CN109948585A - 一种基于高精度哈希图像检索技术的行人检测方法及系统 - Google Patents

一种基于高精度哈希图像检索技术的行人检测方法及系统 Download PDF

Info

Publication number
CN109948585A
CN109948585A CN201910247002.3A CN201910247002A CN109948585A CN 109948585 A CN109948585 A CN 109948585A CN 201910247002 A CN201910247002 A CN 201910247002A CN 109948585 A CN109948585 A CN 109948585A
Authority
CN
China
Prior art keywords
precision
hash
image retrieval
pedestrian detection
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910247002.3A
Other languages
English (en)
Inventor
焦宏哲
魏斯玮
傅稼润
王春枝
严灵毓
叶志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN201910247002.3A priority Critical patent/CN109948585A/zh
Publication of CN109948585A publication Critical patent/CN109948585A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)

Abstract

本发明属于图像检索技术领域,公开了一种基于高精度哈希图像检索技术的行人检测方法及系统,对于提取的行人图像采用机器学习创建目标函数,进行目标最小化,得到临阶相似矩阵,再采用ILS算法进一步最小化目标函数,得到精确的哈希码;得到精确的哈希码后,采用端到端哈希深度学习方法学习哈希函数,并根据人工神经网络ANN的隐藏层中不同节点的不同权重对输入进行调整;在CNNs后,选择单隐藏层MLP学习hash标签;最后生成的训练函数本发明减少了识别误差与语义损失,提高了对象搜索的准确性和全面性;利用高精度的哈希图像检索算法提高了识别准确率以及识别速率。

