CN109975135A - 一种高时空分辨率的材料动态损伤演化实验方法 - Google Patents

一种高时空分辨率的材料动态损伤演化实验方法 Download PDF

Info

Publication number
CN109975135A
CN109975135A CN201910183950.5A CN201910183950A CN109975135A CN 109975135 A CN109975135 A CN 109975135A CN 201910183950 A CN201910183950 A CN 201910183950A CN 109975135 A CN109975135 A CN 109975135A
Authority
CN
China
Prior art keywords
wave
sample
film flying
taper
rarefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910183950.5A
Other languages
English (en)
Other versions
CN109975135B (zh
Inventor
蒋招绣
王永刚
谢普初
陈伟
刘东升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201910183950.5A priority Critical patent/CN109975135B/zh
Publication of CN109975135A publication Critical patent/CN109975135A/zh
Application granted granted Critical
Publication of CN109975135B publication Critical patent/CN109975135B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种高时空分辨率的材料动态损伤演化实验方法,特点是控制飞片撞击锥形试样的大头端面,撞击后,向飞片和锥形试样的大头面分别产生飞片冲击压缩波和试样冲击压缩波,试样压缩波波阵面到达锥形试样的锥面时斜反射形成试样稀疏波,同时,飞片稀疏波在锥形试样内以平面波的形式向小头端方向传播,并形成飞片稀疏波波阵面,试样稀疏波与飞片稀疏波波阵面在锥形试样内相遇产生拉伸应力并发生损伤,随着时间的推移,最终形成平行于锥面母线的层裂损伤面;优点是可获取单次加载后不同冲量条件下的材料动态拉伸损伤破坏的信息,具有高时空分辨率的特征,有利于层裂强度判据理论的研究和试样内部细观损伤演化物理图像信息的考察。

