CN109959918B - Solid body positioning method and device and computer storage medium - Google Patents

Solid body positioning method and device and computer storage medium Download PDF

Info

Publication number
CN109959918B
CN109959918B CN201910134391.9A CN201910134391A CN109959918B CN 109959918 B CN109959918 B CN 109959918B CN 201910134391 A CN201910134391 A CN 201910134391A CN 109959918 B CN109959918 B CN 109959918B
Authority
CN
China
Prior art keywords
estimator
solid body
anchor node
information
target solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910134391.9A
Other languages
Chinese (zh)
Other versions
CN109959918A (en
Inventor
郝本建
牛晓雷
王林林
李赞
安迪
段玉锦
许猷
林明铨
黄小倩
王汉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201910134391.9A priority Critical patent/CN109959918B/en
Publication of CN109959918A publication Critical patent/CN109959918A/en
Application granted granted Critical
Publication of CN109959918B publication Critical patent/CN109959918B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明实施例公开了一种固态体定位的方法、装置及计算机存储介质;该方法可以包括:基于分布于目标固态体上的传感器确定所述目标固态体的方向信息与位置信息;获取分布在所述目标固态体周围的锚节点的噪声协方差信息以及测量向量;其中,所述锚节点包括具有位置误差的锚节点;根据所述目标固态体的方向信息与位置信息以及所述锚节点的噪声协方差信息和所述测量向量构造估计量,并获取所述估计量的对数似然函数;基于所述估计量的对数似然函数,按照设定的最大似然估计算法策略获取所述估计量的最大似然解。

Figure 201910134391

Embodiments of the present invention disclose a method, a device, and a computer storage medium for locating a solid-state body; the method may include: determining direction information and position information of the target solid-state body based on sensors distributed on the target solid-state body; Noise covariance information and measurement vector of anchor nodes around the target solid body; wherein, the anchor nodes include anchor nodes with position errors; according to the direction information and position information of the target solid body and the anchor nodes The noise covariance information and the measurement vector construct an estimator, and obtain the log-likelihood function of the estimator; based on the log-likelihood function of the estimator, obtain the estimator according to the set maximum likelihood estimation algorithm strategy. maximum likelihood solution for the estimator.

Figure 201910134391

Description

一种固态体定位的方法、装置及计算机存储介质A method, device and computer storage medium for positioning a solid state

技术领域technical field

本发明涉及信号处理技术领域,尤其涉及一种固态体定位的方法、装置及计算机存储介质。The present invention relates to the technical field of signal processing, and in particular, to a method, a device and a computer storage medium for positioning a solid state.

背景技术Background technique

有源定位技术因其有效性一直是业内的关注焦点,该技术包括声纳定位,雷达定位,麦克风阵列定位和目前出现的无线传感器网络(WSNs,Wireless Sensors Networks)定位等技术。传统的有源定位技术通常较感兴趣的目标视为一个点源,从而该目标的位置可以由三维(3D)的单点位置或二维(2D)位置区域定义。然而,在许多定位应用过程中,需要将感兴趣的目标作为一个变形为零或小到可以忽略不计得固态体;并且在固态体上,任何已给定的两点之间的距离是不可忽略的;从而出现了固态体定位(RBL,Rigid BodyLocalization)技术。Active positioning technology has always been the focus of attention in the industry because of its effectiveness. This technology includes sonar positioning, radar positioning, microphone array positioning and the current wireless sensor network (WSNs, Wireless Sensors Networks) positioning technology. Traditional active localization techniques usually treat the target of interest as a point source, so that the position of the target can be defined by a three-dimensional (3D) single-point position or a two-dimensional (2D) position area. However, in many positioning applications, the target of interest needs to be treated as a solid body with zero or negligible deformation; and on a solid body, the distance between any given two points is non-negligible So there is a solid body localization (RBL, Rigid BodyLocalization) technology.

在常规的RBL技术中,静止的固态体可以使用设置于该固态体中的传感器和周围的一些地标信息(也可称为锚节点)之间的时间或距离测量方法进行精确定位;因此,固态体的精确位置估计十分依赖锚节点的位置精度。但是通常情况下,随着锚节点的位置误差,会导致固态体定位精度的降低,因此,需要针对有误差的锚节点,实现对固态体位置的准确估计。In conventional RBL technology, a stationary solid body can be precisely positioned using a time or distance measurement method between a sensor placed in the solid body and some surrounding landmark information (also called anchor nodes); therefore, a solid state The precise location estimation of the body is very dependent on the location accuracy of the anchor nodes. However, in general, with the position error of the anchor node, the positioning accuracy of the solid body will be reduced. Therefore, it is necessary to accurately estimate the position of the solid body for the anchor node with error.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本发明实施例期望提供一种固态体定位的方法、装置及计算机存储介质;在锚节点位置出现误差的情况下,能够准确地对固态体位置进行估计。In view of this, the embodiments of the present invention are expected to provide a method, an apparatus, and a computer storage medium for positioning a solid body; in the case of an error in the position of an anchor node, the position of the solid body can be accurately estimated.

本发明的技术方案是这样实现的:The technical scheme of the present invention is realized as follows:

第一方面,本发明实施例提出了一种固态体定位的方法,所述方法包括:In a first aspect, an embodiment of the present invention provides a method for positioning a solid body, the method comprising:

基于分布于目标固态体上的传感器确定所述目标固态体的方向信息与位置信息;Determine the direction information and position information of the target solid body based on the sensors distributed on the target solid body;

获取分布在所述目标固态体周围的锚节点的噪声协方差信息以及测量向量;其中,所述锚节点包括具有位置误差的锚节点;Acquiring noise covariance information and measurement vectors of anchor nodes distributed around the target solid body; wherein the anchor nodes include anchor nodes with position errors;

根据所述目标固态体的方向信息与位置信息以及所述锚节点的噪声协方差信息和所述测量向量构造估计量,并获取所述估计量的对数似然函数;其中,所述估计量包括所述目标固态体的方向估计量与位置估计量,以及所述锚节点的位置估计量;An estimator is constructed according to the direction information and position information of the target solid body, the noise covariance information of the anchor node and the measurement vector, and the log-likelihood function of the estimator is obtained; wherein, the estimator is Including the direction estimator and the position estimator of the target solid body, and the position estimator of the anchor node;

基于所述估计量的对数似然函数,按照设定的最大似然估计算法策略获取所述估计量的最大似然解;其中,所述估计量的最大似然解包括所述目标固态体的方向估计值与位置估计值,以及所述锚节点的位置估计值。Based on the log-likelihood function of the estimator, obtain the maximum likelihood solution of the estimator according to the set maximum likelihood estimation algorithm strategy; wherein, the maximum likelihood solution of the estimator includes the target solid body The direction estimate and position estimate of , and the position estimate of the anchor node.

第二方面,本发明实施例提出了一种固态体定位的装置,所述装置包括:确定部分,获取部分,构造部分和估计部分;其中,In a second aspect, an embodiment of the present invention provides an apparatus for positioning a solid body, the apparatus includes: a determination part, an acquisition part, a construction part and an estimation part; wherein,

所述确定部分,配置为基于分布于目标固态体上的传感器确定所述目标固态体的方向信息与位置信息;The determining part is configured to determine the direction information and position information of the target solid body based on the sensors distributed on the target solid body;

所述获取部分,配置为获取分布在所述目标固态体周围的锚节点的噪声协方差信息以及测量向量;其中,所述锚节点包括具有位置误差的锚节点;The acquisition part is configured to acquire noise covariance information and measurement vectors of anchor nodes distributed around the target solid body; wherein, the anchor nodes include anchor nodes with position errors;

所述构造部分,配置为根据所述目标固态体的方向信息与位置信息以及所述锚节点的噪声协方差信息和所述测量向量构造估计量,并获取所述估计量的对数似然函数;其中,所述估计量包括所述目标固态体的方向估计量与位置估计量,以及所述锚节点的位置估计量;The construction part is configured to construct an estimator according to the direction information and position information of the target solid body, the noise covariance information of the anchor node and the measurement vector, and obtain a log-likelihood function of the estimator ; Wherein, the estimator includes the direction estimator and the position estimator of the target solid body, and the position estimator of the anchor node;

所述估计部分,配置为基于所述估计量的对数似然函数,按照设定的最大似然估计算法策略获取所述估计量的最大似然解;其中,所述估计量的最大似然解包括所述目标固态体的方向估计值与位置估计值,以及所述锚节点的位置估计值。The estimation part is configured to obtain the maximum likelihood solution of the estimator according to the set maximum likelihood estimation algorithm strategy based on the log-likelihood function of the estimator; wherein, the maximum likelihood of the estimator is The solution includes the orientation estimate and position estimate of the target solid body, and the position estimate of the anchor node.

第三方面,本发明实施例提出了一种固态体定位的装置,所述装置包括:通信接口,存储器和处理器;其中,所述通信接口,用于在与其他外部网元之间进行收发信息过程中,信号的接收和发送;In a third aspect, an embodiment of the present invention provides an apparatus for positioning a solid-state body, the apparatus includes: a communication interface, a memory, and a processor; wherein, the communication interface is used for sending and receiving with other external network elements In the information process, the reception and transmission of signals;

所述存储器,用于存储能够在所述处理器上运行的计算机程序;the memory for storing a computer program executable on the processor;

所述处理器,用于在运行所述计算机程序时,执行第一方面所述固态体定位的方法步骤。The processor is configured to, when running the computer program, execute the steps of the method for locating the solid state body of the first aspect.

第四方面,本发明实施例提出了一种计算机存储介质,其特征在于,所述计算机存储介质存储有固态体定位的程序,所述固态体定位的程序被至少一个处理器执行时实现第一方面所述固态体定位的方法步骤。In a fourth aspect, an embodiment of the present invention provides a computer storage medium, characterized in that the computer storage medium stores a program for locating a solid-state body, and the program for locating a solid-state body when executed by at least one processor implements the first The method steps of solid body localization of the aspect.

本发明实施例提供了一种固态体定位的方法、装置及计算机存储介质;通过最大似然估计算法对目标固态体的方向和位置以及具有位置误差的锚节点的位置进行联合估计,不仅解决了联合估计中所存在的非线性约束优化问题。而且还能够在锚节点位置出现误差的情况下,准确地对固态体位置进行估计。The embodiments of the present invention provide a method, a device and a computer storage medium for locating a solid body; the maximum likelihood estimation algorithm is used to jointly estimate the direction and position of the target solid body and the position of an anchor node with a position error, which not only solves the problem of Nonlinear Constrained Optimization Problems Existing in Joint Estimation. Moreover, the position of the solid body can be accurately estimated in the case of errors in the position of the anchor node.