Description

一种基于高精度哈希图像检索技术的行人检测方法及系统
技术领域
本发明属于图像检索技术领域,尤其涉及一种基于高精度哈希图像检索技 术的行人检测方法及系统。
背景技术
目前,最接近的现有技术:
基于区域提案的神经网络是一种将区域建议和卷积神经网络相结合的目标 检测算法,比如RCNN,SPP-net,Fast,RCNN,FasterRCNN,RFCN等,通常采 用区域选择或者区域提案网络获取感兴区域,然后在每个提案区域上使用卷积 神经网路做分类得到分类类别和置信度。这种提案方法大大提升了行人检测精 度,但是检测速度有待提升,较难满足行人检测中的高效率检测要求。
端到端的深度学习行人检测采用使用单通道网络架构,比如YOLO,SSD, YOLOv2[3】等,将行人定位和行人识别统一,一次性输出行人的位置信息和行 人的置信度,这样大大提升的网络的执行效率,但是检精度较低有待提升。
所以现阶段行人检测的所采用的深度学习网络总是之具备其中一种特性, 要么速度快但是精度较低,要么精度高但是速度太慢。本发明采用了深度学习 领域新型算法HPSLH,意图同时解决两种问题。
综上所述,现有技术存在的问题是:
(1)现阶段行人检测的所采用的深度学习网络总是只具备其中一种特性, 要么速度快但是精度较低,要么精度高但是速度太慢,使得如果现有检测系统采 用其中一种网络,如采用速度快但精度低的网络,在日后的改进中就无法具备 高精度的优点,反之亦然,这使得行人检测系统必然存在无法改进的缺陷这。
(2)现有行人检测技术难以相互贯通。由第一点看到由于不同的神经网络 特性并不相同,所以很难将不同的网络体系结合在一起,也就意味着行人监测 系统难以相互融合各自的优点进而得到改进。
解决上述技术问题的难度:
现有行人检测的难点有:
外观差异大。包括视角,姿态,服饰和附着物,光照,成像距离等。从不 同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异 也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物 的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和 近距离的人体,在外观上差别也非常大。
检测速度。行人检测一般采用了复杂的模型,运算量相当大,要达到实时 非常困难,一般需要大量的优化。
检测精度较低。就算可以获取清晰的图像,也可能得到低精度的检测结果。
难以融合不同算法的优点。由于网络架构千奇百怪,所以很难将两种不同 的网络架构结合在一起,很难融合不同算法的优点。
由于HPSLH算法相对于其他算法来说,其作为检索标签所应用的哈希码更 为精准,针对细节的识别更为准确。由于行人检测中人的外观差异巨大,所以 更需要细节方面的把握。由此可以解决最主要的问题。并且此算法应用预创建 标签库的方法,所以检测速度方面也有相应提高。
解决上述技术问题的意义:
由此,采用HPSLH可以解决以上行人检测领域的传统难题。
采用预生成标签的方式,杜绝外观差异大的影响。
运用将两种端到端的深度学习算法结合在一起,创建混成网络的方式,解 决了传统行人检测领域中高检测精度与快检测速度无法共存的问题。
由于本算法中所创建的检测标签更为精细,由此可以解决检测精度较低的 问题。
由于本发明在图像检索领域为前沿高精度算法,精度问题可以解决。本算 法采取从零打造神经网络架构的方式,从零结合两个领域,不存在融合的问题。
发明内容
针对现有技术存在的问题,本发明提供了一种基于高精度哈希图像检索技 术的行人检测方法及系统。本发明采用了深度学习领域新型算法HPSLH,同时解 决了现有技术存在的两种问题。
本发明是这样实现的,高精度图像检索算法(HPSLH,High precision self-learning hashingfor Image Retrieval)是一种基于深度学习的图像检 索算法,本发明提供了一种基于高精度哈希图像检索技术的行人检测方法分为 两个部分,第一部分为哈希码创建部分,第二部分为端到端的哈希深度学习来 学习哈希函数,进而利用函数完成检测。在第一步,首先对于所提取的行人图 像,采用机器学习创建目标函数,将其目标最小化,得到临阶相似矩阵,之后 采用ILS算法进一步最小化目标函数,进而得到精确的哈希码。
