多层混沌神经网络及其在交通量预测中的应用", 《系统仿真学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111160131A (zh) * 2019-12-12 2020-05-15 哈尔滨工业大学 基于计算机视觉的施工车辆精准智能辨识方法
CN113037646A (zh) * 2021-03-04 2021-06-25 西南交通大学 一种基于深度学习的列车通信网络流量识别方法
CN113674244A (zh) * 2021-08-20 2021-11-19 中汽创智科技有限公司 一种图像检测方法、装置、存储介质和电子设备
CN113674244B (zh) * 2021-08-20 2024-05-28 中汽创智科技有限公司 一种图像检测方法、装置、存储介质和电子设备

Similar Documents

Publication Publication Date Title
CN107066445B (zh) 一种属性情感词向量的深度学习方法
CN108549926A (zh) 一种用于精细化识别车辆属性的深度神经网络及训练方法
CN109977902A (zh) 一种基于深度学习的建筑施工车辆识别方法
CN110020682A (zh) 一种基于小样本学习的注意力机制关系对比网络模型方法
CN109272500B (zh) 基于自适应卷积神经网络的织物分类方法
CN108288035A (zh) 基于深度学习的多通道图像特征融合的人体动作识别方法
CN108596277A (zh) 一种车辆身份识别方法、装置和存储介质
CN112101363B (zh) 基于空洞残差和注意力机制的全卷积语义分割系统及方法
CN110458077A (zh) 一种车辆颜色识别方法及系统
CN106845890A (zh) 一种基于视频监控的仓储监控方法及装置
CN110009095A (zh) 基于深度特征压缩卷积网络的道路行驶区域高效分割方法
CN103888541B (zh) 一种融合拓扑势和谱聚类的社区发现方法及系统
CN104063686B (zh) 作物叶部病害图像交互式诊断系统与方法
CN109671102A (zh) 一种基于深度特征融合卷积神经网络的综合式目标跟踪方法
CN112685504B (zh) 一种面向生产过程的分布式迁移图学习方法
CN109684922A (zh) 一种基于卷积神经网络的多模型对成品菜的识别方法
CN110533389A (zh) 项目造价的确定方法及装置
CN109214298A (zh) 一种基于深度卷积网络的亚洲女性颜值评分模型方法
CN101482876A (zh) 基于权重的链接多属性的实体识别方法
CN109784408A (zh) 一种边缘端的嵌入式时间序列决策树分类方法及系统
CN115761240B (zh) 一种混沌反向传播图神经网络的图像语义分割方法及装置
CN112418360A (zh) 卷积神经网络的训练方法、行人属性识别方法及相关设备
CN111161244A (zh) 基于FCN+FC-WXGBoost的工业产品表面缺陷检测方法
CN114758178B (zh) 一种基于深度学习的轮毂实时分类及其气阀孔定位方法
CN108229435A (zh) 一种用于行人识别的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190705