附图说明Description of drawings

图1为本发明实施例提出的一种固态体定位的方法流程示意图;FIG. 1 is a schematic flowchart of a method for positioning a solid body according to an embodiment of the present invention;

图2为本发明实施例提出的锚节点位置A的修正性能示意图;FIG. 2 is a schematic diagram of the correction performance of the anchor node position A proposed by an embodiment of the present invention;

图3为本发明实施例提出的旋转角度q的估计精度影响情况示意图;3 is a schematic diagram of the influence of the estimation accuracy of the rotation angle q proposed by an embodiment of the present invention;

图4为本发明实施例提出的平移矢量t的估计精度影响情况示意图;4 is a schematic diagram of the influence of the estimation accuracy of the translation vector t proposed in an embodiment of the present invention;

图5为本发明实施例提出的锚节点位置A的估计效果示意图;5 is a schematic diagram of an estimation effect of the anchor node position A proposed by an embodiment of the present invention;

图6为本发明实施例提出的旋转角度q的估计效果示意图;6 is a schematic diagram of an estimation effect of a rotation angle q proposed by an embodiment of the present invention;

图7为本发明实施例提出的平移矢量t的估计效果示意图;7 is a schematic diagram of an estimation effect of the translation vector t proposed by an embodiment of the present invention;

图8为本发明实施例提出的一种固态体定位装置组成示意图;8 is a schematic diagram of the composition of a solid-state body positioning device proposed in an embodiment of the present invention;

图9为本发明实施例提出的另一种固态体定位装置组成示意图;9 is a schematic diagram of the composition of another solid-state body positioning device proposed in an embodiment of the present invention;

图10为本发明实施例提供的一种固态体定位装置的具体硬件结构示意图。FIG. 10 is a schematic diagram of a specific hardware structure of a solid-state body positioning device according to an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention.

固态体定位目前能够广泛地应用于无人驾驶汽车、机器人系统、水下汽车、船舶、无人机、轨道卫星、宇宙飞船和许多其他领域,在这些应用领域中,不仅仅需要估计固态体的绝对位置,还需要精确确定其方向,在航天航空、航海航向、无人驾驶汽车方向和机器人系统或工业设备倾斜和消费设备等领域中,确定固态体方向可以被称为测向。以一辆无人驾驶汽车为例,无人驾驶汽车作为一个固态体不仅有运动还有转弯,因此对于基本控制、操纵和安全保证来说确定固态体的方向是必要的。针对固态体定位的常规方案中,尽管位置和方向是密切相关的,但仍然被分别对待。Solid state localization can now be widely used in driverless cars, robotic systems, underwater vehicles, ships, drones, orbiting satellites, spacecraft, and many other applications where it is not only necessary to estimate the Absolute position, but also its orientation needs to be precisely determined. In fields such as aerospace, marine heading, driverless car orientation and robotic systems or industrial equipment tilt and consumer equipment, determining the orientation of a solid body can be called direction finding. Taking a driverless car as an example, the driverless car as a solid body not only moves but also turns, so it is necessary to determine the direction of the solid body for basic control, manipulation and safety assurance. In conventional approaches to localization of solid bodies, although position and orientation are closely related, they are still treated separately.

举例来说,某些常规方案是在固态体上安装若干传感器,对无线传感器网络(在本发明实施例中,可以由一些被简单称为锚节点的地标组成的)使用距离测量(或时间测量)共同确定其方向和位置。而在制造固态体时,虽然固态体的绝对位置是未知的,但是固态体上安装的传感器的拓扑结构或传感器的相对位置是可以测量的,因此,就能够估计固态体的方向和绝对位置。对于固态体来说,固态体的方向表示为一个旋转矩阵(或旋转角度向量),固态体的绝对位置表示为一个平移向量。而对旋转矩阵(或旋转角度向量)和平移向量进行联合估计可以被认为是一个非线性约束优化问题,因为旋转矩阵(或旋转角度向量)和平移向量与距离测量是非线性相关的,并且彼此之间是紧密联系的。此外,旋转矩阵并不是一个自由变量,它必须属于特殊正交群,这意味着它的元素必须满足二维情况下的平方约束和三维情况下立方约束。针对上述问题,本发明实施例期望能够通过最大似然估计(MLE,Maximum Likelihood Estimate)来进行解决。For example, some conventional solutions are to install several sensors on a solid body, and use distance measurement (or time measurement) for the wireless sensor network (in this embodiment of the present invention, it may be composed of some landmarks simply called anchor nodes). ) together to determine its orientation and location. When manufacturing a solid body, although the absolute position of the solid body is unknown, the topology of the sensors mounted on the solid body or the relative position of the sensors can be measured, so the orientation and absolute position of the solid body can be estimated. For solid bodies, the orientation of the solid body is represented as a rotation matrix (or rotation angle vector), and the absolute position of the solid body is represented as a translation vector. The joint estimation of the rotation matrix (or rotation angle vector) and translation vector can be considered as a nonlinear constrained optimization problem, because the rotation matrix (or rotation angle vector) and translation vector are nonlinearly related to the distance measurement, and they are related to each other. are closely linked. Furthermore, the rotation matrix is not a free variable, it must belong to a special orthogonal group, which means that its elements must satisfy the square constraint in the two-dimensional case and the cubic constraint in the three-dimensional case. In view of the above problems, the embodiments of the present invention are expected to be able to solve the problem through maximum likelihood estimation (MLE, Maximum Likelihood Estimate).

基于此,参见图1,其示出了本发明实施例提供的一种固态体定位的方法,可以包括:Based on this, referring to FIG. 1 , which shows a method for positioning a solid body provided by an embodiment of the present invention, which may include:

S101:基于分布于目标固态体上的传感器确定所述目标固态体的方向信息与位置信息;S101: Determine direction information and position information of the target solid body based on sensors distributed on the target solid body;

S102:获取分布在所述目标固态体周围的锚节点的噪声协方差信息以及测量向量;其中,所述锚节点包括具有位置误差的锚节点;S102: Acquire noise covariance information and measurement vectors of anchor nodes distributed around the target solid body; wherein, the anchor nodes include anchor nodes with position errors;

S103:根据所述目标固态体的方向信息与位置信息以及所述锚节点的噪声协方差信息和所述测量向量构造估计量,并获取所述估计量的对数似然函数;其中,所述估计量包括所述目标固态体的方向估计量与位置估计量,以及所述锚节点的位置估计量;S103: Construct an estimator according to the direction information and position information of the target solid body, the noise covariance information of the anchor node, and the measurement vector, and obtain a log-likelihood function of the estimator; wherein, the The estimator includes the direction estimator and the position estimator of the target solid body, and the position estimator of the anchor node;

S104:基于所述估计量的对数似然函数,按照设定的最大似然估计算法策略获取所述估计量的最大似然解;其中,所述估计量的最大似然解包括所述目标固态体的方向估计值与位置估计值,以及所述锚节点的位置估计值。S104: Based on the log-likelihood function of the estimator, obtain the maximum likelihood solution of the estimator according to the set maximum likelihood estimation algorithm strategy; wherein, the maximum likelihood solution of the estimator includes the target The orientation estimate and position estimate of the solid body, and the position estimate of the anchor node.

由图1所示的技术方案,本发明实施例通过最大似然估计算法对目标固态体的方向和位置以及具有位置误差的锚节点的位置进行联合估计,不仅解决了联合估计中所存在的非线性约束优化问题。而且还能够在锚节点位置出现误差的情况下,准确地对固态体位置进行估计。From the technical solution shown in FIG. 1, the embodiment of the present invention performs joint estimation on the direction and position of the target solid body and the position of the anchor node with the position error through the maximum likelihood estimation algorithm, which not only solves the problems existing in the joint estimation. Linear Constrained Optimization Problem. Moreover, the position of the solid body can be accurately estimated in the case of errors in the position of the anchor node.

针对图1所示的技术方案,在一种可能的实现方式中,所述基于分布于目标固态体上的传感器确定所述目标固态体的方向信息与位置信息,包括:For the technical solution shown in FIG. 1 , in a possible implementation manner, the determining of the direction information and position information of the target solid body based on sensors distributed on the target solid body includes:

相应于所述传感器的数量为N且所述传感器的相对位置为已知,所述传感器在局部参考系下位置信息为

Figure GDA0003290609730000051
其中,n表示传感器标识,n=1,2,…,N;Corresponding to the number of the sensors being N and the relative positions of the sensors being known, the position information of the sensors in the local reference frame is
Figure GDA0003290609730000051
Among them, n represents the sensor identification, n=1,2,...,N;

基于各所述传感器在局部参考系下位置信息,确定各所述传感器在全局参考系下位置信息

Figure GDA0003290609730000052
其中,
Figure GDA0003290609730000053
Q和t分别为由局部参考系到全局参考系的旋转矩阵和平移矢量,且用于表示所述目标固态体的方向信息和位置信息。Based on the position information of each of the sensors in the local reference frame, determine the position information of each of the sensors in the global reference frame
Figure GDA0003290609730000052
in,
Figure GDA0003290609730000053
Q and t are the rotation matrix and translation vector from the local reference frame to the global reference frame, respectively, and are used to represent the orientation information and position information of the target solid body.

针对图1所示的技术方案,在一种可能的实现方式中,所述获取分布在所述目标固态体周围的锚节点的噪声协方差信息以及测量向量,包括:For the technical solution shown in FIG. 1, in a possible implementation manner, the acquiring noise covariance information and measurement vectors of anchor nodes distributed around the target solid body includes:

相应于所述锚节点的数量为M,所述锚节点在全局参考系下的位置信息为am,其中,m表示锚节点标识,m=1,2,…,M;Corresponding to the number of anchor nodes being M, the location information of the anchor nodes in the global reference frame is a m , where m represents an anchor node identifier, and m=1, 2,...,M;

根据所述锚节点的位置信息生成所述锚节点的位置矩阵

Figure GDA0003290609730000054
Generate the position matrix of the anchor node according to the position information of the anchor node
Figure GDA0003290609730000054

相应于所述锚节点的位置误差为零均值且独立同分布的高斯随机过程,所述锚节点的噪声协方差矩阵

Figure GDA0003290609730000055
其中,所述σa为所述锚节点的位置误差的标准差σa(m);Corresponding to the Gaussian random process with zero mean and independent and identical distribution of the position error of the anchor node, the noise covariance matrix of the anchor node
Figure GDA0003290609730000055
Wherein, the σ a is the standard deviation σ a (m) of the position error of the anchor node;

相应于所述测量向量

Figure GDA0003290609730000061
为高斯分布且所述测量向量的协方差矩阵为Rr,n,所有测量向量
Figure GDA0003290609730000062
为高斯分布且所有测量向量的协方差矩阵为Rr=Bdiag(Rr,1,Rr,2,…,Rr,N)。corresponding to the measurement vector
Figure GDA0003290609730000061
is Gaussian distributed and the covariance matrix of the measurement vectors is R r,n , all measurement vectors
Figure GDA0003290609730000062
is Gaussian distributed and the covariance matrix of all measurement vectors is R r =Bdiag(R r,1 ,R r,2 ,...,R r,N ).

需要说明的是,上述实现方式可以用来针对目标固态体的定位场景进行设定,具体来说,在设定定位场景时,可以在静态的目标固态体上可以分布N个传感器节点,而在目标固态体周围可以分布M个具有位置误差的锚节点,而锚节点位置误差可以看作是零均值独立同分布的高斯随机过程,各锚节点的位置误差的标准差σa(m)=σa,其协方差矩阵为

Figure GDA0003290609730000063
对于测量向量来说,测量向量的数量与传感器数量一致,并且每个测量向量内的测量元素数量与锚节点数量相同,而且刚体传感器阵列通常较小,距离锚节点较远,因此不同传感器的距离测量噪声功率是相同的,也就是说Rr,1=Rr,2=…=Rr,N。It should be noted that the above implementation manner can be used to set the positioning scene of the target solid body. Specifically, when setting the positioning scene, N sensor nodes can be distributed on the static target solid body, and M anchor nodes with position error can be distributed around the target solid body, and the anchor node position error can be regarded as a Gaussian random process with zero mean independent and identical distribution, and the standard deviation of the position error of each anchor node σ a (m) = σ a , whose covariance matrix is
Figure GDA0003290609730000063
For measurement vectors, the number of measurement vectors is the same as the number of sensors, and the number of measurement elements in each measurement vector is the same as the number of anchor nodes, and the rigid body sensor array is usually smaller and farther away from the anchor nodes, so the distance of different sensors The measured noise power is the same, ie R r,1 =R r,2 =...=R r,N .

针对前述技术方案,在一种可能的实现方式中,所述根据所述目标固态体的方向信息与位置信息以及所述锚节点的噪声协方差信息和所述测量向量构造估计量,并获取所述估计量的对数似然函数,包括:For the foregoing technical solution, in a possible implementation manner, the estimator is constructed according to the direction information and position information of the target solid body, the noise covariance information of the anchor node and the measurement vector, and the obtained log-likelihood functions of the estimators, including:

生成估计量

Figure GDA0003290609730000064
其中,
Figure GDA0003290609730000065
qo和to分别表示所述目标固态体的旋转角度估计量和平移矢量估计量,Ao表示所述锚节点的位置信息估计量,所述目标固态体的旋转角度q与所述目标固态体旋转矩阵Q具有以下关系:generate estimators
Figure GDA0003290609730000064
in,
Figure GDA0003290609730000065
q o and t o represent the rotation angle estimate and translation vector estimate of the target solid body, respectively, A o represents the position information estimate of the anchor node, and the rotation angle q of the target solid body is related to the target solid body. The body rotation matrix Q has the following relationship:

q=[α,β,γ]T,Q=QγQβQα

Figure GDA0003290609730000066
Figure GDA0003290609730000067
其中,所述目标固态体旋转矩阵Q为特殊正交群
Figure GDA0003290609730000068
q=[α,β,γ] T , Q=Q γ Q β Q α ,
Figure GDA0003290609730000066
Figure GDA0003290609730000067
Wherein, the rotation matrix Q of the target solid body is a special orthogonal group
Figure GDA0003290609730000068

根据所述估计量ψo确定所述估计量的对数似然函数为:The log-likelihood function of the estimator determined according to the estimator ψ o is:

Figure GDA0003290609730000071
Figure GDA0003290609730000071

其中,η是常量,

Figure GDA0003290609730000072
where n is a constant,
Figure GDA0003290609730000072

对于前述技术方案,在一种可能的实现方式中,所述基于所述估计量的对数似然函数,按照设定的最大似然估计算法策略获取所述估计量的最大似然解,包括:For the foregoing technical solution, in a possible implementation manner, the maximum likelihood solution of the estimator is obtained according to the set maximum likelihood estimation algorithm strategy based on the log-likelihood function of the estimator, including :

按照最大似然法则,根据所述估计量的对数似然函数lnp(ζ,ψo)生成对应的最小二乘模型如下:According to the maximum likelihood rule, the corresponding least squares model is generated according to the log-likelihood function lnp(ζ,ψ o ) of the estimator as follows:

Figure GDA0003290609730000073
Figure GDA0003290609730000073

设定初始值ζo(ψ)=ζo{0})+G{0}(ψ-ψ{0}),其中,G{0}为梯度矩阵且

Figure GDA0003290609730000074
其中,Set the initial value ζ o (ψ)=ζ o{0} )+G {0} (ψ-ψ {0} ), where G {0} is the gradient matrix and
Figure GDA0003290609730000074
in,

Figure GDA0003290609730000075
Figure GDA0003290609730000076
其中,
Figure GDA0003290609730000077
Figure GDA0003290609730000078
Figure GDA0003290609730000079
是Qo相对于qo的导数;
Figure GDA0003290609730000075
Figure GDA0003290609730000076
in,
Figure GDA0003290609730000077
Figure GDA0003290609730000078
Figure GDA0003290609730000079
is the derivative of Q o with respect to q o ;

基于所述初始值,根据高斯牛顿迭代法针对所述最小二乘模型按照设定的迭代次数以及下式所示的迭代方程进行迭代,获取所述估计量的最大似然解

Figure GDA00032906097300000710
Based on the initial value, according to the Gauss-Newton iteration method, the least squares model is iterated according to the set number of iterations and the iterative equation shown in the following formula to obtain the maximum likelihood solution of the estimator
Figure GDA00032906097300000710

ψ{k+1}=ψ{k}+(G{k}TR-1G{k})-1G{k}TR-1(ζ-ζo{k})),k=0,1,...ψ {k+1} = ψ {k} +(G {k}T R -1 G {k} ) -1 G {k}T R -1 (ζ-ζ o{k} )),k =0,1,...

其中,k表示迭代次数。where k represents the number of iterations.

需要说明的是,按照设定的迭代次数进行迭代之后所得到的迭代解会趋于收敛,从而符合设定的精度要求,此时,所得到的迭代解就认为是所述估计量的最大似然解

Figure GDA0003290609730000081
It should be noted that the iterative solution obtained after iterating according to the set number of iterations will tend to converge, so as to meet the set accuracy requirements. At this time, the obtained iterative solution is considered to be the maximum likelihood of the estimator. Ran solution
Figure GDA0003290609730000081

可以理解地,在锚节点精确位置并不完全清楚的情况下,通过将锚节点位置误差建模为加性高斯噪声,可以由克拉美罗下界(CRLB,Cramer-Rao Lower Bound)分析得出:目标固态体定位精度的减少是锚节点位置误差引起的;从而可以得知:在更加实际的应用场景中,目标固态体的精确位置估计十分依赖锚节点的位置精度。而上述图1所示的技术方案以及实现方式,基于对锚节点的位置误差所提出的最大似然估计(MLE)方法,可以通过与克拉美罗下界之间的比较来确定本发明实施例所提出的固态体定位的方法的技术效果。Understandably, in the case where the exact position of the anchor node is not completely clear, by modeling the anchor node position error as additive Gaussian noise, it can be obtained from the Cramer-Rao Lower Bound (CRLB) analysis: The decrease of the positioning accuracy of the target solid body is caused by the position error of the anchor node; it can be known that in a more practical application scenario, the accurate position estimation of the target solid body is very dependent on the position accuracy of the anchor node. The technical solution and implementation shown in FIG. 1 above, based on the maximum likelihood estimation (MLE) method proposed for the position error of the anchor node, can be determined by comparing with the lower bound of Cramero. Technical effect of the proposed method for localization of solid bodies.

基于此,针对上述图1所示的技术方案以及实现方式,在一种可能的实现方式中,所述方法还包括:Based on this, for the technical solution and implementation manner shown in FIG. 1 above, in a possible implementation manner, the method further includes:

根据所述估计量以及所述估计量的对数似然函数确定所述目标固态体的旋转角度估计量和平移矢量估计量的克拉美罗下界;Determine the Cramero lower bound of the rotation angle estimator and the translation vector estimator of the target solid body according to the estimator and the log-likelihood function of the estimator;

在多种锚节点位置误差强度下,获取所述估计量的最大似然解的均方误差,并与各锚节点位置误差强度的克拉美罗下界进行比较。Under various anchor node position error strengths, the mean square error of the maximum likelihood solution of the estimator is obtained, and compared with the lower bound of Cramero's position error strength of each anchor node.

优选地,对于上述实现方式,所述根据所述估计量以及所述估计量的对数似然函数确定所述目标固态体的旋转角度估计量和平移矢量估计量的克拉美罗下界,包括:Preferably, for the above implementation manner, the determining the Cramero lower bound of the rotation angle estimator and the translation vector estimator of the target solid body according to the estimator and the log-likelihood function of the estimator includes:

将所述估计量的对数似然函数lnp(ζ,ψo)对所述估计量

Figure GDA0003290609730000082
求二阶偏导数,获得费雪信息(Fisher Information)矩阵
Figure GDA0003290609730000083
Apply the log-likelihood function lnp(ζ,ψ o ) of the estimator to the estimator
Figure GDA0003290609730000082
Find the second-order partial derivative and obtain the Fisher Information matrix
Figure GDA0003290609730000083

其中,

Figure GDA0003290609730000084
Figure GDA0003290609730000085
Figure GDA0003290609730000086
其中,
Figure GDA0003290609730000087
Figure GDA0003290609730000088
Figure GDA0003290609730000089
是Qo相对于qo的导数;in,
Figure GDA0003290609730000084
Figure GDA0003290609730000085
Figure GDA0003290609730000086
in,
Figure GDA0003290609730000087
Figure GDA0003290609730000088
Figure GDA0003290609730000089
is the derivative of Q o with respect to q o ;

基于所述费雪信息矩阵FIM(ψo),通过分块矩阵求逆公式,分别获得所述估计量ψo

Figure GDA0003290609730000091
的克拉美罗下界
Figure GDA0003290609730000092
以及的Ao的克拉美罗下界CRLB(Ao)=FIM(Ao)-1=(Z-YTX-1Y)-1。Based on the Fisher information matrix FIM(ψ o ), through the block matrix inversion formula, respectively obtain the estimator ψ o
Figure GDA0003290609730000091
Kramero Nether
Figure GDA0003290609730000092
And the Cramero lower bound of A o CRLB(A o )=FIM(A o ) −1 =(ZY T X −1 Y) −1 .