得到精确的哈希码之后,本发明采用一种端到端哈希深度学习来学习哈希 函数,本发明采用的是一种人工神经网络(ANN),由输入层、隐藏层和输出层组 成。它可以根据隐藏层中不同节点的不同权重对输入进行调整。在CNNs之后, 选择单隐藏层MLP来学习hash标签。最后生成的函数可表示为:本函数F(X)表 示输出一个mxd矩阵,m是批量的样本数量,d是最后一个全连接层的输出数量,x 是输出向量,y是对应的标签。则生成的训练函数可表示为
基于以上方法,本发明得出了一个区域式网络与端到端相结合的神将网络 架构,将其用于行人检测领域中,便可解决现有技术存在的两种问题。
进一步,所述基于高精度哈希图像检索技术的行人检测方法具体包括:
第一步,获取目标图像;
第二步,创建临阶相似矩阵;
第三步,将生成的矩阵带入ISL算法得到对应的哈希码标签;
第四步,将所生成的哈希码标签带入Ann网络进项多次迭代学习,进而得 到最终的检测结果。
进一步,第一步中,采用深层的CNN网络结构获取图像的特征;在图片经 过深层次的神经网络捕捉特征后,对获取的特征进行数据格式上的规范化处理, 使特征的数据格式完全符合哈希码创建公式:
其中N为输入特征向量的临近集合,S为创建的临近相似矩阵,C为偏置参 数;I为单位矩阵。
进一步,第二步中,建立n×n相似矩阵S,两个二进制码hi和hj之间的 汉明距离由hi和hj之间不同的比特数给出;将加权平均汉明距离最小化,表 示语义损失,得到符合相似矩阵S计算公式的哈希码。
进一步,得到符合相似矩阵S计算公式的哈希码中,训练特征为:X=[x1, x2,...,xn]∈Rp×n,训练特征为前面环节所输入的视觉特征,R为参数矩 阵,n为训练图像的个数,p为特征的维数,设哈希码为H=[h1,h2,..., hn]T∈{1,-1}n×c,c是哈希码的长度,n为图片的数量;
其中Nk(x)表示特征向量x的近邻集合;通过相似矩阵S判断特征是否所输 入参数是否属于临近特征集合。
进一步,第三步中,哈希函数表示为:
哈希函数为最终哈希码H的计算公式,选取(N-S+φC)的最小非零特征 值作为H的数值;其中N为输入特征向量的临近集合,S为创建的临近相似矩阵, C为偏置参数;I为单位矩阵。
进一步,第四步中,采用MLP算法的端到端的深度学习算法学习哈希函数; MLP包括一个输入层,一个输出层和若干个隐藏层;根据隐藏层中不同节点的不 同权重对输入进行调整;CNNs后,选择单隐藏层型的MLP学习哈希码标签,在 多输出条件下构建ANN的端到端的哈希函数深度学习模型。
本发明的另一目的在于提供一种实施所述的基于高精度哈希图像检索技术 的行人检测方法的道路交通行人图像检索检测终端。
本发明的另一目的在于提供一种基于高精度哈希图像检索方法的行人检测 控制系统。
综上所述,本发明的优点及积极效果为:
由于行人检测中识别的基础表示是身形等相对于一般图片精度要求更高的 要素,所以在行人检测领域,提高识别要素的精度一直是研究工作者所追求的 目标。本发明目标在于利用一种基于高精度哈希算法(HPSLH)其识别精度相对 较高的特点,减少了识别误差与语义损失,提高了对象搜索的准确性和全面性, 并提高了行人检测的搜索效率。
本发明使用高精度的哈希图像检索算法进行行人检测的方法首次提出。利 用高精度的哈希图像检索算法提高了识别准确率以及识别速率。
附图说明
图1是本发明实施例提供的基于高精度哈希图像检索技术的行人检测方法 流程图。
图2是本发明实施例提供的带入5w张左右图片集的实验结果图。
图3是本发明实施例提供的实验和训练时间图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例, 对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以 解释本发明,并不用于限定本发明。
现阶段行人检测的所采用的深度学习网络总是之具备其中一种特性,要么 速度快但是精度较低,要么精度高但是速度太慢。
为解决上述技术问题,下面结合具体方案对本发明作详细描述。
如图1所示,本发明实施例提供的基于高精度哈希图像检索技术的行人检 测方法包括:
第一步:获取目标图像。
第二步:创建临阶相似矩阵。
第三步:将生成的矩阵带入ISL算法得到对应的哈希码标签。
第四步:将所生成的哈希码标签带入Ann网络进项多次迭代学习,进而得 到最终的检测结果。
本发明提供一种基于高精度哈希图像检索方法的行人检测控制系统。
下面结合具体实施例对本发明作进一步描述。
实施例:
本发明实施例提供的基于高精度哈希图像检索技术的行人检测方法分为两 部分,首先在第一部分本发明利用上述的第一种算法来创建哈希码。
在第一阶段,可分为以下两个步骤:
步骤一:在主要功能为哈希码创建的第一阶段,本发明首先采用深层的CNN 网络结构来获取图像的特征。通过深层次的CNN获取的特征,本发明可以保证 特征的准确性与详细程度。
步骤二:在图片经过深层次的神经网络捕捉特征后,本发明采用数学公式 (数学公式具体针对调整所捕捉的特征的格式,视特征而定,并不存在定式), 对获取的特征进行数据格式上的规范化处理,使特征的数据格式(也视商品信 息情况而定,无定式)能够完全符合本发明接下来的哈希码创建公式,否则输 入为统一规范化的数据,会使该数据无法被使用。接下来本发明建立一个n×n 相似矩阵S,两个二进制码hi和hj之间的汉明距离(对应于特征xi和xj)是 由它们之间不同的比特数给出的。本发明寻求将加权平均汉明距离最小化,表 示语义损失,使结果更加精确。在此之后,本发明得到的是精确详细又符合本 发明计算公式的哈希码,所采用的哈希函数:
训练特征为:X=[x1,x2,...,xn]∈Rp×n,训练特征为前面环节所输 入的视觉特征,(R为参数矩阵,n为训练图像的个数,p为特征的维数),设哈 希码为H=[h1,h2,...,hn]T∈{1,-1}n×c(c是哈希码的长度,n为图 片的数量).
本发明创建相似矩阵矩阵S。其中Nk(x)表示特征向量x的近邻集合。
以上公式为判断特征是否所输入参数是否属于临近特征集合,创建临近相似 矩阵进行之后的优化可保证哈希码的识别性。
最终哈希函数可表示为:
以上哈希函数为最终哈希码H的计算公式,其含义选取(N-S+φC)的最小非 零特征值作为H的数值。其中N为输入特征向量的临近集合,S为创建的临近相 似矩阵,C为偏置参数。I为单位矩阵。
本发明在第一阶段采用了相对深层次的网络结构,这保证了本发明所创建 的哈希码的准确性,但是在下一个阶段,本发明则采用了相对较为简单的网络 结构。
在第二阶段,本发明主要是实现了一种端到端的深度学习算法来学习哈希 函数。首先,导入在哈希标签生成阶段获得的哈希码标签。在此之后,本发明 采用MLP算法来学习哈希函数。MLP包括一个输入层,一个输出层和若干个隐含 层。对于MLP,本发明可以用Backprop(backward propagation oferrors,误 差的反向传播,简称BP)算法实现它的建模,由于采用了相对较为简单的网络 结构,该算法具有结构简单、易于实现等特点。本发明采用的是一种人工神经 网络(ANN),由输入层、隐藏层和输出层组成。它可以根据隐藏层中不同节点的 不同权重对输入进行调整。在CNNs之后,本发明选择单隐藏层型的MLP来学习哈希码标签的原因是CNNs也是MLP的一种转换模型。因此,本发明可以在多输 出条件下构建ANN的端到端的深度学习模型。
对于本阶段学习过程的函数:
输出为一个mxd矩阵,m是批量的样本数量,d是最后一个全连接层的输出 数量,x是输出向量,y是对应的标签。
下面结合实验对本发明作进一步描述。
如图2所示,为本发明的检测方法带入5w张左右图片集的实验结果,其图 片种类包括人,狗,猫等12中不同的类型。实验结果表明,在256次迭代之后, 准确率达到最高,大概为百分比98.3。
其实验和训练时间如图3所示,可以看到其单次识别时间仅为0.0035秒, 完全可以满足行人检测要求中实时检测这一条。
由此,可以得出本算法具有以上所述优点的结论。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发 明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明 的保护范围之内。

Claims (9)

1.一种基于高精度哈希图像检索技术的行人检测方法,其特征在于,所述基于高精度哈希图像检索技术的行人检测方法包括:
对于提取的行人图像采用机器学习创建目标函数,进行目标最小化,得到临阶相似矩阵,再采用ILS算法进一步最小化目标函数,得到精确的哈希码;
得到精确的哈希码后,采用端到端哈希深度学习方法学习哈希函数,根据人工神经网络ANN的隐藏层中不同节点的不同权重对输入进行调整;并进行CNNs后,选择单隐藏层MLP学习hash标签;最后生成训练函数:
表示输出为一个mxd矩阵,m是批量的样本数量,d是最后一个全连接层的输出数量,x是输出向量,y是对应的标签。
2.如权利要求1所述的基于高精度哈希图像检索技术的行人检测方法,其特征在于,所述基于高精度哈希图像检索技术的行人检测方法具体包括:
第一步,获取目标图像;
第二步,创建临阶相似矩阵;
第三步,将生成的矩阵带入ISL算法得到对应的哈希码标签;
第四步,将所生成的哈希码标签带入Ann网络进项多次迭代学习,得到最终的检测结果。
3.如权利要求2所述的基于高精度哈希图像检索技术的行人检测方法,其特征在于,第一步中,采用深层的CNN网络结构获取图像的特征;在图片经过深层次的神经网络捕捉特征后,对获取的特征进行数据格式上的规范化处理,使特征的数据格式完全符合哈希码创建公式:
S.t.HHT=I
其中N为输入特征向量的临近集合,S为创建的临近相似矩阵,C为偏置参数;I为单位矩阵。
4.如权利要求2所述的基于高精度哈希图像检索技术的行人检测方法,其特征在于,第二步中,建立n×n相似矩阵S,两个二进制码hi和hj之间的汉明距离由hi和hj之间不同的比特数给出;将加权平均汉明距离最小化,表示语义损失,得到符合相似矩阵S计算公式的哈希码。
5.如权利要求4所述的基于高精度哈希图像检索技术的行人检测方法,其特征在于,得到符合相似矩阵S计算公式的哈希码中,训练特征为:X=[x1,x2,...,xn]∈Rp×n,训练特征为前面环节所输入的视觉特征,R为参数矩阵,n为训练图像的个数,p为特征的维数,设哈希码为H=[h1,h2,...,hn]T∈{1,-1}n×c,c是哈希码的长度,n为图片的数量;
其中Nk(x)表示特征向量x的近邻集合;通过相似矩阵S判断特征是否所输入参数是否属于临近特征集合。
6.如权利要求4所述的基于高精度哈希图像检索技术的行人检测方法,其特征在于,第三步中,哈希函数表示为:
哈希函数为最终哈希码H的计算公式,选取(N-S+φC)的最小非零特征值作为H的数值;其中N为输入特征向量的临近集合,S为创建的临近相似矩阵,C为偏置参数;I为单位矩阵。
7.如权利要求2所述的基于高精度哈希图像检索技术的行人检测方法,其特征在于,第四步中,采用MLP算法的端到端的深度学习算法学习哈希函数;MLP包括一个输入层,一个输出层和若干个隐藏层;根据隐藏层中不同节点的不同权重对输入进行调整;进行CNNs后,选择单隐藏层型的MLP学习哈希码标签,在多输出条件下构建ANN的端到端的哈希函数深度学习模型。
8.一种实施权利要求1所述的基于高精度哈希图像检索技术的行人检测方法的基于高精度哈希图像检索技术的行人检测控制系统。
9.一种实施权利要求1所述的基于高精度哈希图像检索技术的行人检测方法的道路交通行人图像检索检测终端。
CN201910247002.3A 2019-03-29 2019-03-29 一种基于高精度哈希图像检索技术的行人检测方法及系统 Pending CN109948585A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910247002.3A CN109948585A (zh) 2019-03-29 2019-03-29 一种基于高精度哈希图像检索技术的行人检测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910247002.3A CN109948585A (zh) 2019-03-29 2019-03-29 一种基于高精度哈希图像检索技术的行人检测方法及系统

Publications (1)

Publication Number Publication Date
CN109948585A true CN109948585A (zh) 2019-06-28

Family

ID=67012816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910247002.3A Pending CN109948585A (zh) 2019-03-29 2019-03-29 一种基于高精度哈希图像检索技术的行人检测方法及系统

Country Status (1)

Country Link
CN (1) CN109948585A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110334682A (zh) * 2019-07-12 2019-10-15 武汉中交交通工程有限责任公司 基于迭代搜索优化哈希算法的自动驾驶系统域自适应方法
CN113326390A (zh) * 2021-08-03 2021-08-31 中国海洋大学 基于深度特征一致哈希算法的图像检索方法
CN114281950A (zh) * 2022-03-07 2022-04-05 山东建筑大学 基于多图加权融合的数据检索方法与系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106682233A (zh) * 2017-01-16 2017-05-17 华侨大学 一种基于深度学习与局部特征融合的哈希图像检索方法
CN109241317A (zh) * 2018-09-13 2019-01-18 北京工商大学 基于深度学习网络中度量损失的行人哈希检索方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106682233A (zh) * 2017-01-16 2017-05-17 华侨大学 一种基于深度学习与局部特征融合的哈希图像检索方法
CN109241317A (zh) * 2018-09-13 2019-01-18 北京工商大学 基于深度学习网络中度量损失的行人哈希检索方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LINGYU YAN 等: "High Precision Self-learning Hashing for Image Retrieval", 《ICPCSEE 2018》 *
YU LIU 等: "Deep Self-Taught Hashing for Image Retrieval", 《IEEE TRANSACTIONS ON CYBERNETICS》 *
严灵毓 等: "面向图像拷贝检测的局部搜索哈希算法", 《武汉大学学报(理学版)》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110334682A (zh) * 2019-07-12 2019-10-15 武汉中交交通工程有限责任公司 基于迭代搜索优化哈希算法的自动驾驶系统域自适应方法
CN110334682B (zh) * 2019-07-12 2023-06-27 武汉中交交通工程有限责任公司 基于迭代搜索优化哈希算法的自动驾驶系统域自适应方法
CN113326390A (zh) * 2021-08-03 2021-08-31 中国海洋大学 基于深度特征一致哈希算法的图像检索方法
CN113326390B (zh) * 2021-08-03 2021-11-02 中国海洋大学 基于深度特征一致哈希算法的图像检索方法
CN114281950A (zh) * 2022-03-07 2022-04-05 山东建筑大学 基于多图加权融合的数据检索方法与系统
CN114281950B (zh) * 2022-03-07 2022-05-06 山东建筑大学 基于多图加权融合的数据检索方法与系统

Similar Documents

Publication Publication Date Title
CN107330396B (zh) 一种基于多属性和多策略融合学习的行人再识别方法
CN110263845B (zh) 基于半监督对抗深度网络的sar图像变化检测方法
CN107016357B (zh) 一种基于时间域卷积神经网络的视频行人检测方法
CN105512680B (zh) 一种基于深度神经网络的多视sar图像目标识别方法
CN108052984B (zh) 计数方法及装置
CN109800648A (zh) 基于人脸关键点校正的人脸检测识别方法及装置
CN109948585A (zh) 一种基于高精度哈希图像检索技术的行人检测方法及系统
CN110263697A (zh) 基于无监督学习的行人重识别方法、装置及介质
CN109101865A (zh) 一种基于深度学习的行人重识别方法
CN108764085A (zh) 基于生成对抗网络的人群计数方法
CN107944396A (zh) 一种基于改进深度学习的刀闸状态识别方法
CN108875816A (zh) 融合置信度准则和多样性准则的主动学习样本选择策略
CN110084131A (zh) 一种基于深度卷积网络的半监督行人检测方法
CN109191455A (zh) 一种基于ssd卷积网络的大田作物病虫害检测方法
CN107133569A (zh) 基于泛化多标记学习的监控视频多粒度标注方法
CN109558810A (zh) 基于部位分割与融合目标人物识别方法
CN109101864A (zh) 基于关键帧和随机森林回归的人体上半身动作识别方法
CN104751175B (zh) 基于增量支持向量机的sar图像多类标场景分类方法
CN110457984A (zh) 监控场景下基于ResNet-50的行人属性识别方法
Hoque et al. Zoometrics-biometric identification of wildlife using natural body marks
CN112052772A (zh) 一种人脸遮挡检测算法
Nuanmeesri A hybrid deep learning and optimized machine learning approach for rose leaf disease classification
CN108595558A (zh) 一种数据均衡策略和多特征融合的图像标注方法
Yu et al. Exemplar-based recursive instance segmentation with application to plant image analysis
CN110298330A (zh) 一种输电线路巡检机器人单目检测与定位方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190628

RJ01 Rejection of invention patent application after publication