Description

一种高时空分辨率的材料动态损伤演化实验方法
技术领域
本发明涉及爆炸与冲击动力学领域中,对材料在冲击载荷作用下的性能研究,尤其涉及一种高时空分辨率的材料动态损伤演化实验方法。
背景技术
冲击载荷作用下,材料中往往出现不同程度的损伤甚至断裂,其中反射卸载波(稀疏波)所致的层裂是宏观上常见的一种典型的拉伸断裂方式。其中,一维应变条件下的动态拉伸损伤或断裂,是一种较为简单应力状态的动态拉伸断裂行为,且在实验上也比较容易实现,同时,它还包含材料在冲击波作用下拉伸断裂过程丰富的动态损伤演化内容。另一方面,一维应变下动态拉伸断裂实验中所采用的分析技术也比较容易实现,包括:采用全光纤激光位移干涉系统(DISAR)对试样的自由面速度粒子速度进行测量,通过自由面速度剖面的分析获得材料在一维应变下的层裂强度;通过光学电镜、扫描电镜、背光散射电镜等仪器,对软回收的试样进行微细观观测和表征分析,进一步探索材料在动载荷下的细观损伤演化。因此,人们在强动载荷下对材料损伤与断裂机理的认识过程中,一直把一维应变下层裂问题作为首要的研究对象。
但是材料在强动态载荷下的损伤演化及层裂强度不仅与本征材料相关,还与拉伸应力波的幅值、拉伸应变率等外载荷条件密切相关。目前,强动载荷下材料的损伤演化或层裂强度的研究,通常以一维应变下平板撞击层裂实验作为研究对象,实验中虽能实现对拉伸应力波的幅值、拉伸应变率或持续时间影响的研究,但单次加载实验只能获取一种拉伸应力幅值及脉宽持续时间的信息,而试样内部的损伤是由多次拉伸的结果形成的,因此,在样品回收中由于只能获取单一的冲量演化损伤与模糊的损伤分布信息,其具有低时空分辨率的特征,不利于层裂强度判据理论的研究和试样内部细观损伤演化物理图像信息的考察。
发明内容
本发明所要解决的技术问题是提供一种高时空分辨率的材料动态损伤演化实验方法,其可在单次加载实验中获取不同冲量条件下的材料动态拉伸损伤破坏的信息,具有高时空分辨率的特征,有利于层裂强度判据理论的研究和试样内部细观损伤演化物理图像信息的考察。
本发明解决上述技术问题所采用的技术方案为:一种高时空分辨率的材料动态损伤演化实验方法,包括以下具体步骤:
(1)、取锥形试样并固定,然后将全光纤激光干涉测速仪中的多个测速探头沿锥形试样的锥面方向依次间隔固定,并使测速探头与锥形试样的锥面相垂直;
(2)、控制飞片撞击锥形试样的大头端面;
(3)、撞击后,向飞片和锥形试样的大头面分别产生一个冲击压缩波,即飞片冲击压缩波和试样冲击压缩波,试样冲击压缩波在锥形试样内以平面波的形式向小头端方向传播,并形成试样压缩波波阵面,试样压缩波波阵面到达锥形试样的锥面时斜反射形成试样稀疏波,同时,飞片冲击压缩波到达飞片自由面时反射形成飞片稀疏波,飞片稀疏波在锥形试样内以平面波的形式向小头端方向传播,并形成飞片稀疏波波阵面,由于飞片稀疏波波阵面和试样压缩波波阵面在锥形试样内非同步传播,使得试样稀疏波与飞片稀疏波波阵面在锥形试样内相遇产生拉伸应力,当拉伸应力产生的冲量足够大时,在试样稀疏波与飞片稀疏波波阵面相遇的位置处产生损伤,随着时间的推移,沿锥形试样的小头端方向飞片稀疏波波阵面连续地与试样稀疏波产生拉伸应力,且单次加载拉伸应力脉宽与大小沿着锥形试样的锥面母线向小头端方向逐渐增大,使得损伤连续地沿着与锥面母线相平行的方向向小头端蔓延且损伤程度逐渐加大,最终形成平行于锥面母线的层裂损伤面;
(4)、同时,撞击后,测速探头对锥形试样的锥面上的自由面粒子速度进行测量,用于后续的材料层裂强度分析。
进一步地,所述的锥形试样的形状为圆锥体。
与现有技术相比,本发明的优点是对经本方法实验后的锥形试样回收进行细观分析,以及测速探头对锥形试样的锥面上的自由面粒子速度进行测量,可获取单次加载后不同冲量条件下的材料动态拉伸损伤破坏的信息,具有高时空分辨率的特征,有利于层裂强度判据理论的研究和试样内部细观损伤演化物理图像信息的考察;而且整个实验实施较为方便,结构简单。
附图说明
图1为本发明的飞片与锥形试样的撞击示意图;
图2(a)、(b)、(c)为飞片撞击后锥形试样的损伤演化原理示意图;
图3为锥形试样内沿锥面母线方向在损伤区域内的三个采样点;
图4为锥形试样内三个采样点所产生的单次加载拉伸应力脉宽与大小沿锥面母线向小头端方向的变化示意图;
图5为本发明的锥形试样在单次加载后所形成的层裂损伤面的有限元仿真示意图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
如图所示,一种高时空分辨率的材料动态损伤演化实验方法,包括以下具体步骤:
(1)、取圆锥体形状的锥形试样1并固定,然后将全光纤激光干涉测速仪(图中未显示)中的多个测速探头2沿锥形试样1的锥面方向依次间隔固定,并使测速探头2与锥形试样1的锥面相垂直;
(2)、控制飞片3撞击锥形试样1的大头端面;
(3)、撞击后,向飞片3和锥形试样1的大头面分别产生一个冲击压缩波,即飞片冲击压缩波3-1和试样冲击压缩波1-1,试样冲击压缩波1-1在锥形试样1内以平面波的形式向小头端方向传播,并形成试样压缩波波阵面1-2,试样压缩波波阵面1-2到达锥形试样1的锥面时斜反射形成试样稀疏波1-3,同时,飞片冲击压缩波3-1到达飞片自由面时反射形成飞片稀疏波3-2,飞片稀疏波3-2在锥形试样1内以平面波的形式向小头端方向传播,并形成飞片稀疏波波阵面3-3,由于飞片稀疏波波阵面3-3和试样压缩波波阵面1-2在锥形试样1内非同步传播,使得试样稀疏波1-3与飞片稀疏波波阵面3-3在锥形试样1内相遇产生拉伸应力,当拉伸应力产生的冲量足够大时,在试样稀疏波1-3与飞片稀疏波波阵面3-3相遇的位置处产生损伤1-4,随着时间的推移,沿锥形试样1的小头端方向飞片稀疏波波阵面3-3连续地与试样稀疏波1-3产生拉伸应力,且单次加载拉伸应力脉宽与大小沿着锥形试样1的锥面母线向小头端方向逐渐增大,如图4所示,使得损伤连续地沿着与锥面母线相平行的方向向小头端蔓延且损伤程度逐渐加大,最终形成平行于锥面母线的层裂损伤面1-5;
(4)、同时,撞击后,测速探头2对锥形试样1的锥面上的自由面粒子速度进行测量,用于后续的材料层裂强度分析。

Claims (2)

1.一种高时空分辨率的材料动态损伤演化实验方法,其特征在于包括以下具体步骤:
(1)、取锥形试样并固定,然后将全光纤激光干涉测速仪中的多个测速探头沿锥形试样的锥面方向依次间隔固定,并使测速探头与锥形试样的锥面相垂直;
(2)、控制飞片撞击锥形试样的大头端面;
(3)、撞击后,向飞片和锥形试样的大头面分别产生一个冲击压缩波,即飞片冲击压缩波和试样冲击压缩波,试样冲击压缩波在锥形试样内以平面波的形式向小头端方向传播,并形成试样压缩波波阵面,试样压缩波波阵面到达锥形试样的锥面时斜反射形成试样稀疏波,同时,飞片冲击压缩波到达飞片自由面时反射形成飞片稀疏波,飞片稀疏波在锥形试样内以平面波的形式向小头端方向传播,并形成飞片稀疏波波阵面,由于飞片稀疏波波阵面和试样压缩波波阵面在锥形试样内非同步传播,使得试样稀疏波与飞片稀疏波波阵面在锥形试样内相遇产生拉伸应力,当拉伸应力产生的冲量足够大时,在试样稀疏波与飞片稀疏波波阵面相遇的位置处产生损伤,随着时间的推移,沿锥形试样的小头端方向飞片稀疏波波阵面连续地与试样稀疏波产生拉伸应力,且单次加载拉伸应力脉宽与大小沿着锥形试样的锥面母线向小头端方向逐渐增大,使得损伤连续地沿着与锥面母线相平行的方向向小头端蔓延且损伤程度逐渐加大,最终形成平行于锥面母线的层裂损伤面;
(4)、同时,撞击后,测速探头对锥形试样的锥面上的自由面粒子速度进行测量,用于后续的材料层裂强度分析。
2.如权利要求1所述的一种高时空分辨率的材料动态损伤演化实验方法,其特征在于所述的锥形试样的形状为圆锥体。
CN201910183950.5A 2019-03-12 2019-03-12 一种高时空分辨率的材料动态损伤演化实验方法 Active CN109975135B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910183950.5A CN109975135B (zh) 2019-03-12 2019-03-12 一种高时空分辨率的材料动态损伤演化实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910183950.5A CN109975135B (zh) 2019-03-12 2019-03-12 一种高时空分辨率的材料动态损伤演化实验方法

Publications (2)

Publication Number Publication Date
CN109975135A true CN109975135A (zh) 2019-07-05
CN109975135B CN109975135B (zh) 2021-11-26

Family

ID=67078526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910183950.5A Active CN109975135B (zh) 2019-03-12 2019-03-12 一种高时空分辨率的材料动态损伤演化实验方法

Country Status (1)

Country Link
CN (1) CN109975135B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110987593A (zh) * 2019-12-13 2020-04-10 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种考虑冲击压缩损伤影响的钢纤维混凝土层裂强度算法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0519045B1 (en) * 1990-12-31 1996-09-11 Cornell Research Foundation Non-destructive materials testing apparatus and technique for use in the field
CN102507346A (zh) * 2011-09-28 2012-06-20 中国工程物理研究院流体物理研究所 材料动态拉伸断裂实验方法
CN202947939U (zh) * 2012-12-05 2013-05-22 北京理工大学 一种撞击等效水下爆炸冲击加载实验测试装置系统
CN105954121A (zh) * 2016-04-26 2016-09-21 中国工程物理研究院流体物理研究所 以拉伸应力持续时间为变量的实验方法以及冲击实验装置
CN109283071A (zh) * 2018-10-30 2019-01-29 济南大学 一种cfrp低速冲击损伤样本低试验代价获取方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0519045B1 (en) * 1990-12-31 1996-09-11 Cornell Research Foundation Non-destructive materials testing apparatus and technique for use in the field
CN102507346A (zh) * 2011-09-28 2012-06-20 中国工程物理研究院流体物理研究所 材料动态拉伸断裂实验方法
CN202947939U (zh) * 2012-12-05 2013-05-22 北京理工大学 一种撞击等效水下爆炸冲击加载实验测试装置系统
CN105954121A (zh) * 2016-04-26 2016-09-21 中国工程物理研究院流体物理研究所 以拉伸应力持续时间为变量的实验方法以及冲击实验装置
CN109283071A (zh) * 2018-10-30 2019-01-29 济南大学 一种cfrp低速冲击损伤样本低试验代价获取方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
H.D. ESPINOSA 等: "A Novel Fluid Structure Interaction Experiment to Investigate Deformation of Structural Elements Subjected to Impulsive Loading", 《EXPERIMENTAL MECHANICS》 *
P. CHEVRIER 等: "Spall fracture: Mechanical and microstructural aspects", 《ENGINEERING FRACTURE MECHANICS 》 *
严家佳 等: "一种传感器结构对水中爆炸冲击波影响的数值模拟研究", 《爆破器材》 *
胡昌明 等: "不同应变率下45钢的层裂研究", 《实验力学》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110987593A (zh) * 2019-12-13 2020-04-10 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种考虑冲击压缩损伤影响的钢纤维混凝土层裂强度算法
CN110987593B (zh) * 2019-12-13 2022-05-20 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种考虑冲击压缩损伤影响的钢纤维混凝土层裂强度算法

Also Published As

Publication number Publication date
CN109975135B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
Liu et al. A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission
Prosser et al. Advanced waveform-based acoustic emission detection of matrix cracking in composites
Zhao et al. Detection and monitoring of delamination in composite laminates using ultrasonic guided wave
Whittingham et al. The response of composite structures with pre-stress subject to low velocity impact damage
US20090000382A1 (en) Non-contact acousto-thermal method and apparatus for detecting incipient damage in materials
Cao et al. Tensile behavior of polycarbonate over a wide range of strain rates
Petersan et al. Cracks in rubber under tension exceed the shear wave speed
Sachse et al. Quantitative acoustic emission and failure mechanics of composite materials
Song et al. Improved Kolsky tension bar for high-rate tensile characterization of materials
Guo et al. Dynamic mode-I crack-propagation in a carbon/epoxy composite
CN105954120B (zh) 以动态拉伸应变率为单一变量的动态损伤实验方法
CN204718885U (zh) 材料微观力学性能双轴拉伸-疲劳测试系统
Huang et al. Dynamic response of circular composite laminates subjected to underwater impulsive loading
Tzibula et al. Dynamic tension of ductile polymers: Experimentation and modelling
CN109975135A (zh) 一种高时空分辨率的材料动态损伤演化实验方法
CN105954121B (zh) 应用于以拉伸应力持续时间为变量的实验方法的冲击实验装置
Xie et al. Experimental investigation of high velocity impact response of CFRP laminates subjected to flyer plate impact
Fatt et al. High-speed testing and material modeling of unfilled styrene butadiene vulcanizates at impact rates
Xu et al. Application of split Hopkinson tension bar technique to the study of dynamic fracture properties of materials
Zhang et al. Modal identification experimental investigations and calculation method for biaxial tensioned membranes
Thomas et al. Experimental investigation of the influence of dynamic multiaxial transverse loading on ultrahigh molecular weight polyethylene single fiber failure
Lasn et al. Comparison of laminate stiffness as measured by three experimental methods
Deschanel et al. Mechanical response and fracture dynamics of polymeric foams
Kruszka et al. New applications of the Hopkinson pressure bar technique to determining dynamic bahaviour of materials
Kimberley et al. A miniature tensile kolsky bar for thin film testing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190705

Assignee: Ningbo Science and Technology Innovation Association

Assignor: Ningbo University

Contract record no.: X2023980033633

Denomination of invention: An Experimental Method for Dynamic Damage Evolution of Materials with High Spatiotemporal Resolution

Granted publication date: 20211126

License type: Common License

Record date: 20230317