需要说明的是,通过将多种锚节点位置误差强度下估计量的最大似然解的均方误差与各锚节点位置误差强度的克拉美罗下界进行比较,能够直观地获知本发明实施例所提出的固态体定位的方法的技术效果。本发明实施例通过以下具体仿真场景对本发明实施例所提出的固态体定位的方法的技术效果进行阐述。It should be noted that, by comparing the mean square error of the maximum likelihood solution of the estimator under various anchor node position error strengths with the Cramero lower bound of each anchor node position error strength, it can be intuitively known that the embodiment of the present invention has Technical effect of the proposed method for localization of solid bodies. The embodiments of the present invention illustrate the technical effects of the method for positioning a solid body proposed by the embodiments of the present invention through the following specific simulation scenarios.

首先,设定仿真条件如下:First, set the simulation conditions as follows:

1、基于3D定位场景,在锚节点位置不确定的情况下,设定锚节点的个数为M=6个,在全球参考系中均匀分布在以原点O为中心的三维立方体内(±50m×±50m×±50m)内。为了避免较差的分布结构影响定位性能,两个锚节点之间的间距至少为15米。根据上述条件,可以随机生成M=6个锚节点的G=200种几何分布,仿真的结果是其平均值。对于每种给定的几何结构,仿真运行的次数是L=1000,并且每个传感器都能够从所有锚节点获取测量结果。1. Based on the 3D positioning scene, when the position of the anchor node is uncertain, the number of anchor nodes is set to M = 6, which are evenly distributed in the three-dimensional cube centered on the origin O in the global reference system (±50m). ×±50m×±50m). In order to avoid the poor distribution structure affecting the positioning performance, the distance between two anchor nodes should be at least 15 meters. According to the above conditions, G=200 geometric distributions of M=6 anchor nodes can be randomly generated, and the simulation result is the average value thereof. For each given geometry, the number of simulation runs is L = 1000, and each sensor is able to obtain measurements from all anchor nodes.

2、目标固态体设置和传感器配置指定如下:对于3D RBL场景,刚体传感器的真实位置是

Figure GDA0003290609730000093
在局部参考系中,C中每列代表传感器位置cn。目标固态体的旋转设定如下:两个参考系在开始时重合,然后固态体旋转α=20度,β=-25度,γ=10度。平移向量是t=[100,100,50]T。在整个仿真过程中,固态体传感器阵列通常很小并且远离锚节点。因此,可以将从给定锚节点到所有传感器的范围内的噪声功率设置为相同。但是对于一个给定的刚体传感器,为了更好地运用算法性能,可以将从刚体传感器到不同锚点范围的噪声功率设置为不同。2. The target solid body settings and sensor configuration are specified as follows: For a 3D RBL scene, the true position of the rigid body sensor is
Figure GDA0003290609730000093
In the local reference frame, each column in C represents the sensor position cn . The rotation of the target solid body is set as follows: the two reference frames coincide at the beginning, and then the solid body is rotated by α = 20 degrees, β = -25 degrees, and γ = 10 degrees. The translation vector is t=[100, 100, 50] T . Throughout the simulation, the solid-state body sensor arrays are typically small and far away from the anchor nodes. Therefore, the noise power in the range from a given anchor node to all sensors can be set to be the same. But for a given rigid body sensor, in order to better utilize the algorithm performance, the noise power can be set to be different from the rigid body sensor to the range of different anchor points.

因此,对于数量为M=6的锚节点,距离测量噪声的协方差矩阵是

Figure GDA0003290609730000101
其中,
Figure GDA0003290609730000102
为克罗内克积。在后续仿真中,3D场景下距离测量噪声功率
Figure GDA0003290609730000103
固定在-40dB。加入协方差矩阵为
Figure GDA0003290609730000104
的零均值高斯噪声的真实值来构建有位置误差的锚节点位置。噪声协方差矩阵的设置用于本仿真中的所有数值实例和仿真。Therefore, for a number of anchor nodes M = 6, the covariance matrix of the distance measurement noise is
Figure GDA0003290609730000101
in,
Figure GDA0003290609730000102
is the Kronecker product. In subsequent simulations, the distance measurement noise power in the 3D scene
Figure GDA0003290609730000103
Fixed at -40dB. Join the covariance matrix as
Figure GDA0003290609730000104
The ground truth value of zero-mean Gaussian noise to construct the anchor node position with position error. The setup of the noise covariance matrix is used for all numerical examples and simulations in this simulation.

接着,基于上述仿真条件以及前述固态体定位的方法进行仿真,具体过程参见前述图1所示的技术方案以及各实现方式,在此不再赘述。具体的仿真结果及分析如下:Next, simulation is performed based on the above-mentioned simulation conditions and the above-mentioned method for locating the solid body. For the specific process, refer to the technical solution and each implementation manner shown in the above-mentioned FIG. 1 , which will not be repeated here. The specific simulation results and analysis are as follows:

1、CRLB分析1. CRLB analysis

通过改变锚节点位置的噪声功率

Figure GDA0003290609730000105
的数值,可以利用提出的CRLB结果验证锚节点位置A对固态体定位的影响。对于3D场景,CRLB仿真结果如图2至图4所示。其中,图2示出了锚节点位置A的修正性能,图3示出了旋转角度q的估计精度影响情况,图4中示出了平移矢量t的估计精度影响情况。在图3和图4中,锚节点位置误差ΔA不存在时参数估计的CRLB也被绘制用于比较。By changing the noise power of the anchor node location
Figure GDA0003290609730000105
, the effect of anchor node position A on solid body localization can be verified using the proposed CRLB results. For the 3D scene, the CRLB simulation results are shown in Figures 2 to 4. Among them, Fig. 2 shows the correction performance of the anchor node position A, Fig. 3 shows the influence of the estimation accuracy of the rotation angle q, and Fig. 4 shows the influence of the estimation accuracy of the translation vector t. In Figures 3 and 4, the CRLB of the parameter estimates when the anchor node position error ΔA is absent is also plotted for comparison.

对于图2来说,其横坐标为锚节点位置的噪声功率(Anchor Position Noise),纵坐标为锚节点位置A的CRLB的根值,圈点划线表示没有进行位置校正的CRLB界,方形点虚线表示进行了位置校正的CRLB界,由此可以看出,在使用距离测量向量r进行校正之后,当锚节点位置噪声强度相对较大时,锚节点位置A估计的CRLB界明显小于没有任何校正的,这也就能够证明当使用测量向量r估计目标固态体位置向量

Figure GDA0003290609730000106
时,锚节点位置不确定性ΔA可以明显地被校正。For Figure 2, the abscissa is the noise power of the anchor node position (Anchor Position Noise), the ordinate is the root value of the CRLB of the anchor node position A, the dotted line represents the CRLB boundary without position correction, and the square dotted line Represents the CRLB bound with position correction. It can be seen that after the correction using the distance measurement vector r, when the noise intensity of the anchor node position is relatively large, the CRLB bound estimated by the anchor node position A is significantly smaller than that without any correction. , which also proves that when the measurement vector r is used to estimate the position vector of the target solid body
Figure GDA0003290609730000106
, the anchor node position uncertainty ΔA can be significantly corrected.

对于图3和图4来说,其横坐标为锚节点位置的噪声功率(Anchor PositionNoise),而图3的纵坐标为固态体的旋转角度q的CRLB的根值,图4的纵坐标表示固态体的平移矢量t的CRLB的根值。For Figures 3 and 4, the abscissa is the noise power of the anchor node position (Anchor PositionNoise), while the ordinate of Figure 3 is the root value of the CRLB of the rotation angle q of the solid body, and the ordinate of Figure 4 represents the solid state. The root value of the CRLB of the volume's translation vector t.

米型点划线表示锚节点位置误差ΔA不存在时参数估计的CRLB界,方形点虚线表示存在锚节点位置误差ΔA时的CRLB界,由此可以看出,在锚节点位置误差ΔA存在的情况下,q和t估计的CRLB是明显由锚节点位置确定的,这证明锚节点位置不确定性ΔA明显恶化了q和t的估计性能。这意味着即使距离测量噪声功率

Figure GDA0003290609730000111
固定在较小的水平,由锚节点位置误差ΔA引起的q和t估计误差在实际场景的应用中不可忽略。The meter-shaped dot-dash line represents the CRLB bound of the parameter estimation when the anchor node position error ΔA does not exist, and the square dotted line represents the CRLB bound when the anchor node position error ΔA exists. Below, the estimated CRLBs of q and t are clearly determined by the anchor node position, which proves that the anchor node position uncertainty ΔA significantly deteriorates the estimation performance of q and t. This means that even distance measurement noise power
Figure GDA0003290609730000111
Fixed at a small level, the q and t estimation errors caused by the anchor node position error ΔA are not negligible in practical application.

2、针对均方根误差(RMSE,Root Mean Squared Error)分析2. Analysis of Root Mean Squared Error (RMSE, Root Mean Squared Error)

图5示出了本发明实施例所提出的方案的锚节点位置A的估计效果,图6和图7分别出了旋转角度q以及平移矢量t的估计效果,在图6和图7中,锚节点位置误差ΔA不存在时参数估计的CRLB也同样被绘制用于比较。Fig. 5 shows the estimation effect of the anchor node position A of the solution proposed by the embodiment of the present invention, and Fig. 6 and Fig. 7 show the estimation effect of the rotation angle q and the translation vector t respectively. The CRLB of the parameter estimates in the absence of the node position error ΔA is also plotted for comparison.

对于图5来说,其横坐标为锚节点位置的噪声功率(Anchor Position Noise),纵坐标为锚节点位置A的RMSE,米型点划线表示采用本发明实施例所提出的固态体定位方法后所得到的估计值的RMSE,方形点虚线表示锚节点具有位置误差条件下的CRLB界,由此可以看出,当锚节点位置噪声功率

Figure GDA0003290609730000112
从10-4增加到101的过程中,本发明实施例所提出的固态体定位方法对锚节点位置A估计的均方误差(RMSE)能够很好地实现其相应的CRLB精度。For FIG. 5 , the abscissa is the noise power of the anchor node position (Anchor Position Noise), the ordinate is the RMSE of the anchor node position A, and the meter-shaped dot-dash line represents the use of the solid-state body positioning method proposed by the embodiment of the present invention. After the RMSE of the estimated value obtained, the square dotted line indicates that the anchor node has the CRLB bound under the condition of position error, it can be seen that when the anchor node position noise power
Figure GDA0003290609730000112
During the process of increasing from 10 −4 to 10 1 , the mean square error (RMSE) of the anchor node position A estimated by the solid body localization method proposed in the embodiment of the present invention can well achieve its corresponding CRLB accuracy.

对于图6和图7来说,其横坐标为锚节点位置的噪声功率(Anchor PositionNoise),而图6的纵坐标为固态体的旋转角度q的RMSE,图7的纵坐标表示固态体的平移矢量t的RMSE。For Fig. 6 and Fig. 7, the abscissa is the noise power of the anchor node position (Anchor PositionNoise), and the ordinate of Fig. 6 is the RMSE of the rotation angle q of the solid body, and the ordinate of Fig. 7 represents the translation of the solid body The RMSE of the vector t.

米型点划线表示采用本发明实施例所提出的固态体定位方法后所得到的估计值的RMSE,方形点虚线表示存在锚节点位置误差ΔA时的CRLB界,圆形点实线表示不存在锚节点位置误差ΔA时的CRLB界。由此可以看出,当锚节点位置噪声功率较低时,本发明实施例所提出的固态体定位方法对平移矢量t和旋转角度q估计的均方误差(RMSE)能够很好地实现其相应的CRLB精度;当锚节点位置噪声功率达到101时,旋转角度q估计的均方误差(RMSE)略高于其克拉美罗界,而平移矢量t估计的均方误差(MSE)明显高于其克拉美罗界。由此可以得知:锚节点位置误差ΔA对平移矢量t的影响比旋转角度q更严重,因此在实际应用中必须考虑锚节点误差的影响。The meter-shaped dot-dash line represents the RMSE of the estimated value obtained by using the solid body localization method proposed in the embodiment of the present invention, the square dotted line represents the CRLB boundary when the anchor node position error ΔA exists, and the circular dotted solid line represents the absence of CRLB bound at anchor node position error ΔA. It can be seen from this that when the noise power of the anchor node position is low, the solid body localization method proposed in the embodiment of the present invention can well achieve the corresponding mean square error (RMSE) of the translation vector t and the rotation angle q estimation. When the noise power of the anchor node position reaches 10 1 , the mean square error (RMSE) of the rotation angle q estimation is slightly higher than its Cramero bound, while the mean square error (MSE) of the translation vector t estimation is significantly higher than Its Cramero realm. It can be known from this that the influence of the anchor node position error ΔA on the translation vector t is more serious than that of the rotation angle q, so the influence of the anchor node error must be considered in practical applications.

基于前述技术方案相同的发明构思,参见图8,其示出了本发明实施例提供的一种固态体定位的装置80,所述装置80可以包括:确定部分801,获取部分802,构造部分803和估计部分804;其中,Based on the same inventive concept as the foregoing technical solutions, see FIG. 8 , which shows a device 80 for positioning a solid body provided by an embodiment of the present invention. The device 80 may include: a determination part 801 , an acquisition part 802 , and a construction part 803 and estimation section 804; where,

所述确定部分801,配置为基于分布于目标固态体上的传感器确定所述目标固态体的方向信息与位置信息;The determining part 801 is configured to determine the direction information and position information of the target solid body based on the sensors distributed on the target solid body;

所述获取部分802,配置为获取分布在所述目标固态体周围的锚节点的噪声协方差信息以及测量向量;其中,所述锚节点包括具有位置误差的锚节点;The acquisition part 802 is configured to acquire noise covariance information and measurement vectors of anchor nodes distributed around the target solid body; wherein, the anchor nodes include anchor nodes with position errors;

所述构造部分803,配置为根据所述目标固态体的方向信息与位置信息以及所述锚节点的噪声协方差信息和所述测量向量构造估计量,并获取所述估计量的对数似然函数;其中,所述估计量包括所述目标固态体的方向估计量与位置估计量,以及所述锚节点的位置估计量;The construction part 803 is configured to construct an estimator according to the direction information and position information of the target solid body, the noise covariance information of the anchor node and the measurement vector, and obtain the log-likelihood of the estimator function; wherein, the estimator includes the direction estimator and the position estimator of the target solid body, and the position estimator of the anchor node;

所述估计部分804,配置为基于所述估计量的对数似然函数,按照设定的最大似然估计算法策略获取所述估计量的最大似然解;其中,所述估计量的最大似然解包括所述目标固态体的方向估计值与位置估计值,以及所述锚节点的位置估计值。The estimating part 804 is configured to obtain the maximum likelihood solution of the estimator according to the set maximum likelihood estimation algorithm strategy based on the log-likelihood function of the estimator; wherein, the maximum likelihood solution of the estimator is However, the solution includes the estimated direction value and the estimated value of the position of the target solid body, and the estimated value of the position of the anchor node.

在上述方案中,所述确定部分801,配置为:In the above solution, the determining part 801 is configured as:

相应于所述传感器的数量为N且所述传感器的相对位置为已知,所述传感器在局部参考系下位置信息为

Figure GDA0003290609730000121
其中,n表示传感器标识,n=1,2,…,N;Corresponding to the number of the sensors being N and the relative positions of the sensors being known, the position information of the sensors in the local reference frame is
Figure GDA0003290609730000121
Among them, n represents the sensor identification, n=1,2,...,N;

基于各所述传感器在局部参考系下位置信息,确定各所述传感器在全局参考系下位置信息

Figure GDA0003290609730000122
其中,
Figure GDA0003290609730000123
Q和t分别为由局部参考系到全局参考系的旋转矩阵和平移矢量,且用于表示所述目标固态体的方向信息和位置信息。Based on the position information of each of the sensors in the local reference frame, determine the position information of each of the sensors in the global reference frame
Figure GDA0003290609730000122
in,
Figure GDA0003290609730000123
Q and t are the rotation matrix and translation vector from the local reference frame to the global reference frame, respectively, and are used to represent the orientation information and position information of the target solid body.

在上述方案中,所述获取部分802,配置为:In the above solution, the acquisition part 802 is configured as:

相应于所述锚节点的数量为M,所述锚节点在全局参考系下的位置信息为am,其中,m表示锚节点标识,m=1,2,…,M;Corresponding to the number of anchor nodes being M, the location information of the anchor nodes in the global reference frame is a m , where m represents an anchor node identifier, and m=1, 2,...,M;

根据所述锚节点的位置信息生成所述锚节点的位置矩阵

Figure GDA0003290609730000124
Generate the position matrix of the anchor node according to the position information of the anchor node
Figure GDA0003290609730000124

相应于所述锚节点的位置误差为零均值且独立同分布的高斯随机过程,所述锚节点的噪声协方差矩阵

Figure GDA0003290609730000125
其中,所述σa为所述锚节点的位置误差的标准差σa(m);Corresponding to the Gaussian random process with zero mean and independent and identical distribution of the position error of the anchor node, the noise covariance matrix of the anchor node
Figure GDA0003290609730000125
Wherein, the σ a is the standard deviation σ a (m) of the position error of the anchor node;

相应于所述测量向量

Figure GDA0003290609730000131
为高斯分布且所述测量向量的协方差矩阵为Rr,n,所有测量向量
Figure GDA0003290609730000132
为高斯分布且所有测量向量的协方差矩阵为Rr=Bdiag(Rr,1,Rr,2,…,Rr,N)。corresponding to the measurement vector
Figure GDA0003290609730000131
is Gaussian distributed and the covariance matrix of the measurement vectors is R r,n , all measurement vectors
Figure GDA0003290609730000132
is Gaussian distributed and the covariance matrix of all measurement vectors is R r =Bdiag(R r,1 ,R r,2 ,...,R r,N ).

在上述方案中,所述构造部分803,配置为:In the above solution, the construction part 803 is configured as:

生成估计量

Figure GDA0003290609730000133
其中,
Figure GDA0003290609730000134
qo和to分别表示所述目标固态体的旋转角度估计量和平移矢量估计量,Ao表示所述锚节点的位置信息估计量,所述目标固态体的旋转角度q与所述目标固态体旋转矩阵Q具有以下关系:generate estimators
Figure GDA0003290609730000133
in,
Figure GDA0003290609730000134
q o and t o represent the rotation angle estimate and translation vector estimate of the target solid body, respectively, A o represents the position information estimate of the anchor node, and the rotation angle q of the target solid body is related to the target solid body. The body rotation matrix Q has the following relationship:

q=[α,β,γ]T,Q=QγQβQα

Figure GDA0003290609730000135
Figure GDA0003290609730000136
其中,所述目标固态体旋转矩阵Q为特殊正交群
Figure GDA0003290609730000137
q=[α,β,γ] T , Q=Q γ Q β Q α ,
Figure GDA0003290609730000135
Figure GDA0003290609730000136
Wherein, the rotation matrix Q of the target solid body is a special orthogonal group
Figure GDA0003290609730000137

根据所述估计量ψo确定所述估计量的对数似然函数为:The log-likelihood function of the estimator determined according to the estimator ψ o is:

Figure GDA0003290609730000138
Figure GDA0003290609730000138

其中,η是常量,

Figure GDA0003290609730000139
where n is a constant,
Figure GDA0003290609730000139

在上述方案中,所述估计部分804,配置为:In the above solution, the estimation part 804 is configured as:

按照最大似然法则,根据所述估计量的对数似然函数lnp(ζ,ψo)生成对应的最小二乘模型如下:According to the maximum likelihood rule, the corresponding least squares model is generated according to the log-likelihood function lnp(ζ,ψ o ) of the estimator as follows:

Figure GDA00032906097300001310
其中R=Bdiag(Rr,RA);
Figure GDA00032906097300001310
where R=Bdiag(R r , R A );

设定初始值ζo(ψ)=ζo{0})+G{0}(ψ-ψ{0}),其中,G{0}为梯度矩阵且

Figure GDA00032906097300001311
其中,Set the initial value ζ o (ψ)=ζ o{0} )+G {0} (ψ-ψ {0} ), where G {0} is the gradient matrix and
Figure GDA00032906097300001311
in,

Figure GDA0003290609730000141
Figure GDA0003290609730000142
其中,
Figure GDA0003290609730000143
Figure GDA0003290609730000144
Figure GDA0003290609730000145
是Qo相对于qo的导数;
Figure GDA0003290609730000141
Figure GDA0003290609730000142
in,
Figure GDA0003290609730000143
Figure GDA0003290609730000144
Figure GDA0003290609730000145
is the derivative of Q o with respect to q o ;

基于所述初始值,根据高斯牛顿迭代法针对所述最小二乘模型按照设定的迭代次数以及下式所示的迭代方程进行迭代,获取所述估计量的最大似然解

Figure GDA0003290609730000146
Based on the initial value, according to the Gauss-Newton iteration method, the least squares model is iterated according to the set number of iterations and the iterative equation shown in the following formula to obtain the maximum likelihood solution of the estimator
Figure GDA0003290609730000146

ψ{k+1}=ψ{k}+(G{k}TR-1G{k})-1G{k}TR-1(ζ-ζo{k})),k=0,1,...ψ {k+1} = ψ {k} +(G {k}T R -1 G {k} ) -1 G {k}T R -1 (ζ-ζ o{k} )),k =0,1,...

其中,k表示迭代次数。where k represents the number of iterations.

参见图9所示,所述装置80还包括:CRLB生成部分805和比较部分806;其中,所述CRLB生成部分805,配置为根据所述估计量以及所述估计量的对数似然函数确定所述目标固态体的旋转角度估计量和平移矢量估计量的克拉美罗下界;Referring to FIG. 9, the apparatus 80 further includes: a CRLB generation part 805 and a comparison part 806; wherein, the CRLB generation part 805 is configured to determine according to the estimator and the log-likelihood function of the estimator The Cramero lower bound of the rotation angle estimator and the translation vector estimator of the target solid body;

所述比较部分806,配置为在多种锚节点位置误差强度下,获取所述估计量的最大似然解的均方误差,并与各锚节点位置误差强度的克拉美罗下界进行比较。The comparison part 806 is configured to obtain the mean square error of the maximum likelihood solution of the estimator under various anchor node position error strengths, and compare it with the lower bound of Cramero's position error strength of each anchor node.

在上述方案中,所述CRLB生成部分805,配置为:In the above solution, the CRLB generation part 805 is configured as:

将所述估计量的对数似然函数lnp(ζ,ψo)对所述估计量

Figure GDA0003290609730000147
求二阶偏导数,获得费雪信息矩阵
Figure GDA0003290609730000148
Apply the log-likelihood function lnp(ζ,ψ o ) of the estimator to the estimator
Figure GDA0003290609730000147
Find the second-order partial derivative and get the Fisher information matrix
Figure GDA0003290609730000148

其中,

Figure GDA0003290609730000149
Figure GDA00032906097300001410
Figure GDA00032906097300001411
其中,
Figure GDA0003290609730000151
Figure GDA0003290609730000152
Figure GDA0003290609730000153
是Qo相对于qo的导数;in,
Figure GDA0003290609730000149
Figure GDA00032906097300001410
Figure GDA00032906097300001411
in,
Figure GDA0003290609730000151
Figure GDA0003290609730000152
Figure GDA0003290609730000153
is the derivative of Q o with respect to q o ;

基于所述费雪信息矩阵FIM(ψo),通过分块矩阵求逆公式,分别获得所述估计量ψo

Figure GDA0003290609730000154
的克拉美罗下界
Figure GDA0003290609730000155
以及的Ao的克拉美罗下界CRLB(Ao)=FIM(Ao)-1=(Z-YTX-1Y)-1。Based on the Fisher information matrix FIM(ψ o ), through the block matrix inversion formula, respectively obtain the estimator ψ o
Figure GDA0003290609730000154
Kramero Nether
Figure GDA0003290609730000155
And the Cramero lower bound of A o CRLB(A o )=FIM(A o ) −1 =(ZY T X −1 Y) −1 .

可以理解地,在本实施例中,“部分”可以是部分电路、部分处理器、部分程序或软件等等,当然也可以是单元,还可以是模块也可以是非模块化的。It can be understood that, in this embodiment, a "part" may be a part of a circuit, a part of a processor, a part of a program or software, etc., of course, it may also be a unit, or a module or non-modularity.

另外,在本实施例中的各组成部分可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。In addition, each component in this embodiment may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware, or can be implemented in the form of software function modules.

所述集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is implemented in the form of a software functional module and is not sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of this embodiment is essentially or The part that contributes to the prior art or the whole or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, and includes several instructions for making a computer device (which can be It is a personal computer, a server, or a network device, etc.) or a processor (processor) that executes all or part of the steps of the method described in this embodiment. The aforementioned storage medium includes: U disk, removable hard disk, Read Only Memory (ROM, Read Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.

因此,本实施例提供了一种计算机存储介质,所述计算机存储介质存储有固态体定位的程序,所述固态体定位的程序被至少一个处理器执行时实现上述技术方案中所述固态体定位的方法的步骤。Therefore, this embodiment provides a computer storage medium, where the computer storage medium stores a solid-state body positioning program, and when the solid-state body positioning program is executed by at least one processor, implements the solid-state body positioning in the above technical solution steps of the method.

基于上述固态体定位的装置80以及计算机存储介质,参见图10,其示出了本发明实施例提供的一种固态体定位的装置80的具体硬件结构,包括:通信接口1001,存储器1002和处理器1003;各个组件通过总线系统1004耦合在一起。可理解,总线系统1004用于实现这些组件之间的连接通信。总线系统1004除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图10中将各种总线都标为总线系统1004。其中,Based on the above-mentioned apparatus 80 for positioning a solid-state body and a computer storage medium, see FIG. 10 , which shows a specific hardware structure of a device 80 for positioning a solid-state body provided by an embodiment of the present invention, including: a communication interface 1001 , a memory 1002 and a processing 1003; the various components are coupled together through a bus system 1004. It will be appreciated that the bus system 1004 is used to implement connection communication between these components. In addition to the data bus, the bus system 1004 also includes a power bus, a control bus, and a status signal bus. However, for clarity of illustration, the various buses are labeled as bus system 1004 in FIG. 10 . in,

所述通信接口1001,用于在与其他外部网元之间进行收发信息过程中,信号的接收和发送;The communication interface 1001 is used for receiving and sending signals in the process of sending and receiving information with other external network elements;

所述存储器1002,用于存储能够在所述处理器1003上运行的计算机程序;the memory 1002 for storing computer programs that can run on the processor 1003;

所述处理器1003,用于在运行所述计算机程序时,执行以下步骤:The processor 1003 is configured to execute the following steps when running the computer program:

基于分布于目标固态体上的传感器确定所述目标固态体的方向信息与位置信息;以及,Determine orientation information and position information of the target solid body based on sensors distributed on the target solid body; and,

获取分布在所述目标固态体周围的锚节点的噪声协方差信息以及测量向量;其中,所述锚节点包括具有位置误差的锚节点;以及,Acquiring noise covariance information and measurement vectors of anchor nodes distributed around the target solid body; wherein the anchor nodes include anchor nodes with position errors; and,

根据所述目标固态体的方向信息与位置信息以及所述锚节点的噪声协方差信息和所述测量向量构造估计量,并获取所述估计量的对数似然函数;其中,所述估计量包括所述目标固态体的方向估计量与位置估计量,以及所述锚节点的位置估计量;以及,An estimator is constructed according to the direction information and position information of the target solid body, the noise covariance information of the anchor node and the measurement vector, and the log-likelihood function of the estimator is obtained; wherein, the estimator is including the direction estimator and the position estimator of the target solid body, and the position estimator of the anchor node; and,

基于所述估计量的对数似然函数,按照设定的最大似然估计算法策略获取所述估计量的最大似然解;其中,所述估计量的最大似然解包括所述目标固态体的方向估计值与位置估计值,以及所述锚节点的位置估计值。Based on the log-likelihood function of the estimator, obtain the maximum likelihood solution of the estimator according to the set maximum likelihood estimation algorithm strategy; wherein, the maximum likelihood solution of the estimator includes the target solid body The direction estimate and position estimate of , and the position estimate of the anchor node.

可以理解,本发明实施例中的存储器1002可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double DataRate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器1002旨在包括但不限于这些和任意其它适合类型的存储器。It can be understood that the memory 1002 in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory. Wherein, the non-volatile memory may be Read-Only Memory (ROM), Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. The volatile memory may be random access memory (RAM), which is used as an external cache. By way of example and not limitation, many forms of RAM are available, such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double DataRate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synchlink DRAM, SLDRAM) and Direct memory bus random access memory (Direct Rambus RAM, DRRAM). The memory 1002 of the systems and methods described herein is intended to include, but not be limited to, these and any other suitable types of memory.

而处理器1003可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1003中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1003可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1003读取存储器1002中的信息,结合其硬件完成上述方法的步骤。The processor 1003 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method can be completed by an integrated logic circuit of hardware in the processor 1003 or an instruction in the form of software. The aforementioned processor 1003 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA), or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components. Various methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed. A general purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps of the method disclosed in conjunction with the embodiments of the present invention may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor. The software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art. The storage medium is located in the memory 1002, and the processor 1003 reads the information in the memory 1002, and completes the steps of the above method in combination with its hardware.

可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(ApplicationSpecific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable LogicDevice,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。It will be appreciated that the embodiments described herein may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof. For hardware implementation, the processing unit may be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), Digital Signal Processing Device (DSP Device, DSPD), programmable logic Devices (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general purpose processors, controllers, microcontrollers, microprocessors, other electronic units for performing the functions described in this application or a combination thereof.

对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。For a software implementation, the techniques described herein may be implemented through modules (eg, procedures, functions, etc.) that perform the functions described herein. Software codes may be stored in memory and executed by a processor. The memory can be implemented in the processor or external to the processor.

具体来说,处理器1003还配置为运行所述计算机程序时,执行前述技术方案中所述固态体定位的方法步骤,这里不再进行赘述。Specifically, the processor 1003 is further configured to execute the method steps of the solid-state body positioning described in the foregoing technical solutions when running the computer program, which will not be repeated here.

需要说明的是:本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。It should be noted that the technical solutions described in the embodiments of the present invention may be combined arbitrarily unless there is a conflict.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.

Claims (9)

1.一种固态体定位的方法,其特征在于,所述方法包括:1. A method for positioning a solid body, wherein the method comprises: 基于分布于目标固态体上的传感器确定所述目标固态体的方向信息与位置信息;Determine the direction information and position information of the target solid body based on the sensors distributed on the target solid body; 获取分布在所述目标固态体周围的锚节点的噪声协方差信息以及测量向量;其中,所述锚节点包括具有位置误差的锚节点;Acquiring noise covariance information and measurement vectors of anchor nodes distributed around the target solid body; wherein the anchor nodes include anchor nodes with position errors; 根据所述目标固态体的方向信息与位置信息以及所述锚节点的噪声协方差信息和所述测量向量构造估计量,并获取所述估计量的对数似然函数;其中,所述估计量包括所述目标固态体的方向估计量与位置估计量,以及所述锚节点的位置估计量;An estimator is constructed according to the direction information and position information of the target solid body, the noise covariance information of the anchor node and the measurement vector, and the log-likelihood function of the estimator is obtained; wherein, the estimator is Including the direction estimator and the position estimator of the target solid body, and the position estimator of the anchor node; 基于所述估计量的对数似然函数,按照设定的最大似然估计算法策略获取所述估计量的最大似然解;其中,所述估计量的最大似然解包括所述目标固态体的方向估计值与位置估计值,以及所述锚节点的位置估计值;Based on the log-likelihood function of the estimator, obtain the maximum likelihood solution of the estimator according to the set maximum likelihood estimation algorithm strategy; wherein, the maximum likelihood solution of the estimator includes the target solid body The direction estimate value and position estimate value of , and the position estimate value of the anchor node; 其中,所述基于所述估计量的对数似然函数,按照设定的最大似然估计算法策略获取所述估计量的最大似然解,包括:Wherein, obtaining the maximum likelihood solution of the estimator according to the set maximum likelihood estimation algorithm strategy based on the log-likelihood function of the estimator, including: 按照最大似然法则,根据所述估计量的对数似然函数ln p(ζ,ψ)生成对应的最小二乘模型如下:According to the maximum likelihood rule, the corresponding least squares model is generated according to the log-likelihood function ln p(ζ,ψ) of the estimator as follows:
Figure FDA0003290609720000011
其中R=Bdiag(Rr,RA),
Figure FDA0003290609720000012
Figure FDA0003290609720000011
where R=Bdiag(R r , R A ),
Figure FDA0003290609720000012
其中,Rr表示所有测量向量的协方差矩阵;RA表示所述锚节点的噪声协方差矩阵;r表示所述所有测量向量;A表示所述锚节点位置矩阵;Wherein, R r represents the covariance matrix of all measurement vectors; R A represents the noise covariance matrix of the anchor node; r represents all the measurement vectors; A represents the anchor node position matrix; 设定初始值ζo(ψ)=ζo{0})+G{0}(ψ-ψ{0}),其中,G{0}为梯度矩阵且
Figure FDA0003290609720000013
其中,
Set the initial value ζ o (ψ)=ζ o{0} )+G {0} (ψ-ψ {0} ), where G {0} is the gradient matrix and
Figure FDA0003290609720000013
in,
Figure FDA0003290609720000014
Figure FDA0003290609720000021
其中,
Figure FDA0003290609720000022
Figure FDA0003290609720000023
Figure FDA0003290609720000024
是Qo相对于qo的导数;
Figure FDA0003290609720000014
Figure FDA0003290609720000021
in,
Figure FDA0003290609720000022
Figure FDA0003290609720000023
Figure FDA0003290609720000024
is the derivative of Q o with respect to q o ;
其中,M表示所述锚节点的数量;N表示所述传感器的数量;
Figure FDA0003290609720000025
表示第N个所述传感器在全局参考系下的位置信息;m表示所述锚节点标识,m=1,2,…,M;n表示所述传感器标识,n=1,2,…,N;qo表示所述目标固态体的旋转角度估计量;
Wherein, M represents the number of the anchor nodes; N represents the number of the sensors;
Figure FDA0003290609720000025
Represents the position information of the Nth sensor in the global reference frame; m represents the anchor node identifier, m=1,2,...,M; n represents the sensor identifier, n=1,2,...,N ; q o represents the rotation angle estimator of the target solid body;
基于所述初始值,根据高斯牛顿迭代法针对所述最小二乘模型按照设定的迭代次数以及下式所示的迭代方程进行迭代,获取所述估计量的最大似然解
Figure FDA0003290609720000026
Based on the initial value, according to the Gauss-Newton iteration method, the least squares model is iterated according to the set number of iterations and the iterative equation shown in the following formula to obtain the maximum likelihood solution of the estimator
Figure FDA0003290609720000026
ψ{k+1}=ψ{k}+(G{k}TR-1G{k})-1G{k}TR-1(ζ-ζo{k})),k=0,1,...ψ {k+1} = ψ {k} +(G {k}T R -1 G {k} ) -1 G {k}T R -1 (ζ-ζ o{k} )),k =0,1,... 其中,k表示迭代次数。where k represents the number of iterations.
2.根据权利要求1所述的方法,其特征在于,所述基于分布于目标固态体上的传感器确定所述目标固态体的方向信息与位置信息,包括:2 . The method according to claim 1 , wherein the determining the direction information and position information of the target solid body based on the sensors distributed on the target solid body comprises: 2 . 相应于所述传感器的数量为N且所述传感器的相对位置为已知,所述传感器在局部参考系下位置信息为
Figure FDA0003290609720000027
其中,n表示传感器标识,n=1,2,…,N;
Corresponding to the number of the sensors being N and the relative positions of the sensors being known, the position information of the sensors in the local reference frame is
Figure FDA0003290609720000027
Among them, n represents the sensor identification, n=1,2,...,N;
基于各所述传感器在局部参考系下位置信息,确定各所述传感器在全局参考系下位置信息
Figure FDA0003290609720000028
其中,
Figure FDA0003290609720000029
Q和t分别为由局部参考系到全局参考系的旋转矩阵和平移矢量,且用于表示所述目标固态体的方向信息和位置信息。
Based on the position information of each of the sensors in the local reference frame, determine the position information of each of the sensors in the global reference frame
Figure FDA0003290609720000028
in,
Figure FDA0003290609720000029
Q and t are the rotation matrix and translation vector from the local reference frame to the global reference frame, respectively, and are used to represent the orientation information and position information of the target solid body.
3.根据权利要求1所述的方法,其特征在于,所述获取分布在所述目标固态体周围的锚节点的噪声协方差信息以及测量向量,包括:3. The method according to claim 1, wherein the acquiring noise covariance information and measurement vectors of anchor nodes distributed around the target solid body comprises: 相应于所述锚节点的数量为M,所述锚节点在全局参考系下的位置信息为am,其中,m表示锚节点标识,m=1,2,…,M;Corresponding to the number of anchor nodes being M, the location information of the anchor nodes in the global reference frame is a m , where m represents an anchor node identifier, and m=1, 2,...,M; 根据所述锚节点的位置信息生成所述锚节点的位置矩阵
Figure FDA00032906097200000210
Generate the position matrix of the anchor node according to the position information of the anchor node
Figure FDA00032906097200000210
相应于所述锚节点的位置误差为零均值且独立同分布的高斯随机过程,所述锚节点的噪声协方差矩阵
Figure FDA0003290609720000031
其中,所述σa为所述锚节点的位置误差的标准差σa(m);
Corresponding to the Gaussian random process with zero mean and independent and identical distribution of the position error of the anchor node, the noise covariance matrix of the anchor node
Figure FDA0003290609720000031
Wherein, the σ a is the standard deviation σ a (m) of the position error of the anchor node;
相应于所述测量向量
Figure FDA0003290609720000032
为高斯分布且所述测量向量的协方差矩阵为Rr,n,所有测量向量
Figure FDA0003290609720000033
为高斯分布且所有测量向量的协方差矩阵为Rr=Bdiag(Rr,1,Rr,2,…,Rr,N)。
corresponding to the measurement vector
Figure FDA0003290609720000032
is Gaussian distributed and the covariance matrix of the measurement vectors is R r,n , all measurement vectors
Figure FDA0003290609720000033
is Gaussian distributed and the covariance matrix of all measurement vectors is R r =Bdiag(R r,1 ,R r,2 ,...,R r,N ).
4.根据权利要求1至3任一项所述的方法,其特征在于,所述根据所述目标固态体的方向信息与位置信息以及所述锚节点的噪声协方差信息和所述测量向量构造估计量,并获取所述估计量的对数似然函数,包括:4. The method according to any one of claims 1 to 3, wherein the structure is constructed according to the direction information and position information of the target solid body and the noise covariance information of the anchor node and the measurement vector estimator, and obtain the log-likelihood function of said estimator, including: 生成估计量
Figure FDA0003290609720000034
其中,
Figure FDA0003290609720000035
qo和to分别表示所述目标固态体的旋转角度估计量和平移矢量估计量,Ao表示所述锚节点的位置信息估计量,所述目标固态体的旋转角度q与所述目标固态体旋转矩阵Q具有以下关系:
generate estimators
Figure FDA0003290609720000034
in,
Figure FDA0003290609720000035
q o and t o represent the rotation angle estimate and translation vector estimate of the target solid body, respectively, A o represents the position information estimate of the anchor node, and the rotation angle q of the target solid body is related to the target solid body. The body rotation matrix Q has the following relationship:
q=[α,β,γ]T,Q=QγQβQα
Figure FDA0003290609720000036
Figure FDA0003290609720000037
其中,所述目标固态体旋转矩阵Q为特殊正交群
Figure FDA0003290609720000038
q=[α,β,γ] T , Q=Q γ Q β Q α ,
Figure FDA0003290609720000036
Figure FDA0003290609720000037
Wherein, the rotation matrix Q of the target solid body is a special orthogonal group
Figure FDA0003290609720000038
根据所述估计量ψ确定所述估计量的对数似然函数为:The log-likelihood function of the estimator determined according to the estimator ψ is:
Figure FDA0003290609720000039
Figure FDA0003290609720000039
其中,η是常量,
Figure FDA00032906097200000310
where n is a constant,
Figure FDA00032906097200000310
5.根据权利要求1所述的方法,其特征在于,所述方法还包括:5. The method according to claim 1, wherein the method further comprises: 根据所述估计量以及所述估计量的对数似然函数确定所述目标固态体的旋转角度估计量和平移矢量估计量的克拉美罗下界;Determine the Cramero lower bound of the rotation angle estimator and the translation vector estimator of the target solid body according to the estimator and the log-likelihood function of the estimator; 在多种锚节点位置误差强度下,获取所述估计量的最大似然解的均方误差,并与各锚节点位置误差强度的克拉美罗下界进行比较。Under various anchor node position error strengths, the mean square error of the maximum likelihood solution of the estimator is obtained, and compared with the lower bound of Cramero's position error strength of each anchor node. 6.根据权利要求5所述的方法,其特征在于,所述根据所述估计量以及所述估计量的对数似然函数确定所述目标固态体的旋转角度估计量和平移矢量估计量的克拉美罗下界,包括:6 . The method according to claim 5 , wherein, determining the difference between the rotation angle estimator and the translation vector estimator of the target solid body according to the estimator and the log-likelihood function of the estimator. 7 . The Kramero Nether, including: 将所述估计量的对数似然函数lnp(ζ,ψ)对所述估计量
Figure FDA0003290609720000041
求二阶偏导数,获得费雪信息矩阵
Figure FDA0003290609720000042
Apply the log-likelihood function lnp(ζ,ψ) of the estimator to the estimator
Figure FDA0003290609720000041
Find the second-order partial derivative and get the Fisher information matrix
Figure FDA0003290609720000042
其中,
Figure FDA0003290609720000043
Figure FDA0003290609720000044
Figure FDA0003290609720000045
其中,
Figure FDA0003290609720000046
Figure FDA0003290609720000047
Figure FDA0003290609720000048
是Qo相对于qo的导数;
in,
Figure FDA0003290609720000043
Figure FDA0003290609720000044
Figure FDA0003290609720000045
in,
Figure FDA0003290609720000046
Figure FDA0003290609720000047
Figure FDA0003290609720000048
is the derivative of Q o with respect to q o ;
基于所述费雪信息矩阵FIM(ψ),通过分块矩阵求逆公式,分别获得所述估计量ψ中
Figure FDA0003290609720000049
的克拉美罗下界
Figure FDA00032906097200000410
以及的Ao的克拉美罗下界CRLB(Ao)=FIM(Ao)-1=(Z-YTX-1Y)-1
Based on the Fisher information matrix FIM(ψ), through the block matrix inversion formula, respectively obtain the estimator ψ in
Figure FDA0003290609720000049
Kramero Nether
Figure FDA00032906097200000410
And the Cramero lower bound of A o CRLB(A o )=FIM(A o ) −1 =(ZY T X− 1 Y) −1 .
7.一种固态体定位的装置,其特征在于,所述装置包括:确定部分,获取部分,构造部分和估计部分;其中,7. A device for positioning a solid body, characterized in that the device comprises: a determination part, an acquisition part, a construction part and an estimation part; wherein, 所述确定部分,配置为基于分布于目标固态体上的传感器确定所述目标固态体的方向信息与位置信息;The determining part is configured to determine the direction information and position information of the target solid body based on the sensors distributed on the target solid body; 所述获取部分,配置为获取分布在所述目标固态体周围的锚节点的噪声协方差信息以及测量向量;其中,所述锚节点包括具有位置误差的锚节点;The acquisition part is configured to acquire noise covariance information and measurement vectors of anchor nodes distributed around the target solid body; wherein, the anchor nodes include anchor nodes with position errors; 所述构造部分,配置为根据所述目标固态体的方向信息与位置信息以及所述锚节点的噪声协方差信息和所述测量向量构造估计量,并获取所述估计量的对数似然函数;其中,所述估计量包括所述目标固态体的方向估计量与位置估计量,以及所述锚节点的位置估计量;The construction part is configured to construct an estimator according to the direction information and position information of the target solid body, the noise covariance information of the anchor node and the measurement vector, and obtain a log-likelihood function of the estimator ; Wherein, the estimator includes the direction estimator and the position estimator of the target solid body, and the position estimator of the anchor node; 所述估计部分,配置为基于所述估计量的对数似然函数,按照设定的最大似然估计算法策略获取所述估计量的最大似然解;其中,所述估计量的最大似然解包括所述目标固态体的方向估计值与位置估计值,以及所述锚节点的位置估计值;The estimation part is configured to obtain the maximum likelihood solution of the estimator according to the set maximum likelihood estimation algorithm strategy based on the log-likelihood function of the estimator; wherein, the maximum likelihood of the estimator is The solution includes the estimated direction value and the estimated value of the position of the target solid body, and the estimated value of the position of the anchor node; 其中,所述估计部分,配置为:Wherein, the estimation part is configured as: 按照最大似然法则,根据所述估计量的对数似然函数lnp(ζ,ψ)生成对应的最小二乘模型如下:According to the maximum likelihood rule, the corresponding least squares model is generated according to the log-likelihood function lnp(ζ,ψ) of the estimator as follows:
Figure FDA0003290609720000051
其中R=Bdiag(Rr,RA),
Figure FDA0003290609720000052
Figure FDA0003290609720000051
where R=Bdiag(R r , R A ),
Figure FDA0003290609720000052
其中,Rr表示所有测量向量的协方差矩阵;RA表示所述锚节点的噪声协方差矩阵;r表示所述所有测量向量;A表示所述锚节点位置矩阵;Wherein, R r represents the covariance matrix of all measurement vectors; R A represents the noise covariance matrix of the anchor node; r represents all the measurement vectors; A represents the anchor node position matrix; 设定初始值ζo(ψ)=ζo{0})+G{0}(ψ-ψ{0}),其中,G{0}为梯度矩阵且
Figure FDA0003290609720000053
其中,
Set the initial value ζ o (ψ)=ζ o{0} )+G {0} (ψ-ψ {0} ), where G {0} is the gradient matrix and
Figure FDA0003290609720000053
in,
Figure FDA0003290609720000054
Figure FDA0003290609720000055
其中,
Figure FDA0003290609720000056
Figure FDA0003290609720000057
Figure FDA0003290609720000058
是Qo相对于qo的导数;
Figure FDA0003290609720000054
Figure FDA0003290609720000055
in,
Figure FDA0003290609720000056
Figure FDA0003290609720000057
Figure FDA0003290609720000058
is the derivative of Q o with respect to q o ;
其中,M表示所述锚节点的数量;N表示所述传感器的数量;
Figure FDA0003290609720000059
表示第N个所述传感器在全局参考系下的位置信息;m表示所述锚节点标识,m=1,2,…,M;n表示所述传感器标识,n=1,2,…,N;qo表示所述目标固态体的旋转角度估计量;
Wherein, M represents the number of the anchor nodes; N represents the number of the sensors;
Figure FDA0003290609720000059
Represents the position information of the Nth sensor in the global reference frame; m represents the anchor node identifier, m=1,2,...,M; n represents the sensor identifier, n=1,2,...,N ; q o represents the rotation angle estimator of the target solid body;
基于所述初始值,根据高斯牛顿迭代法针对所述最小二乘模型按照设定的迭代次数以及下式所示的迭代方程进行迭代,获取所述估计量的最大似然解
Figure FDA0003290609720000061
Based on the initial value, according to the Gauss-Newton iteration method, the least squares model is iterated according to the set number of iterations and the iterative equation shown in the following formula to obtain the maximum likelihood solution of the estimator
Figure FDA0003290609720000061
ψ{k+1}=ψ{k}+(G{k}TR-1G{k})-1G{k}TR-1(ζ-ζo{k})),k=0,1,...ψ {k+1} = ψ {k} +(G {k}T R -1 G {k} ) -1 G {k}T R -1 (ζ-ζ o{k} )),k =0,1,... 其中,k表示迭代次数。where k represents the number of iterations.
8.一种固态体定位的装置,其特征在于,所述装置包括:通信接口,存储器和处理器;其中,所述通信接口,用于在与其他外部网元之间进行收发信息过程中,信号的接收和发送;8. An apparatus for positioning a solid-state body, wherein the apparatus comprises: a communication interface, a memory and a processor; wherein, the communication interface is used for sending and receiving information with other external network elements, the reception and transmission of signals; 所述存储器,用于存储能够在所述处理器上运行的计算机程序;the memory for storing a computer program executable on the processor; 所述处理器,用于在运行所述计算机程序时,执行权利要求1至6任一项所述固态体定位的方法步骤。The processor is configured to execute the steps of the method for locating a solid state body according to any one of claims 1 to 6 when running the computer program. 9.一种计算机存储介质,其特征在于,所述计算机存储介质存储有固态体定位的程序,所述固态体定位的程序被至少一个处理器执行时实现权利要求1至6中任一项所述固态体定位的方法步骤。9. A computer storage medium, characterized in that the computer storage medium stores a program for positioning a solid state body, and when the program for positioning the solid state body is executed by at least one processor, any one of claims 1 to 6 is implemented. The method steps for solid state localization are described.
CN201910134391.9A 2019-02-22 2019-02-22 Solid body positioning method and device and computer storage medium Active CN109959918B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910134391.9A CN109959918B (en) 2019-02-22 2019-02-22 Solid body positioning method and device and computer storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910134391.9A CN109959918B (en) 2019-02-22 2019-02-22 Solid body positioning method and device and computer storage medium

Publications (2)

Publication Number Publication Date
CN109959918A CN109959918A (en) 2019-07-02
CN109959918B true CN109959918B (en) 2021-11-09

Family

ID=67023845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910134391.9A Active CN109959918B (en) 2019-02-22 2019-02-22 Solid body positioning method and device and computer storage medium

Country Status (1)

Country Link
CN (1) CN109959918B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411881B (en) * 2021-05-28 2022-06-14 海南大学 RSS unmanned aerial vehicle cluster distributed positioning method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965189B (en) * 2014-07-22 2018-05-29 浙江银江研究院有限公司 Indoor occupant localization method based on maximal possibility estimation
CN105891773A (en) * 2014-12-15 2016-08-24 江南大学 Improved source localization algorithm under sensor error condition
CN106992822A (en) * 2017-03-29 2017-07-28 国网重庆市电力公司电力科学研究院 A Location Method for Blind Nodes in Wireless Sensor Networks
CN107040992B (en) * 2017-06-07 2019-08-27 江西理工大学 Wireless sensor network node positioning method and device
CN108200547B (en) * 2017-11-30 2020-07-14 宁波大学 Rigid body localization method based on measured distance
CN108535687B (en) * 2018-03-20 2021-05-18 西安电子科技大学 Indoor wireless positioning method based on TOF and RSSI information fusion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RSS Distribution-Based Passive Localization and Its Application in Sensor Networks;Liu, Chen et al.;《IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS》;20161231;第15卷(第4期);2883-2895 *

Also Published As

Publication number Publication date
CN109959918A (en) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2019170093A1 (en) Method for generating frequency spectrum state, device and computer storage medium
WO2018112926A1 (en) Locating method, terminal and server
CN111208492A (en) Vehicle-mounted laser radar external parameter calibration method and device, computer equipment and storage medium
CN108668358B (en) A time-of-arrival-based cooperative localization method for wireless sensor networks
US8824325B2 (en) Positioning technique for wireless communication system
JP2015513679A (en) Scene structure-based self-pose estimation
WO2022179094A1 (en) Vehicle-mounted lidar external parameter joint calibration method and system, medium and device
US20140303929A1 (en) Method to obtain accurate vertical component estimates in 3d positioning
CN109959892A (en) A kind of uniform circular array two-channel interferometer direction-finding method, device and system
WO2024120187A1 (en) Method for estimating dynamic target of unmanned aerial vehicle in information rejection environment
CN114019954B (en) Course installation angle calibration method, device, computer equipment and storage medium
CN110018440B (en) Direction finding method, device and system for L-shaped right-angle array based on directional antenna
Zhou A closed-form algorithm for the least-squares trilateration problem
CN109959918B (en) Solid body positioning method and device and computer storage medium
CN113189541A (en) Positioning method, device and equipment
CN109769206B (en) Indoor positioning fusion method and device, storage medium and terminal equipment
CN113840230B (en) Unmanned cluster cooperative positioning method and device
CN108200547A (en) Rigid body localization method based on measurement distance
CN117928569B (en) Real-time calculation method and storage medium based on vehicle-mounted integrated navigation installation angle
CN109975760A (en) Basic matrix fix error angle high-precision calibrating method and device based on double vector reconstructions
CN112240957B (en) Method for correcting amplitude-phase characteristics of antenna in satellite navigation interference direction finding
CN109375159B (en) Pure orientation weighting constraint total least square positioning method
CN109489658B (en) Moving target positioning method and device and terminal equipment
CN109343013B (en) Spatial registration method and system based on restarting mechanism
CN114894222B (en) External parameter calibration method of IMU-GNSS antenna and related method and equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant