CN109959347A - 激光差动共焦核聚变靶丸形态性能参数测量方法与装置 - Google Patents

激光差动共焦核聚变靶丸形态性能参数测量方法与装置 Download PDF

Info

Publication number
CN109959347A
CN109959347A CN201910175919.7A CN201910175919A CN109959347A CN 109959347 A CN109959347 A CN 109959347A CN 201910175919 A CN201910175919 A CN 201910175919A CN 109959347 A CN109959347 A CN 109959347A
Authority
CN
China
Prior art keywords
fusion
differential confocal
target capsule
pin hole
pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910175919.7A
Other languages
English (en)
Other versions
CN109959347B (zh
Inventor
赵维谦
王允
邱丽荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201910175919.7A priority Critical patent/CN109959347B/zh
Publication of CN109959347A publication Critical patent/CN109959347A/zh
Application granted granted Critical
Publication of CN109959347B publication Critical patent/CN109959347B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/255Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring radius of curvature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开的激光差动共焦核聚变靶丸形态性能参数测量方法与装置,属于共焦显微成像、光谱探测及激光惯性约束核聚变技术领域。本发明将激光差动共焦技术与拉曼光谱探测技术结合,利用激光差动共焦技术对激光聚变靶丸壳层的内、外表面进行精密层析定焦,利用拉曼光谱探测技术对靶丸壳层和界面进行光谱激发探测,并进一步通过正交回转驱动技术对靶丸进行三维回转驱动获得靶丸的内/外表面三维形态参数和壳层/界面性能分布参数等,实现核聚变靶丸形态性能参数综合测量。本发明能够为激光惯性约束核聚变仿真实验研究、靶丸制备工艺研究和靶丸筛选提供数据基础和检测手段。本发明在激光惯性约束核聚变、高能物理和精密检测领域有广泛的应用前景。

Description

激光差动共焦核聚变靶丸形态性能参数测量方法与装置
技术领域
本发明属于共焦显微成像、激光惯性约束核聚变及精密光电测量技术领域,将激光差动共焦技术与拉曼光谱探测技术结合,涉及一种激光差动共焦核聚变靶丸形态性能参数综合测量方法与装置,在激光惯性约束核聚变、高能物理和精密检测领域有广泛的应用前景。
技术背景
激光惯性约束核聚变(ICF)是人工模拟核爆和天体演化的重要手段,也是人类探索未来清洁能源的重要方向,因此具有十分重要科研和实用意义。激光惯性约束核聚变实验中,内部填充氘氚(DT)气体的空心激光聚变靶丸是其核心器件,多路激光同时对靶丸进行会聚向心压缩点火引发核爆,激光聚变靶丸的质量是决定激光聚变实验是否成功的关键。美国国家点火装置(NIF)进行的ICF试验失败的一个主要原因是点火过程中靶丸不对称压缩进而导致其中心压力和温度降低以及其内部氘氚(DT)燃料混合不均衡,靶丸壳层和表面的微小缺陷都有可能被放大产生不对称压缩进而导致点火失败。因此精确测量激光聚变靶丸的几何形貌和物理属性参数对于保证激光惯性约束核聚变实验的成功具有重要意义。
目前国际上用于激光聚变靶丸几何形貌参数测量的方法主要采用各类显微镜进行观察,包括扫描电镜法、原子力显微镜法、X射线法、光纤点衍射法和干涉法等,上述方法测量分辨力已达纳米量级,但只能对靶丸外表面轮廓进行无损测量(目前测量内表面是通过破坏性切割后进行测量),而对于靶丸的内轮廓、壳层厚度等内部几何参数无能为力;国际上用于靶丸物理属性参数测量的方法主要有X射线透射法、X射线色谱法、激光质谱法和显微辐照度法等,上述方法主要用于靶丸壳层外外表面或者整体属性参数测量,尚无法测量靶丸壳层内部参数,也无法对靶丸物理属性参数分布进行精确测量。
随着激光惯性约束核聚变技术的发展和工程的推进,上述方法已经无法满足激光惯性约束核聚变技术研究对靶丸形态和性能参数测量的需求,主要存在如下问题:
1)不能无损测量靶丸内部参数,现有方法需要对靶丸进行破坏性切割,测量后靶丸被破坏无法应用于下一步工艺处理或者打靶实验;
2)综合测量能力不足,每种仪器仅能测量一、两种参数,靶丸综合参数测量需在不同仪器上反复装调,效率低下且量值基准不统一;
3)几何形态和物理属性参数测量过程分离,不能全面揭示靶丸制备和核聚变反应过程中发生的结构变化现象和规律;
而激光惯性约束核聚变研究中,靶丸的参数是对核聚变过程进行模拟仿真和对靶丸制备工艺进行提升的基础,因此如何对靶丸形态和性能参数进行高精度、无损的综合测量是激光惯性约束核聚变国家重大工程中的关键技术问题。
激光差动技术利用双路差动探测结构显著提高了光路的轴向分辨力和定焦精度,可实现靶丸的壳层内外表面的高精度层析定焦测量,为靶丸形态和性能参数的高精度无损测量提供了思路。
拉曼光谱技术通过测量样品散射光谱可获取样品的分子结构和化学键信息,进而解耦表征得到靶丸壳层的组分、掺杂浓度和应力等属性信息,利用激光差动共焦技术和拉曼光谱融合技术结合可实现靶丸形态性能综合信息探测。
发明内容
本发明的目的是为了解决激光惯性约束核聚变靶丸形态和性能参数高精度综合测量难题,提供一种激光差动共焦核聚变靶丸形态和性能参数综合测量方法与装置,以期实现靶丸的内/外表面三维形态参数和壳层/界面性能分布参数等,实现核聚变靶丸形态性能参数综合测量。
本发明能够为激光聚变靶丸参数的综合检测提供有效技术手段,对于靶丸制备、激光核聚变实验仿真、数据分析和技术革新具有重要意义。
本发明的目的是通过下述技术方案实现的。
本发明的激光差动共焦核聚变靶丸形态性能参数综合测量方法,利用激光差动共焦技术对聚变靶丸壳层的内、外表面进行精密层析定焦,利用拉曼光谱探测技术对聚变靶丸壳层和界面进行光谱激发探测,并进一步通过正交回转驱动技术对靶丸进行三维回转驱动获得聚变靶丸的内、外表面三维形态参数和壳层、界面性能分布参数,实现聚变靶丸形态性能参数综合测量,包括以下步骤:步骤一、光源系统经过准直透镜准直为平行光束,平行光束被分光镜A反射后再次被二向色分光镜反射形成反射照明光束,反射照明光束由测量物镜会聚为一点对聚变靶丸进行照明,照明光被聚变靶丸反射并激发产生拉曼光谱,携带聚变靶丸信息的拉曼光谱和反射光束透过测量物镜后形成测量光束,测量光束中拉曼光谱透过二向色分光镜,经过光谱会聚镜会聚后被光谱探测系统接收;测量光束中反射光被二向色分光镜反射,透过分光镜A后进入差动共焦探测系统,在差动共焦探测系统中光束经过会聚镜会聚后被分光镜B分为两束,分别透过位于会聚镜焦点前的针孔A和焦点后的针孔B,并被分别位于针孔A和针孔B后的光电探测器A和光电探测器B接收。
步骤二、使计算机控制物镜驱动系统带动测量物镜对聚变靶丸进行轴向扫描,同时计算机采集光电探测器A和光电探测器B接收到的光强信号,根据如下公式计算得到差动共焦曲线,通过差动共焦曲线的依次对聚变靶丸的进行层析定焦,当测量光束会聚点分别与聚变靶丸的内、外表面以及球心位置重合时,I(z,uM)的值为零,监测I(z,uM)的强度,依次记录I(z,uM)的过零点位置的z坐标Zo,Zi和Zc,即得到聚变靶丸对应光轴方向的内、外表面测量点以及球心的轴向光学坐标Zo,Zi和Zc
其中I(z,+uM)和I(z,-uM)分别为光电探测器A和光电探测器B接收到的光强信号,I(z,uM)为归一化差动信号,通过归一化差动信号得到的差动共焦曲线可以有效抑制聚变靶丸表面属性差异影响和系统光源功率飘移,对聚变靶丸进行准确的定焦;
步骤三、当测量物镜的焦点位于聚变靶丸内、外表面或者两者之间的壳层内部时,使计算机采集记录光谱探测系统对探测到的拉曼光谱λR
步骤四、将聚变靶丸的壳层材料折射率n和外表面曲率半径Ro带入如下公式,计算得到聚变靶丸的壳层光轴方向的厚度t;
其中NA为测量物镜的数值孔径。
步骤五、利用聚变靶丸的内、外表面以及球心的光学坐标Zo,Zi和Zc和厚度t计算得到聚变靶丸的内、外表面物理坐标zi和zo
步骤六、利用回转驱动系统驱动聚变靶丸进行水平回转一周,在聚变靶丸水平圆周上的各个点位置重复步骤一致步骤五,依次获得聚变靶丸水平面圆周的内外表面物理坐标点集合(zo,zi)i和拉曼光谱λRi
步骤七、利用正交回转系统驱动聚变靶丸进行步进正交回转驱动,每驱动一步重复步骤一致步骤六,依次获得聚变靶丸的内外表面三维物理坐标点集合{[(zo,zi)i]j}和拉曼光谱(λRi)j
步骤八、计算机对三维物理坐标点集合{[(zo,zi)i]j}和拉曼光谱(λRi)j进行三维重构和解包裹计算即得内、外表面三维形态参数和壳层、界面性能分布参数,实现核聚变靶丸形态性能参数的综合测量。
步骤二所述的差动共焦曲线可对聚变靶丸的内、外表面以及球心等特征位置进行层析定焦包括两种模式:利用差动共焦曲线的过零点进行精确触发定焦和利用差动共焦曲线的过零点附近线性段进行快速拟合定焦。
差动共焦探测系统中的光强探测可以采用放大镜A、CCD探测器A组成的虚拟针孔替换针孔A和光电探测器A,用放大镜B、CCD探测器B组成的虚拟针孔替换针孔B和光电探测器B,通过对CCD探测器A和CCD探测器B探测得到的光斑图像进行区域灰度采集计算获得差动共焦曲线,降低光路装调精度要求,提高光路设计自由度。
本发明公开的激光差动共焦核聚变靶丸形态性能参数综合测量装置,包括光源系统、沿着光源出射方向放置的分光镜A,沿着分光镜A反射方向放置的二向色分光镜,沿着二向色分光镜反射方向依次放置的测量物镜,位于分光镜A反射方向反方向的差动共焦探测系统,位于二向色分光镜反射方向反方向依次放置的光谱会聚镜和光谱探测系统,位于测量物镜出射方向并且回转轴线与测量光轴同轴的正交驱动系统,回转轴线与测量光轴垂直相交的回转驱动系统,对测量物镜进行轴向驱动的物镜驱动系统和数据进行采集处理的计算机。
光源系统包括激光器、位于激光器出射方向的光源会聚镜、位于光源会聚镜焦点位置的光源针孔。
差动共焦系统包括会聚镜,位于会聚镜透射方向的分光镜B、针孔A和光电探测器A,位于分光镜B反射方向的针孔B和光电探测器B,其中针孔A和针孔B分别相对于会聚镜的焦点前、后等量反向离焦。
光谱探测系统包括光谱针孔和位于光谱针孔后的光谱仪。
差动共焦系统中可以采用放大镜A、CCD探测器A组成的虚拟针孔替换针孔A和光电探测器A,用放大镜B、CCD探测器B组成的虚拟针孔替换针孔B和光电探测器B,其中放大镜A和用放大镜B的物方焦点分别相对于会聚镜的焦点前、后等量反向离焦。
有益效果:
1、本发明公开的激光差动共焦核聚变靶丸形态和性能参数综合测量方法与装置,通过激光差动共焦轴向强度曲线的“过零点”与测量物镜的焦点精确对应这一特性,对被测聚变靶丸内表面实现精确层析定焦,能够解决靶丸内表面目前难以无损测量的难题。
2、本发明公开的激光差动共焦核聚变靶丸形态和性能参数综合测量方法与装置,利用激光差动共焦定焦技术对聚变靶丸内、外表面和球心等特征位置进行精密定位,能够实现聚变靶丸内、外曲率半径、壳层厚度等几何参数综合测量。
3、本发明公开的激光差动共焦核聚变靶丸形态和性能参数综合测量方法与装置,通过归一化差动处理,能够有效抑制靶丸表面属性差异和系统光源功率飘移的影响。
4、本发明公开的激光差动共焦核聚变靶丸形态和性能参数综合测量方法与装置,利用激光差动共焦定焦技术和三维回转扫描技术结合,能够对聚变靶丸内外表面轮廓进行扫描,同时获得聚变靶丸内、外三维轮廓和壳层分布等综合信息。
5、本发明公开的激光差动共焦核聚变靶丸形态和性能参数综合测量方法与装置,结合拉曼光谱的探测,获得激光聚变靶丸不同界面、壳层位置的拉曼光谱,并通过解耦表征得到聚变靶丸的组分、浓度等性能信息;
6、本发明公开的激光差动共焦核聚变靶丸形态和性能参数综合测量方法与装置,通过多种技术的有机融合,能够实现对聚变靶丸在一台仪器上通过一次装调测量得到多个参数,显著提高了测量的精度和效率;
7、本发明公开的激光差动共焦核聚变靶丸形态和性能参数综合测量方法与装置,通过同一台仪器、采用同一原理对聚变靶丸不同参数进行测量,测量基准统一、测量精度匹配,可以为聚变靶丸的参数换算和表征提供基础。
附图说明
图1为本发明激光差动共焦核聚变靶丸形态性能参数综合测量方法示意图;
图2为本发明激光差动共焦核聚变靶丸形态性能参数综合测量装置示意图;
图3为本发明的实施例1的激光差动共焦核聚变靶丸形态性能参数综合测量方法示意图;
图4为本发明的实施例2的激光差动共焦核聚变靶丸形态性能参数综合测量装置示意图;
图5为激光差动共焦轴向强度曲线;
图6为激光聚变靶丸壳层拉曼光谱曲线;
其中:1-光源系统、2-准直透镜、3-分光镜A、4-物镜驱动系统、5-测量物镜、6-差动共焦探测系统、7-会聚镜、8-分光镜B、9-针孔A、10-光电探测器A、11-针孔B、12-光电探测器B、13-聚变靶丸、14-正交驱动系统、15-回转驱动系统、16-计算机、17-差动共焦曲线、18-激光器、19-光源会聚镜、20-光源针孔、21-二向色分光镜、22-光谱会聚镜、23-光谱探测系统、24-光谱仪、25-光谱针孔、26-光谱曲线、27-放大镜A、28-放大镜B、29-光电探测器B、30-CCD探测器B、31-CCD探测器B。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
实施例1
如图3所示,在激光差动共焦核聚变靶丸形态性能参数综合测量方法中,光源系统1选用点光源,点光源出射的激发光束经过准直透镜2准直为平行光束,平行光束被分光镜A3反射后再次被二向色分光镜21反射形成反射照明光束,反射照明光束由测量物镜5会聚为一点对聚变靶丸13进行照明,照明光被聚变靶丸13反射并激发产生拉曼光谱,携带聚变靶丸13信息的拉曼光谱和反射光束透过测量物镜5后形成测量光束,测量光束中拉曼光谱透过二向色分光镜21,经过光谱会聚镜22会聚后被光谱探测系统23接收;测量光束中反射光被二向色分光镜21反射,透过分光镜A3后进入差动共焦探测系统6,在差动共焦探测系统6中光束经过会聚镜7会聚后被分光镜B8分为两束,分别透过位于会聚镜7焦点前的针孔A9和焦点后的针孔B11,并被分别位于针孔A9和针孔B11后的光电探测器A10和光电探测器B12接收。
步骤二、使计算机16控制物镜驱动系统4带动测量物镜5对聚变靶丸13进行轴向扫描,同时计算机16采集光电探测器A10和光电探测器B12接收到的光强信号,根据如下公式计算得到差动共焦曲线17,通过差动共焦曲线17的依次对聚变靶丸13的进行层析定焦,当测量光束会聚点分别与聚变靶丸13的内、外表面以及球心位置重合时,I(z,uM)的值为零,监测I(z,uM)的强度,依次记录I(z,uM)的过零点位置的z坐标Zo,Zi和Zc,即得到聚变靶丸13对应光轴方向的内、外表面测量点以及球心的轴向光学坐标Zo,Zi和Zc
其中I(z,+uM)和I(z,-uM)分别为光电探测器A10和光电探测器B12接收到的光强信号,I(z,uM)为归一化差动信号,通过归一化差动信号得到的差动共焦曲线17能够有效抑制聚变靶丸13表面属性差异影响和系统光源功率飘移,对聚变靶丸13进行准确的定焦;
当测量物镜5的焦点位于聚变靶丸13内、外表面或者两者之间的壳层内部时,使计算机16采集记录光谱探测系统23对探测到的拉曼光谱λR,如图6所示;
将聚变靶丸13的壳层材料折射率n和外表面曲率半径Ro带入如下公式,计算得到聚变靶丸13的壳层光轴方向的厚度t;
其中NA为测量物镜5的数值孔径。
利用聚变靶丸13的内、外表面以及球心的光学坐标Zo,Zi和Zc和厚度t可以计算得到聚变靶丸13的内、外表面物理坐标zi和zo
利用回转驱动系统15驱动聚变靶丸13进行水平回转一周,在靶丸水平圆周上的各个点位置重复上述采集步骤,依次获得聚变靶丸13水平面圆周的内外表面物理坐标点集合(zo,zi)i和拉曼光谱λRi
利用正交回转系统14驱动聚变靶丸13进行步进正交回转驱动,每驱动一步重复上述采集步骤,依次获得聚变靶丸13的内外表面三维物理坐标点集合{[(zo,zi)i]j}和拉曼光谱(λRi)j
计算机16对三维物理坐标点集合{[(zo,zi)i]j}和拉曼光谱(λRi)j进行三维重构和解包裹计算即得内、外表面三维形态参数和壳层、界面性能分布参数,实现核聚变靶丸形态性能参数的综合测量。
实施例2
如图4所示,激光差动共焦核聚变靶丸形态性能参数综合测量装中,包括光源系统1、沿着光源出射方向放置的分光镜A3,沿着分光镜A3反射方向放置的二向色分光镜21,沿着二向色分光镜21反射方向依次放置的测量物镜5,位于分光镜A3反射方向反方向的差动共焦探测系统6,位于二向色分光镜21反射方向反方向依次放置的光谱会聚镜22和光谱探测系统23,位于测量物镜5出射方向并且回转轴线与测量光轴同轴的正交驱动系统14,回转轴线与测量光轴垂直相交的回转驱动系统15,对测量物镜5进行轴向驱动的物镜驱动系统4和数据进行采集处理的计算机16;光源系统1包括激光器18、位于激光器18出射方向的光源会聚镜19、位于光源会聚镜19焦点位置的光源针孔20;差动共焦系统6包括会聚镜7,位于会聚镜7透射方向的放大镜A27、放大镜B 28组成的虚拟针,和位于会聚镜7反射方向的用光电探测器B 29、CCD探测器B30组成的虚拟针孔,其中放大镜A27和用放大镜B28的物方焦点分别相对于会聚镜7的焦点前、后等量反向离焦。
以上结合附图对本发明的具体实施方式作了说明,但这些说明不能被理解为限制了本发明的范围。本发明的保护范围由随附的权利要求书限定,任何在本发明权利要求基础上的改动都是本发明的保护范围。

Claims (8)

1.激光差动共焦核聚变靶丸形态性能参数综合测量方法,其特征在于:利用激光差动共焦技术对聚变靶丸(13)壳层的内、外表面进行精密层析定焦,利用拉曼光谱探测技术对聚变靶丸(13)壳层和界面进行光谱激发探测,并进一步通过正交回转驱动技术对靶丸进行三维回转驱动获得聚变靶丸(13)的内、外表面三维形态参数和壳层、界面性能分布参数,实现聚变靶丸(13)形态性能参数综合测量,包括以下步骤:
步骤一、光源系统(1)经过准直透镜(2)准直为平行光束,平行光束被分光镜A(3)反射后再次被二向色分光镜(21)反射形成反射照明光束,反射照明光束由测量物镜(5)会聚为一点对聚变靶丸(13)进行照明,照明光被聚变靶丸(13)反射并激发产生拉曼光谱,携带聚变靶丸(13)信息的拉曼光谱和反射光束透过测量物镜(5)后形成测量光束,测量光束中拉曼光谱透过二向色分光镜(21),经过光谱会聚镜(22)会聚后被光谱探测系统(23)接收;测量光束中反射光被二向色分光镜(21)反射,透过分光镜A(3)后进入差动共焦探测系统(6),在差动共焦探测系统(6)中光束经过会聚镜(7)会聚后被分光镜B(8)分为两束,分别透过位于会聚镜(7)焦点前的针孔A(9)和焦点后的针孔B(11),并被分别位于针孔A(9)和针孔B(11)后的光电探测器A(10)和光电探测器B(12)接收;
步骤二、使计算机(16)控制物镜驱动系统(4)带动测量物镜(5)对聚变靶丸(13)进行轴向扫描,同时计算机(16)采集光电探测器A(10)和光电探测器B(12)接收到的光强信号,根据如下公式计算得到差动共焦曲线(17),通过差动共焦曲线(17)的依次对聚变靶丸(13)的进行层析定焦,当测量光束会聚点分别与聚变靶丸(13)的内、外表面以及球心位置重合时,I(z,uM)的值为零,监测I(z,uM)的强度,依次记录I(z,uM)的过零点位置的z坐标Zo,Zi和Zc,即可得到聚变靶丸(13)对应光轴方向的内、外表面测量点以及球心的轴向光学坐标Zo,Zi和Zc
其中I(z,+uM)和I(z,-uM)分别为光电探测器A(10)和光电探测器B(12)接收到的光强信号,I(z,uM)为归一化差动信号,通过归一化差动信号得到的差动共焦曲线(17)有效抑制聚变靶丸(13)表面属性差异影响和系统光源功率飘移,对聚变靶丸(13)进行准确的定焦;
步骤三、当测量物镜(5)的焦点位于聚变靶丸(13)内、外表面或者两者之间的壳层内部时,使计算机(16)采集记录光谱探测系统(23)对探测到的拉曼光谱λR
步骤四、将聚变靶丸(13)的壳层材料折射率n和外表面曲率半径Ro带入如下公式,计算得到聚变靶丸(13)的壳层光轴方向的厚度t;
其中NA为测量物镜(5)的数值孔径;
步骤五、利用聚变靶丸(13)的内、外表面以及球心的光学坐标Zo,Zi和Zc和厚度t可以计算得到聚变靶丸(13)的内、外表面物理坐标zi和zo
步骤六、利用回转驱动系统(15)驱动聚变靶丸(13)进行水平回转一周,在聚变靶丸(13)水平圆周上的各个点位置重复步骤一致步骤五,依次获得聚变靶丸(13)水平面圆周的内外表面物理坐标点集合(zo,zi)i和拉曼光谱λRi
步骤七、利用正交回转系统(14)驱动聚变靶丸(13)进行步进正交回转驱动,每驱动一步重复步骤一致步骤六,依次获得聚变靶丸(13)的内外表面三维物理坐标点集合{[(zo,zi)i]j}和拉曼光谱(λRi)j
步骤八、计算机(16)对三维物理坐标点集合{[(zo,zi)i]j}和拉曼光谱(λRi)j进行三维重构和解包裹计算即得内、外表面三维形态参数和壳层、界面性能分布参数,实现核聚变靶丸(13)形态性能参数的综合测量。
2.根据权利要求1所述的激光差动共焦核聚变靶丸形态性能参数综合测量方法,其特征在于:步骤二所述的差动共焦曲线(17)对聚变靶丸(13)的内、外表面以及球心等特征位置进行层析定焦包括两种模式:模式一,利用差动共焦曲线(17)的过零点进行精确触发定焦;模式二,利用差动共焦曲线(17)的过零点附近线性段进行快速拟合定焦。
3.根据权利要求1所述的激光差动共焦核聚变靶丸形态性能参数综合测量方法,其特征在于:差动共焦探测系统(6)中的光强探测可以采用放大镜A(28)、CCD探测器A(29)组成的虚拟针孔替换针孔A(9)和光电探测器A(10),用放大镜B(30)、CCD探测器B(31)组成的虚拟针孔替换针孔B(11)和光电探测器B(12),通过对CCD探测器A(29)和CCD探测器B(31)探测得到的光斑图像进行区域灰度采集计算获得差动共焦曲线(17),降低光路装调精度要求,提高光路设计自由度。
4.激光差动共焦核聚变靶丸形态性能参数综合测量装置,其特征在于:包括光源系统(1)、沿着光源出射方向放置的分光镜A(3),沿着分光镜A(3)反射方向放置的二向色分光镜(21),沿着二向色分光镜(21)反射方向依次放置的测量物镜(5),位于分光镜A(3)反射方向反方向的差动共焦探测系统(6),位于二向色分光镜(21)反射方向反方向依次放置的光谱会聚镜(22)和光谱探测系统(23),位于测量物镜(5)出射方向并且回转轴线与测量光轴同轴的正交驱动系统(14),回转轴线与测量光轴垂直相交的回转驱动系统(15),对测量物镜(5)进行轴向驱动的物镜驱动系统(4)和数据进行采集处理的计算机(16)。
5.根据权利要求4所述的激光差动共焦核聚变靶丸形态性能参数综合测量装置,其特征在于:光源系统(1)包括激光器(18)、位于激光器(18)出射方向的光源会聚镜(19)、位于光源会聚镜(19)焦点位置的光源针孔(20)。
6.根据权利要求4所述的激光差动共焦核聚变靶丸形态性能参数综合测量装置,其特征在于:差动共焦系统(6)包括会聚镜(7),位于会聚镜(7)透射方向的分光镜B(8)、针孔A(9)和光电探测器A(10),位于分光镜B(8)反射方向的针孔B(11)和光电探测器B(12),其中针孔A(9)和针孔B(11)分别相对于会聚镜(7)的焦点前、后等量反向离焦。
7.根据权利要求4所述的激光差动共焦核聚变靶丸形态性能参数综合测量装置,其特征在于:光谱探测系统(23)包括光谱针孔(25)和位于光谱针孔(25)后的光谱仪(24)。
8.根据权利要求7所述的激光差动共焦核聚变靶丸形态性能参数综合测量装置,其特征在于:差动共焦系统(6)中采用放大镜A(27)、CCD探测器A(28)组成的虚拟针孔替换针孔A(9)和光电探测器A(10),用放大镜B(29)、CCD探测器B(30)组成的虚拟针孔替换针孔B(11)和光电探测器B(12),其中放大镜A(27)和用放大镜B(28)的物方焦点分别相对于会聚镜(7)的焦点前、后等量反向离焦。
CN201910175919.7A 2019-03-08 2019-03-08 激光差动共焦核聚变靶丸形态性能参数测量方法与装置 Active CN109959347B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910175919.7A CN109959347B (zh) 2019-03-08 2019-03-08 激光差动共焦核聚变靶丸形态性能参数测量方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910175919.7A CN109959347B (zh) 2019-03-08 2019-03-08 激光差动共焦核聚变靶丸形态性能参数测量方法与装置

Publications (2)

Publication Number Publication Date
CN109959347A true CN109959347A (zh) 2019-07-02
CN109959347B CN109959347B (zh) 2020-11-03

Family

ID=67024158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910175919.7A Active CN109959347B (zh) 2019-03-08 2019-03-08 激光差动共焦核聚变靶丸形态性能参数测量方法与装置

Country Status (1)

Country Link
CN (1) CN109959347B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982344A (zh) * 2020-08-17 2020-11-24 中国工程物理研究院激光聚变研究中心 激光惯性约束聚变热斑高空间分辨探测系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091299A (zh) * 2013-01-21 2013-05-08 北京理工大学 激光差动共焦图谱显微成像方法与装置
CN103105231A (zh) * 2013-01-21 2013-05-15 北京理工大学 一种高空间分辨共焦拉曼光谱探测方法与装置
US20170023611A1 (en) * 2014-02-17 2017-01-26 Universität Basel Atomic force microscope measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091299A (zh) * 2013-01-21 2013-05-08 北京理工大学 激光差动共焦图谱显微成像方法与装置
CN103105231A (zh) * 2013-01-21 2013-05-15 北京理工大学 一种高空间分辨共焦拉曼光谱探测方法与装置
US20170023611A1 (en) * 2014-02-17 2017-01-26 Universität Basel Atomic force microscope measuring device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LONGXIAO WANG等: "Laser differential confocal inner-surface profile measurement method for an ICF capsule", 《OPTICS EXPRESS》 *
王允 等: "激光聚变靶丸形态性能参数高精度综合测量方法", 《第十七届全国光学测试学术交流会摘要集》 *
王龙肖 等: "激光聚变靶丸内表面轮廓高精度测量方法", 《第十七届全国光学测试学术交流会摘要集》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982344A (zh) * 2020-08-17 2020-11-24 中国工程物理研究院激光聚变研究中心 激光惯性约束聚变热斑高空间分辨探测系统及方法

Also Published As

Publication number Publication date
CN109959347B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
JP5404400B2 (ja) 光マイクロトモグラフィのための焦点面追跡
CN103926197B (zh) 高空间分辨双轴差动共焦图谱显微成像方法与装置
CN110030942A (zh) 激光差动共焦干涉核聚变靶丸形貌参数测量方法与装置
CN103954602B (zh) 激光双轴差动共焦布里渊-拉曼光谱测量方法与装置
CN103411957B (zh) 高空间分辨双轴共焦图谱显微成像方法与装置
CN103940799B (zh) 激光双轴共焦布里渊-拉曼光谱测量方法与装置
CN109959344A (zh) 激光差动共焦原子力核聚变靶丸表面轮廓测量方法与装置
CN109990709A (zh) 双边错位差动共焦干涉靶丸形貌轮廓参数测量方法与装置
CN109211875A (zh) 后置分光瞳激光差动共焦布里渊-Raman光谱测试方法及装置
CN104697967B (zh) 高空间分辨激光双轴共焦光谱‑质谱显微成像方法与装置
CN110030941A (zh) 激光共焦干涉核聚变靶丸形貌轮廓参数测量方法与装置
CN105241850A (zh) 双轴激光共焦libs、拉曼光谱-质谱成像方法与装置
CN109187438A (zh) 后置分光瞳激光共焦布里渊-拉曼光谱测试方法及装置
CN104931481B (zh) 激光双轴差动共焦诱导击穿‑拉曼光谱成像探测方法与装置
CN109959349A (zh) 激光差动共焦核聚变靶丸几何参数综合测量方法与装置
CN105067570A (zh) 双轴激光差动共焦libs、拉曼光谱-质谱成像方法与装置
CN109959347A (zh) 激光差动共焦核聚变靶丸形态性能参数测量方法与装置
CN109254072A (zh) 一种激光差动共焦Raman-LIBS-质谱联用显微成像方法与装置
CN109959348A (zh) 激光共焦核聚变靶丸形态性能参数综合测量方法与装置
CN113916864B (zh) 一种icf靶内d2燃料气体拉曼光谱定量分析的方法
CN109187502A (zh) 后置分光瞳激光共焦libs光谱显微成像方法与装置
CN109990839A (zh) 双边错位差动共焦聚变靶丸形态性能参数测量方法与装置
CN109187723A (zh) 后置分光瞳差动共焦拉曼光谱-质谱显微成像方法与装置
CN109211874A (zh) 后置分光瞳激光共焦拉曼光谱测试方法及装置
CN110006360A (zh) 激光共焦核聚变靶丸几何参数综合测量方法与装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant