CN109934657A - Business data processing method, device, equipment and medium - Google Patents
Business data processing method, device, equipment and medium Download PDFInfo
- Publication number
- CN109934657A CN109934657A CN201711373301.9A CN201711373301A CN109934657A CN 109934657 A CN109934657 A CN 109934657A CN 201711373301 A CN201711373301 A CN 201711373301A CN 109934657 A CN109934657 A CN 109934657A
- Authority
- CN
- China
- Prior art keywords
- data
- business datum
- business
- order
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 16
- 238000012545 processing Methods 0.000 claims abstract description 75
- 230000001960 triggered effect Effects 0.000 claims abstract description 6
- 238000012937 correction Methods 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 58
- 239000011159 matrix material Substances 0.000 description 48
- 230000008569 process Effects 0.000 description 35
- 230000006870 function Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000012905 input function Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及通信领域,尤其涉及一种业务数据的处理方法、装置、设备和计算机可读存储介质。The present invention relates to the field of communications, and in particular, to a method, apparatus, device and computer-readable storage medium for processing service data.
背景技术Background technique
在现有的通信网络系统中,存在着相当庞大的业务数据量,这些业务数据通过多种规则的设定,发送到各个平台侧或者业务运营支持系统(BOSS,Business and OperationSupport System)侧进行相应的配置,以实现相应的业务功能,满足用户的需求。In the existing communication network system, there is a huge amount of business data. These business data are sent to each platform side or the Business and Operation Support System (BOSS, Business and Operation Support System) side through the setting of various rules for corresponding processing. configuration to realize the corresponding business functions and meet the needs of users.
运营商的业务数据种类繁多,而且业务办理时,各个核心系统环环相扣,互相依赖,上下游关系紧密结合的系统出现瓶颈问题,会影响整个系统链路的处理性能。Operators have a wide variety of business data, and during business processing, each core system is interlinked and interdependent, and bottlenecks occur in systems with closely integrated upstream and downstream relationships, which will affect the processing performance of the entire system link.
依据经验和线上资源使用率处理业务数据,当业务数据量较大时,会压垮整个系统;业务数据量较小时,则造成系统资源闲置。Business data is processed based on experience and online resource utilization. When the amount of business data is large, the entire system will be overwhelmed; when the amount of business data is small, system resources will be idle.
综上,由于业务数据与系统资源不匹配,造成系统资源的不合理使用。To sum up, due to the mismatch between business data and system resources, the unreasonable use of system resources is caused.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供了一种业务数据的处理方法、装置、设备和计算机可读存储介质,能够保证业务数据与系统资源匹配,保障系统资源的合理使用。Embodiments of the present invention provide a business data processing method, apparatus, device and computer-readable storage medium, which can ensure that business data matches system resources and ensure rational use of system resources.
根据本发明实施例的一方面,提供一种业务数据的处理方法,该方法包括:According to an aspect of the embodiments of the present invention, a method for processing service data is provided, the method comprising:
业务运营支持系统BOSS利用扩展卡尔曼滤波模型预测处理业务数据的系统资源;The business operation support system BOSS uses the extended Kalman filter model to predict the system resources for processing business data;
在业务数据的系统资源上触发业务日志以记录用户的业务数据;Trigger business logs on system resources of business data to record user business data;
将用户的业务日志生成订单,为订单中的服务类订单开通服务,同时归档服务类订单的数据信息和订单中的非服务类订单的数据信息;Generate an order from the user's business log, activate the service for the service order in the order, and archive the data information of the service order and the data information of the non-service order in the order;
依据BOSS中数据库的历史信息、归档后的服务类订单的数据信息和归档后的非服务类订单的数据信息,对用户订单进行处理。According to the historical information of the database in the BOSS, the data information of the archived service orders and the data information of the archived non-service orders, the user orders are processed.
在一个实施例中,BOSS利用扩展卡尔曼滤波模型预测处理业务数据的系统资源,包括:In one embodiment, BOSS utilizes the extended Kalman filter model to predict system resources for processing business data, including:
BOSS利用上一周期的业务数据的数据量,通过扩展卡尔曼滤波模型,得到本周期数据量的后验估计值;BOSS uses the data volume of the business data in the previous cycle to obtain the posterior estimate of the data volume in this cycle by extending the Kalman filter model;
依据本周期数据量的后验估计值和业务数据的资源占用率,预测业务数据的系统资源。The system resources of the service data are predicted according to the posterior estimated value of the data volume in the current period and the resource occupancy rate of the service data.
在一个实施例中,BOSS利用上一周期的业务数据的数据量,通过扩展卡尔曼滤波模型,得到本周期数据量的后验估计值,包括:In one embodiment, BOSS utilizes the data volume of the business data of the previous cycle to obtain the posterior estimated value of the data volume of this cycle by extending the Kalman filter model, including:
利用上一周期的业务数据的数据量和预测方程,获得本周期数据量的先验估计值;Use the data volume and prediction equation of the business data of the previous cycle to obtain a priori estimate of the current cycle data volume;
基于本周期数据量的先验估计值、校正方程和本周期数据量的观测值,得到本周期数据量的后验估计值。Based on the a priori estimate of the data volume of the current cycle, the correction equation and the observed value of the data volume of the current cycle, the a posteriori estimate of the data volume of the current cycle is obtained.
在一个实施例中,在业务数据的系统资源上触发业务日志以记录用户的业务数据,包括:In one embodiment, triggering a business log on a system resource of business data to record the business data of the user includes:
通过多种渠道在业务数据的系统资源上触发业务日志以记录用户的业务数据。Trigger business logs on system resources of business data through various channels to record user business data.
在一个实施例中,依据BOSS中数据库的历史信息、归档后的服务类订单的数据信息和归档后的非服务类订单的数据信息,对用户订单进行处理,包括:In one embodiment, according to the historical information of the database in the BOSS, the data information of the archived service order and the data information of the archived non-service order, the user order is processed, including:
依据归档后的服务类订单的数据信息和归档后的非服务类订单的数据信息,更新BOSS中数据库的历史信息;According to the data information of the archived service orders and the archived data information of non-service orders, update the historical information of the database in BOSS;
在更新后的BOSS中数据库的历史信息,获取用户对应的历史信息;Obtain the historical information corresponding to the user from the historical information of the database in the updated BOSS;
基于用户对应的历史信息,对用户订单进行处理。Based on the historical information corresponding to the user, the user order is processed.
在一个实施例中,依据BOSS中数据库的历史信息、归档后的服务类订单的数据信息和归档后的非服务类订单的数据信息,对用户订单进行处理之后,还包括:In one embodiment, according to the historical information of the database in the BOSS, the data information of the archived service order and the data information of the archived non-service order, after processing the user order, it also includes:
基于BOSS中的当前系统资源和业务数据的系统资源,实时输出系统资源利用状态。Based on the current system resources in BOSS and the system resources of business data, the system resource utilization status is output in real time.
根据本发明实施例的另一方面,提供一种业务数据的处理装置,该装置包括:According to another aspect of the embodiments of the present invention, an apparatus for processing service data is provided, and the apparatus includes:
预测模块,用于业务运营支持系统BOSS利用扩展卡尔曼滤波模型预测处理业务数据的系统资源;The prediction module is used for the business operation support system BOSS to use the extended Kalman filter model to predict the system resources for processing business data;
触发模块,用于在业务数据的系统资源上触发业务日志以记录用户的业务数据;A triggering module, used to trigger the business log on the system resource of the business data to record the business data of the user;
归档模块,用于将用户的业务日志生成订单,为订单中的服务类订单开通服务,同时归档服务类订单的数据信息和订单中的非服务类订单的数据信息;The archiving module is used to generate an order from the user's business log, activate the service for the service order in the order, and archive the data information of the service order and the data information of the non-service order in the order;
处理模块,用于依据BOSS中数据库的历史信息、归档后的服务类订单的数据信息和归档后的非服务类订单的数据信息,对用户订单进行处理。The processing module is used to process user orders according to the historical information of the database in BOSS, the data information of the archived service orders and the data information of the archived non-service orders.
在一个实施例中,预测模块包括:In one embodiment, the prediction module includes:
第一获取子模块,用于BOSS利用上一周期的业务数据的数据量,通过扩展卡尔曼滤波模型,得到本周期数据量的后验估计值;The first acquisition sub-module is used for BOSS to use the data volume of the business data of the previous cycle to obtain the posterior estimated value of the data volume of this cycle by extending the Kalman filter model;
预测子模块,用于依据本周期数据量的后验估计值和业务数据的资源占用率,预测业务数据的系统资源。The prediction sub-module is used to predict the system resources of the service data according to the posterior estimated value of the data volume in this period and the resource occupancy rate of the service data.
在一个实施例中,第一获取子模块具体用于:In one embodiment, the first acquisition submodule is specifically used for:
利用上一周期的业务数据的数据量和预测方程,获得本周期数据量的先验估计值;Use the data volume and prediction equation of the business data of the previous cycle to obtain a priori estimate of the current cycle data volume;
基于本周期数据量的先验估计值、校正方程和本周期数据量的观测值,得到本周期数据量的后验估计值。Based on the a priori estimate of the data volume of the current cycle, the correction equation and the observed value of the data volume of the current cycle, the a posteriori estimate of the data volume of the current cycle is obtained.
在一个实施例中,触发模块具体用于:In one embodiment, the trigger module is specifically used for:
通过多种渠道在业务数据的系统资源上触发业务日志以记录用户的业务数据。Trigger business logs on system resources of business data through various channels to record user business data.
在一个实施例中,处理模块包括:In one embodiment, the processing module includes:
更新子模块,用于依据归档后的服务类订单的数据信息和归档后的非服务类订单的数据信息,更新BOSS中数据库的历史信息;The update sub-module is used to update the historical information of the database in BOSS according to the data information of the archived service orders and the archived data information of the non-service orders;
第二获取子模块,用于在更新后的BOSS中数据库的历史信息,获取用户对应的历史信息;The second acquisition sub-module is used to acquire the historical information corresponding to the user from the historical information of the database in the updated BOSS;
处理子模块,用于基于用户对应的历史信息,对用户订单进行处理。The processing sub-module is used to process the user's order based on the historical information corresponding to the user.
在一个实施例中,业务数据的处理装置,还包括:In one embodiment, the apparatus for processing service data further includes:
输出模块,用于基于BOSS中的当前系统资源和业务数据的系统资源,实时输出系统资源利用状态。The output module is used to output the system resource utilization status in real time based on the current system resources in the BOSS and the system resources of the business data.
根据本发明实施例的再一方面,提供一种业务数据的处理设备,该设备包括:处理器以及存储有计算机程序指令的存储器;According to yet another aspect of the embodiments of the present invention, there is provided a service data processing device, the device comprising: a processor and a memory storing computer program instructions;
处理器执行计算机程序指令时实现本发明实施例提供的业务数据的处理方法。When the processor executes the computer program instructions, the service data processing method provided by the embodiment of the present invention is implemented.
根据本发明实施例的再一方面,提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现本发明实施例提供的业务数据的处理方法。According to yet another aspect of the embodiments of the present invention, a computer-readable storage medium is provided, where computer program instructions are stored on the computer-readable storage medium, and when the computer program instructions are executed by a processor, the processing of the service data provided by the embodiments of the present invention is realized. method.
本发明实施例提供的业务数据的处理方法、装置、设备和计算机可读存储介质,可以基于扩展卡尔曼滤波模型来预测处理业务数据的系统资源,进而在预测出的业务数据的系统资源上对用户的订单进行处理,从而能够保证业务数据与系统资源相匹配,实现系统资源的合理使用。The method, apparatus, device, and computer-readable storage medium for processing business data provided by the embodiments of the present invention can predict system resources for processing business data based on an extended Kalman filter model, and then compare the predicted system resources of business data with The user's order is processed, so as to ensure that the business data matches the system resources and realize the rational use of the system resources.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the accompanying drawings required in the embodiments of the present invention will be briefly introduced below. For those of ordinary skill in the art, without creative work, the Additional drawings can be obtained from these drawings.
图1示出了本发明实施例中业务数据的处理方法的流程示意图;1 shows a schematic flowchart of a method for processing service data in an embodiment of the present invention;
图2示出了本发明实施例中业务数据的处理装置的结构示意图;2 shows a schematic structural diagram of an apparatus for processing service data in an embodiment of the present invention;
图3示出了本发明实施例中业务数据的处理设备的硬件结构示意图。FIG. 3 shows a schematic diagram of a hardware structure of a service data processing device in an embodiment of the present invention.
具体实施方式Detailed ways
下面将详细描述本发明的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本发明,并不被配置为限定本发明。对于本领域技术人员来说,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明更好的理解。The features and exemplary embodiments of various aspects of the present invention will be described in detail below. In order to make the objects, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only configured to explain the present invention, and are not configured to limit the present invention. It will be apparent to those skilled in the art that the present invention may be practiced without some of these specific details. The following description of the embodiments is only intended to provide a better understanding of the present invention by illustrating examples of the invention.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this document, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element defined by the phrase "comprises" does not preclude the presence of additional identical elements in a process, method, article, or device that includes the element.
考虑到业务数据的处理过程中,既要保证BOSS稳健运行,又要提高处理速率,那么工作人员则可以提前对业务数据进行预测,进而根据预测出的业务数据的数据量,事先对系统资源进行合理的分配、调度,以满足系统资源的最大利用率和业务数据处理的及时性。Considering that in the process of processing business data, it is necessary to ensure the stable operation of BOSS and to improve the processing rate, so the staff can predict the business data in advance, and then according to the predicted data volume of the business data, the system resources are processed in advance. Reasonable allocation and scheduling to meet the maximum utilization of system resources and the timeliness of business data processing.
然而,现有技术大多是基于经验来预测所需的系统资源,准确性非常差。针对于此,本发明实施例提供了一种业务数据的处理方法,利用扩展卡尔曼滤波模型预测处理业务数据所需的系统资源,并基于预测出的处理业务数据所需的系统资源,事前对系统资源进行分配、调度,从而保证业务数据与系统资源相匹配,实现系统资源的合理使用。However, most of the existing technologies predict the required system resources based on experience, and the accuracy is very poor. In response to this, an embodiment of the present invention provides a method for processing business data, which uses an extended Kalman filter model to predict system resources required for processing business data, and based on the predicted system resources required for processing business data, analyzes System resources are allocated and scheduled to ensure that business data matches system resources and realize rational use of system resources.
图1示出了本发明一实施例中业务数据的处理方法的流程图。参照图1,本发明实施例中业务数据的处理方法主要包括S110至S140。FIG. 1 shows a flowchart of a method for processing service data in an embodiment of the present invention. Referring to FIG. 1 , the method for processing service data in the embodiment of the present invention mainly includes S110 to S140.
S110,BOSS利用扩展卡尔曼滤波模型预测处理业务数据的系统资源。S110, the BOSS predicts system resources for processing business data by using an extended Kalman filter model.
在一些实施例中,步骤S110具体可以包括:In some embodiments, step S110 may specifically include:
S111,BOSS利用上一周期的业务数据的数据量和预测方程,获得本周期数据量的先验估计值。S111 , the BOSS obtains a priori estimated value of the data volume of the current cycle by using the data volume of the business data of the previous cycle and the prediction equation.
具体地:首先,选取本周期之前的若干个周期的业务数据的数据量作为样本集,并将其中波动较大的数据作为噪声点。即若某周期的业务数据的数据量相较于其他周期的业务数据的数据量变化幅度较大,则将该周期的业务数据的数据量作为噪声点。Specifically: first, the data volume of the service data of several cycles before the current cycle is selected as the sample set, and the data with large fluctuations is used as the noise point. That is, if the data volume of the service data in a certain period changes greatly compared to the data volume of the service data in other periods, the data volume of the service data in this period is regarded as a noise point.
然后,根据样本集中若干个周期的业务数据的数据量以及波动情况,建立状态值转换函数,根据样本集中的噪声点建立噪声输入函数,进而得到预测方程。即根据样本集中若干个周期的业务数据的数据量以及波动情况,建立预测方程。Then, according to the data volume and fluctuation of the business data of several cycles in the sample set, the state value conversion function is established, and the noise input function is established according to the noise points in the sample set, and then the prediction equation is obtained. That is, a prediction equation is established according to the data volume and fluctuation of the business data of several cycles in the sample set.
在一些实施例中,预测方程可以为:In some embodiments, the prediction equation can be:
Xk,k-1=f[Xk-1,k-1]+Γ[Xk-1,k-1]Wk-1 (1)X k,k-1 =f[X k-1,k-1 ]+Γ[X k-1,k-1 ]W k-1 (1)
式中,Xk,k-1表示第k周期的业务数据的数据量的先验估计值,Xk-1,k-1表示第k-1周期的业务数据的数据量的后验估计值,f[X]表示状态值转换函数,Γ[X]表示噪声输入函数,Wk-1表示第k-1周期的过程噪声,且Wk-1为零均值白噪声向量。其中,k为大于1的整数。In the formula, X k,k-1 represents the a priori estimate of the data volume of the service data in the k-th cycle, and X k-1,k-1 represents the a posteriori estimate of the data volume of the service data in the k-1th cycle , f[X] represents the state value transfer function, Γ[X] represents the noise input function, W k-1 represents the process noise of the k-1th cycle, and W k-1 is a zero-mean white noise vector. where k is an integer greater than 1.
最后,将上一周期的业务数据的数据量代入预测方程(1)中,即可得到本周期的业务数据的数据量的先验估计值。Finally, by substituting the data volume of the business data of the previous cycle into the prediction equation (1), a priori estimated value of the data volume of the business data of the current cycle can be obtained.
S112,基于本周期数据量的先验估计值、校正方程和本周期数据量的观测值,得到本周期数据量的后验估计值。S112 , based on the a priori estimated value of the data volume of the current cycle, the correction equation, and the observed value of the data volume of the current cycle, obtain the a posteriori estimated value of the data volume of the current cycle.
具体地:首先,根据上一周期的后验估计状态向量协方差矩阵、上一周期的过程噪声协方差矩阵、本周期的先验估计转移矩阵,以及状态向量协方差矩阵推算方程,得到本周期的先验估计状态向量协方差矩阵。Specifically: First, according to the posterior estimated state vector covariance matrix of the previous cycle, the process noise covariance matrix of the previous cycle, the prior estimated transition matrix of this cycle, and the state vector covariance matrix estimation equation, the current cycle is obtained. The prior estimated state vector covariance matrix of .
在一些实施例中,状态向量协方差矩阵推算方程可以为:In some embodiments, the state vector covariance matrix estimation equation may be:
式中,Pk,k-1表示第k周期的先验估计状态向量协方差矩阵,Pk-1,k-1表示第k-1周期的后验估计状态向量协方差矩阵,Φk,k-1表示第k周期的先验估计转移矩阵,表示第k周期的先验估计转移矩阵的转置矩阵,Γ[Xk-1,k-1]表示第k-1周期的噪声输入矩阵,ΓT[Xk-1,k-1]表示第k-1周期的噪声输入矩阵的转置矩阵,Qk-1,k-1表示第k-1周期的过程噪声协方差矩阵,且Qk-1,k-1是对角元素均大于0的对角矩阵。In the formula, P k,k-1 represents the a priori estimated state vector covariance matrix of the kth cycle, P k-1,k-1 represents the a posteriori estimated state vector covariance matrix of the k-1th cycle, Φ k, k-1 represents the a priori estimated transition matrix of the kth cycle, represents the transpose matrix of the prior estimated transition matrix of the kth cycle, Γ[X k-1,k-1 ] represents the noise input matrix of the k-1th cycle, Γ T [X k-1,k-1 ] represents The transposed matrix of the noise input matrix of the k-1th cycle, Q k-1, k-1 represents the process noise covariance matrix of the k-1th cycle, and Q k-1, k-1 is the diagonal elements larger than A diagonal matrix of 0.
其中,Φk,k-1可以通过对状态值转换函数f[X]在Xk,k-1处求偏导获得,具体为:Among them, Φ k, k-1 can be obtained by taking the partial derivative of the state value conversion function f[X] at X k, k-1 , specifically:
然后,根据本周期的先验估计状态向量协方差矩阵、上一周期的先验估计量测矩阵、上一周期的测量噪声协方差矩阵以及卡尔曼滤波增益矩阵更新方程,获得本周期的卡尔曼增益矩阵。Then, according to the prior estimated state vector covariance matrix of the current cycle, the prior estimated measurement matrix of the previous cycle, the measurement noise covariance matrix of the previous cycle, and the Kalman filter gain matrix update equation, the Kalman filter of the current cycle is obtained. gain matrix.
在一些实施例中,卡尔曼滤波增益矩阵更新方程可以为:In some embodiments, the Kalman filter gain matrix update equation may be:
式中,Kk,k表示第k周期的卡尔曼滤波增益矩阵,Pk,k-1表示第k周期的先验估计状态向量协方差矩阵,Hk,k-1表示第k周期的先验估计量测矩阵,表示第k周期的先验估计量测矩阵的转置矩阵,Rk-1,k-1表示第k-1周期的测量噪声协方差矩阵,且Rk-1,k-1是对角元素均大于0的对角矩阵。In the formula, K k,k represents the k-th cycle Kalman filter gain matrix, P k,k-1 represents the k-th cycle a priori estimated state vector covariance matrix, H k,k-1 represents the k-th cycle prior The empirically estimated measurement matrix, represents the transpose matrix of the a priori estimated measurement matrix of the kth cycle, R k-1,k-1 represents the measurement noise covariance matrix of the k-1th cycle, and R k-1,k-1 are the diagonal elements A diagonal matrix that is all greater than 0.
其中,Hk,k-1可以通过对观测值转换函数h[X]在Xk,k-1处求偏导获得,具体为:Among them, H k,k-1 can be obtained by taking the partial derivative of the observed value conversion function h[X] at X k,k-1 , specifically:
最后,将本周期的业务数据的数据量的先验估计值、本周期的业务数据的数据量的观测值代入校正方程,获得本周期的业务数据的数据量的后验估计值。Finally, the a priori estimated value of the data volume of the business data in this cycle and the observed value of the data volume of the business data in this cycle are substituted into the correction equation to obtain the a posteriori estimated value of the data volume of the business data in this cycle.
在一些实施例中,校正方程可以为:In some embodiments, the correction equation may be:
Xk,k=Xk,k-1+Kk,k[Zk,k-h[Xk,k-1]] (6)X k,k =X k,k-1 +K k,k [Z k,k -h[X k,k-1 ]] (6)
式中,Xk,k表示第k周期的业务数据的数据量的后验估计值,Xk,k-1表示第k周期的业务数据的数据量的先验估计值,Kk,k表示第k周期的卡尔曼滤波增益矩阵,Zk,k表示第k周期的业务数据的数据量的观测值,h[X]表示观测值转换函数。In the formula, X k,k represents the a posteriori estimate of the data volume of the service data in the kth cycle, X k,k-1 represents the a priori estimate of the data volume of the service data in the kth cycle, and K k,k represents The Kalman filter gain matrix of the kth cycle, Z k,k represents the observed value of the data volume of the business data of the kth cycle, and h[X] represents the conversion function of the observed value.
其中,Zk,k可以由观测方程获得,并且观测方程也是根据样本集中若干个周期的业务数据的数据量以及波动情况建立的。Among them, Z k,k can be obtained from the observation equation, and the observation equation is also established according to the data volume and fluctuation of the business data of several cycles in the sample set.
在一些实施例中,观测方程可以为:In some embodiments, the observation equation may be:
Zk,k=h[Xk-1,k-1]+Vk-1 (7)Z k,k =h[X k-1,k-1 ]+V k-1 (7)
式中,Zk,k表示第k周期的业务数据的数据量的观测值,h[X]表示观测值转换函数,Xk-1,k-1表示第k-1周期的业务数据的数据量的后验估计值,Vk-1表示第k-1周期的观测噪声。In the formula, Z k,k represents the observed value of the data volume of the business data in the kth cycle, h[X] represents the observation value conversion function, and X k-1,k-1 represents the data of the business data in the k-1th cycle. The posterior estimate of the quantity, V k-1 represents the observation noise of the k-1th cycle.
在一些实施例中,获得本周期的业务数据的数据量的后验估计值后,可以利用状态向量协方差矩阵更新方程,来获得本周期的后验估计状态向量协方差矩阵,以用于推算下一周期的先验估计状态向量协方差矩阵,进而对下一周期的业务数据的数据量进行预测。In some embodiments, after obtaining the a posteriori estimated value of the data volume of the service data in the current period, the state vector covariance matrix update equation can be used to obtain the a posteriori estimated state vector covariance matrix of the current period, which can be used for calculation The state vector covariance matrix is estimated a priori in the next cycle, and then the data volume of the service data in the next cycle is predicted.
在一些实施例中,状态向量协方差矩阵更新方程可以为:In some embodiments, the state vector covariance matrix update equation may be:
Pk,k=[I-Kk,kHk,k]Pk,k-1 (8)P k,k = [IK k,k H k,k ]P k,k-1 (8)
式中,Pk,k表示第k周期的后验估计状态向量协方差矩阵,I表示单位矩阵,Kk,k表示第k周期的卡尔曼滤波增益矩阵,Hk,k表示第k周期的后验估计量测矩阵,Pk,k-1表示第k周期的先验估计状态向量协方差矩阵。where P k,k represents the posterior estimated state vector covariance matrix of the kth cycle, I represents the identity matrix, K k,k represents the Kalman filter gain matrix of the kth cycle, and H k,k represents the kth cycle. A posteriori estimated measurement matrix, P k,k-1 represents the a priori estimated state vector covariance matrix of the kth cycle.
由上述步骤S111和S112的具体过程可知,本发明实施例是先利用上一周期的业务数据的数据量和预测方程,来预测本周期的业务数据的数据量的先验估计值。然后,再利用本周期的业务数据的数据量的观测值和校正方程,来对预测出的本周期的业务数据的数据量的先验估计值进行修正,从而获得本周期的业务数据的数据量的后验估计值,即预测出了本周期的业务数据的数据量。也就是说,本发明实施例是不断利用上一周期的业务数据的数据量,来获得本周期的业务数据的数据量的后验估计值,即是一个不断循环的过程。基于此,需要说明两点:It can be known from the specific processes of the above steps S111 and S112 that in the embodiment of the present invention, the data volume of the service data of the previous cycle and the prediction equation are first used to predict the a priori estimated value of the data volume of the service data of the current cycle. Then, use the observed value of the data volume of the business data in this cycle and the correction equation to correct the predicted a priori estimate of the data volume of the business data in this cycle, so as to obtain the data volume of the business data in this cycle The posterior estimated value of , that is, the data volume of business data in this period is predicted. That is to say, in the embodiment of the present invention, the data volume of the service data of the previous cycle is continuously used to obtain the a posteriori estimated value of the data volume of the service data of the current cycle, that is, a continuous cycle process. Based on this, two points need to be noted:
其一,在不断循环的过程中,只有第一次循环是利用上一周期的业务数据的数据量的真实值或上一周期的业务数据的数据量的预设值,来获得本周期的业务数据的数据量的后验估计值。即第一次循环过程中,上一周期的业务数据的数据量为,上一周期的业务数据的数据量的真实值或上一周期的业务数据的数据量的预设值。而在后续的循环过程中,在利用上一周期的业务数据的数据量获得本周期的业务数据的数据量的后验估计值时,上一周期的业务数据的数据量为,上一周期的业务数据的数据量的后验估计值。First, in the process of continuous cycle, only the first cycle is to use the actual value of the data volume of the business data of the previous cycle or the preset value of the data volume of the business data of the previous cycle to obtain the business data of this cycle. A posteriori estimate of the amount of data for the data. That is, during the first cycle, the data volume of the service data of the previous cycle is the actual value of the data volume of the service data of the previous cycle or the preset value of the data volume of the service data of the previous cycle. In the subsequent cycle process, when the data volume of the business data of the previous cycle is used to obtain the posterior estimated value of the data volume of the business data of the current cycle, the data volume of the business data of the previous cycle is, the data volume of the business data of the previous cycle is A posteriori estimate of the data volume of business data.
作为一个示例,已知某移动营业厅2017年1月至6月的业务数据的数据量,来预测2017年7月至9月的业务数据的数据量。则在预测7月的业务数据的数据量时,利用6月的业务数据的数据量的真实值。而在后续预测8月和9月的业务数据的数据量时,分别利用7月的业务数据的数据量的后验估计值和8月的业务数据的数据量的后验估计值。As an example, the data volume of business data of a mobile business hall from January to June 2017 is known to predict the data volume of business data from July to September 2017. Then, when predicting the data volume of the business data in July, the actual value of the data volume of the business data in June is used. In the subsequent prediction of the data volume of the business data in August and September, the a posteriori estimated value of the data volume of the business data in July and the a posteriori estimated value of the data volume of the business data in August are respectively used.
其二,在第一次循环过程中,所涉及到的上一周期的各种数据都为预设值。并且,这些预设值都是根据样本集中的若干个周期的业务数据的数据量以及波动情况设置的。Second, during the first cycle, various data of the previous cycle involved are all preset values. Moreover, these preset values are all set according to the data volume and fluctuation of the service data of several cycles in the sample set.
作为一个示例,已知某移动营业厅2017年1月至6月的业务数据的数据量,来预测2017年7月至9月的业务数据的数据量。则在第一次循环过程中,利用状态向量协方差矩阵推算方程来获得7月的先验估计状态向量协方差矩阵时,会利用到6月的后验估计状态向量协方差矩阵、以及6月的过程噪声协方差矩阵。则可以事先根据2017年1月至6月的业务数据的数据量以及波动情况,来设置初始的状态向量协方差矩阵作为6月的后验估计状态向量协方差矩阵、初始的过程噪声协方差矩阵作为6月的过程噪声协方差矩阵。As an example, the data volume of business data of a mobile business hall from January to June 2017 is known to predict the data volume of business data from July to September 2017. Then in the first cycle process, when using the state vector covariance matrix calculation equation to obtain the prior estimated state vector covariance matrix of July, the posterior estimated state vector covariance matrix of June will be used, and the June estimated state vector covariance matrix will be used. The process noise covariance matrix of . Then, according to the data volume and fluctuation of business data from January to June 2017, the initial state vector covariance matrix can be set as the posterior estimated state vector covariance matrix and the initial process noise covariance matrix for June. as the process noise covariance matrix for June.
S113,依据本周期数据量的后验估计值和业务数据的资源占用率,预测处理业务数据的系统资源。S113: Predict the system resources for processing the service data according to the a posteriori estimated value of the data volume in the current period and the resource occupancy rate of the service data.
在一些实施例中,业务数据的资源占用率是指处理一定数量的业务数据所需的系统资源。因此,在获得本周期的业务数据的数据量后,根据业务数据的资源占用率,即可预测出处理本周期的业务数据所需使用的系统资源。In some embodiments, the resource occupancy rate of service data refers to system resources required to process a certain amount of service data. Therefore, after obtaining the data volume of the service data of the current cycle, the system resources required to process the service data of the current cycle can be predicted according to the resource occupancy rate of the service data.
进一步地,在预测出处理本周期的业务数据所需使用的系统资源后,如果处理本周期的业务数据所需使用的系统资源,相较于处理上一个周期的业务数据所需使用的系统资源有较大的波动,例如处理本周期的业务数据所需使用的系统资源相较于上个周期剧增或剧减,则BOSS会发出提醒信息,以提醒工作人员在处理本周期的业务数据时需多加关注系统资源的利用率,以免出现业务数据与系统资源不匹配。Further, after predicting the system resources required to process the business data of this cycle, if the system resources required to process the business data of this cycle are compared with the system resources required to process the business data of the previous cycle If there is a large fluctuation, for example, the system resources required to process the business data of this cycle increase or decrease sharply compared with the previous cycle, BOSS will send a reminder message to remind the staff to process the business data of this cycle. Pay more attention to the utilization of system resources to avoid mismatch between business data and system resources.
通过利用扩展卡尔曼滤波模型预测处理业务数据的系统资源,可以提前获知所需使用的系统资源,事先对系统资源进行调度,从而能够保证业务数据与系统资源相匹配,实现系统资源的合理使用。By using the extended Kalman filter model to predict the system resources for processing business data, the system resources to be used can be known in advance, and the system resources can be scheduled in advance, so as to ensure that the business data matches the system resources and realize the rational use of the system resources.
S120,在业务数据的系统资源上触发业务日志以记录用户的业务数据。S120, triggering a service log on the system resource of the service data to record the service data of the user.
在一些实施例中,可以通过多种渠道在处理业务数据的系统资源上触发业务日志以记录用户的业务数据。例如,用户可以通过营业厅、呼叫中心、代理商、以及银行等多种方式办理业务,从而BOSS会自动地在系统资源上触发业务日志。其中,业务日志记录着用户办理的业务数据信息。In some embodiments, a business log can be triggered on a system resource that processes business data through various channels to record the business data of the user. For example, users can handle business in various ways such as business halls, call centers, agents, and banks, so that BOSS will automatically trigger business logs on system resources. The business log records business data information handled by the user.
S130,将用户的业务日志生成订单,为订单中的服务类订单开通服务,同时归档服务类订单的数据信息和订单中的非服务类订单的数据信息。S130: Generate an order from the user's business log, activate the service for the service order in the order, and archive the data information of the service order and the data information of the non-service order in the order.
在一些实施例中,可以将每个用户的一次业务办理记录生成一个订单。并且根据订单是否需要开通服务,可以将订单分为服务类订单和非服务类订单。对于服务类订单,按照订单中记录的数据信息来执行相应的服务配置与激活,即开通服务。进一步地,还可以在系统资源上将所有订单中的数据信息进行资料归档,即将订单中的服务类订单的数据信息和非服务类订单的数据信息都进行资料归档,以将每个用户资料的变更进行存储和同步。In some embodiments, one order can be generated from one transaction transaction record of each user. And according to whether the order needs to be activated, the order can be divided into service orders and non-service orders. For service orders, the corresponding service configuration and activation are performed according to the data information recorded in the order, that is, the service is activated. Further, the data information in all orders can also be archived on the system resources, that is, the data information of the service orders and the data information of the non-service orders in the orders are archived, so as to record the data of each user's data. Changes are stored and synchronized.
S140,依据BOSS中数据库的历史信息、归档后的服务类订单的数据信息和归档后的非服务类订单的数据信息,对用户订单进行处理。S140: Process the user order according to the historical information of the database in the BOSS, the data information of the archived service order, and the data information of the archived non-service order.
具体地:首先,依据归档后的服务类订单的数据信息和归档后的非服务类订单的数据信息,更新BOSS中数据库的历史信息。Specifically: first, the historical information of the database in the BOSS is updated according to the data information of the archived service orders and the archived data information of the non-service orders.
在一些实施例中,可以先依据归档后的服务类订单的数据信息和归档后的非服务类订单的数据信息,来获取用户的资料信息,然后再对用户的资料信息进行加载,从而更新BOSS数据库中存储的用户资料信息,即更新BOSS中数据库的历史信息。In some embodiments, the user's profile information may be acquired according to the data information of the archived service order and the archived data information of the non-service order, and then the user's profile information is loaded to update the BOSS The user profile information stored in the database is the historical information of updating the database in BOSS.
然后,在更新后的BOSS中数据库的历史信息,获取用户对应的历史信息。Then, obtain the historical information corresponding to the user from the historical information of the database in the updated BOSS.
最后,基于用户对应的历史信息,对用户订单进行处理。Finally, the user order is processed based on the historical information corresponding to the user.
在一些实施中,业务数据的处理方法在步骤S140之后,还包括:In some implementations, after step S140, the business data processing method further includes:
基于BOSS中的当前系统资源和业务数据的系统资源,实时输出系统资源利用状态。Based on the current system resources in BOSS and the system resources of business data, the system resource utilization status is output in real time.
在一些实施例中,在对用户的订单进行处理之后,还可以根据BOSS中的当前系统资源,以及预测出的业务数据的系统资源,来实时输出业务数据的系统资源的利用状态。作为一个示例,可以利用当前系统资源与预测出的业务数据的系统资源之比,来表示业务数据的系统资源的利用状态。In some embodiments, after the user's order is processed, the utilization status of the system resources of the business data can also be output in real time according to the current system resources in the BOSS and the predicted system resources of the business data. As an example, the ratio of the current system resources to the predicted system resources of the service data can be used to represent the utilization state of the system resources of the service data.
在业务数据处理的过程中,通过实时输出系统资源的利用状态,可以实时掌握系统资源的利用率,进而能够及时获知预测出的业务数据的系统资源是否准确,以进行相应的调整。In the process of business data processing, by outputting the utilization status of system resources in real time, the utilization rate of system resources can be grasped in real time, so as to know in time whether the system resources of the predicted business data are accurate, so as to make corresponding adjustments.
本发明实施例中业务数据的处理方法,通过利用扩展卡尔曼滤波模型来预测处理业务数据的系统资源,进而在预测出的业务数据的系统资源上对用户的订单进行处理。由于利用扩展卡尔曼滤波模型可以事先准确预测出处理业务数据的系统资源,并且工作人员根据预测出的业务数据的系统资源,可以提前对系统资源进行合理的调度,因此本发明实施例的业务数据处理方法能够保证业务数据与系统资源相匹配,实现系统资源的合理使用。The business data processing method in the embodiment of the present invention predicts the system resources for processing business data by using the extended Kalman filter model, and then processes the user's order on the predicted system resources of the business data. Since the extended Kalman filter model can be used to accurately predict the system resources for processing business data in advance, and the staff can reasonably schedule the system resources in advance according to the predicted system resources of the business data, the business data of the embodiment of the present invention The processing method can ensure that the business data matches the system resources and realize the rational use of the system resources.
下面结合图2详细介绍本发明实施例的业务数据的处理装置。图2示出了根据本发明另一实施例提供的业务数据的处理装置的结构示意图。如图2所示,业务数据的处理装置的装置200包括:The apparatus for processing service data according to the embodiment of the present invention will be described in detail below with reference to FIG. 2 . FIG. 2 shows a schematic structural diagram of an apparatus for processing service data according to another embodiment of the present invention. As shown in FIG. 2, the apparatus 200 of the apparatus for processing service data includes:
预测模块210,用于BOSS利用扩展卡尔曼滤波模型预测处理业务数据的系统资源。The prediction module 210 is used for the BOSS to predict the system resources for processing business data by using the extended Kalman filter model.
触发模块220,用于在业务数据的系统资源上触发业务日志以记录用户的业务数据。The triggering module 220 is configured to trigger the service log on the system resource of the service data to record the service data of the user.
归档模块230,用于将用户的业务日志生成订单,为订单中的服务类订单开通服务,同时归档服务类订单的数据信息和订单中的非服务类订单的数据信息。The archiving module 230 is configured to generate an order from the user's business log, activate the service for the service order in the order, and archive the data information of the service order and the data information of the non-service order in the order.
处理模块240,用于依据BOSS中数据库的历史信息、归档后的服务类订单的数据信息和归档后的非服务类订单的数据信息,对用户订单进行处理。The processing module 240 is configured to process the user order according to the historical information of the database in the BOSS, the data information of the archived service order and the data information of the archived non-service order.
在一些实施例中,预测模块210,具体可以包括:In some embodiments, the prediction module 210 may specifically include:
第一获取子模块,用于BOSS利用上一周期的业务数据的数据量,通过扩展卡尔曼滤波模型,得到本周期数据量的后验估计值。The first acquisition sub-module is used for the BOSS to use the data volume of the business data of the previous cycle to obtain a posteriori estimated value of the data volume of the current cycle by extending the Kalman filter model.
预测子模块,用于依据本周期数据量的后验估计值和业务数据的资源占用率,预测业务数据的系统资源。The prediction sub-module is used to predict the system resources of the service data according to the posterior estimated value of the data volume in this period and the resource occupancy rate of the service data.
在一些实施例中,第一获取子模块,具体可以用于:In some embodiments, the first acquisition sub-module can be specifically used for:
利用上一周期的业务数据的数据量和预测方程,获得本周期数据量的先验估计值。Using the data volume of the business data of the previous cycle and the prediction equation, a priori estimate of the data volume of the current cycle is obtained.
基于本周期数据量的先验估计值、校正方程和本周期数据量的观测值,得到本周期数据量的后验估计值。Based on the a priori estimate of the data volume of the current cycle, the correction equation and the observed value of the data volume of the current cycle, the a posteriori estimate of the data volume of the current cycle is obtained.
在一些实施例中,触发模块220,具体可以用于:In some embodiments, the triggering module 220 can be specifically used to:
通过多种渠道在业务数据的系统资源上触发业务日志以记录用户的业务数据。Trigger business logs on system resources of business data through various channels to record user business data.
在一些实施例中,处理模块240,具体可以包括:In some embodiments, the processing module 240 may specifically include:
更新子模块,用于依据归档后的服务类订单的数据信息和归档后的非服务类订单的数据信息,更新BOSS中数据库的历史信息。The update sub-module is used to update the historical information of the database in the BOSS according to the data information of the archived service orders and the data information of the archived non-service orders.
第二获取子模块,用于在更新后的BOSS中数据库的历史信息,获取用户对应的历史信息。The second acquisition sub-module is used to acquire the historical information corresponding to the user from the historical information of the database in the updated BOSS.
处理子模块,用于基于用户对应的历史信息,对用户订单进行处理。The processing sub-module is used to process the user's order based on the historical information corresponding to the user.
在一些实施例中,业务数据的处理装置,还包括:In some embodiments, the apparatus for processing service data further includes:
输出模块,用于基于BOSS中的当前系统资源和业务数据的系统资源,实时输出系统资源利用状态。The output module is used to output the system resource utilization status in real time based on the current system resources in the BOSS and the system resources of the business data.
根据本发明实施例的业务数据的处理装置的其他细节与以上结合图1描述的根据本发明实施例的业务数据的处理的方法类似,在此不再赘述。Other details of the apparatus for processing service data according to the embodiment of the present invention are similar to the method for processing service data according to the embodiment of the present invention described above with reference to FIG. 1 , and details are not described herein again.
本发明实施例提供的业务数据的处理装置,能够保证业务数据与系统资源相匹配,实现系统资源的合理使用。The apparatus for processing business data provided by the embodiment of the present invention can ensure that the business data matches the system resources and realize the rational use of the system resources.
结合图1至图2描述的根据本发明实施例中的业务数据的处理方法和装置可以由业务数据的处理设备来实现。图3是示出根据发明实施例的业务数据的处理设备的硬件结构300示意图。The method and apparatus for processing service data according to the embodiments of the present invention described in conjunction with FIG. 1 to FIG. 2 may be implemented by a service data processing device. FIG. 3 is a schematic diagram illustrating a hardware structure 300 of a device for processing service data according to an embodiment of the invention.
如图3所示,本实施例中的业务数据的处理设备300包括输入设备301、输入接口302、中央处理器303、存储器304、输出接口305、以及输出设备306。其中,输入接口302、中央处理器303、存储器304、以及输出接口305通过总线310相互连接,输入设备301和输出设备306分别通过输入接口302和输出接口305与总线310连接,进而与业务数据的处理设备300的其他组件连接。As shown in FIG. 3 , the service data processing device 300 in this embodiment includes an input device 301 , an input interface 302 , a central processing unit 303 , a memory 304 , an output interface 305 , and an output device 306 . Among them, the input interface 302, the central processing unit 303, the memory 304, and the output interface 305 are connected to each other through the bus 310, and the input device 301 and the output device 306 are respectively connected to the bus 310 through the input interface 302 and the output interface 305. Other components of the processing device 300 are connected.
具体地,输入设备301接收来自外部的输入信息,并通过输入接口302将输入信息传送到中央处理器303;中央处理器303基于存储器304中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器304中,然后通过输出接口305将输出信息传送到输出设备306;输出设备306将输出信息输出到业务数据的处理设备300的外部供用户使用。Specifically, the input device 301 receives input information from the outside, and transmits the input information to the central processing unit 303 through the input interface 302; the central processing unit 303 processes the input information based on the computer-executable instructions stored in the memory 304 to generate output information, temporarily or permanently store the output information in the memory 304, and then transmit the output information to the output device 306 through the output interface 305; the output device 306 outputs the output information to the outside of the service data processing device 300 for the user to use.
也就是说,图3所示的业务数据的处理设备也可以被实现为包括:存储有计算机可执行指令的存储器;以及处理器,该处理器在执行计算机可执行指令时可以实现结合图1至图2描述的业务数据的处理方法和装置。That is to say, the service data processing device shown in FIG. 3 can also be implemented to include: a memory storing computer-executable instructions; and a processor, which, when executing the computer-executable instructions, can realize the combination of The method and apparatus for processing service data depicted in FIG. 2 .
在一个实施例中,图3所示的业务数据的处理设备300包括:存储器304,用于存储程序;处理器303,用于运行存储器中存储的程序,以执行本发明实施例业务数据的处理方法。In one embodiment, the service data processing device 300 shown in FIG. 3 includes: a memory 304 for storing a program; a processor 303 for running the program stored in the memory to execute the service data processing in the embodiment of the present invention method.
本发明实施例提供的业务数据的处理设备,能够保证业务数据与系统资源相匹配,实现系统资源的合理使用。The business data processing device provided by the embodiment of the present invention can ensure that the business data matches the system resources, and realize the rational use of the system resources.
本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现本发明实施例提供的业务数据的处理方法。Embodiments of the present invention further provide a computer-readable storage medium, where computer program instructions are stored thereon; when the computer program instructions are executed by a processor, the method for processing service data provided by the embodiments of the present invention is implemented.
需要明确的是,本发明并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本发明的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本发明的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。It is to be understood that the present invention is not limited to the specific arrangements and processes described above and shown in the figures. For the sake of brevity, detailed descriptions of known methods are omitted here. In the above-described embodiments, several specific steps are described and shown as examples. However, the method process of the present invention is not limited to the specific steps described and shown, and those skilled in the art can make various changes, modifications and additions, or change the sequence of steps after comprehending the spirit of the present invention.
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本发明的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。The functional blocks shown in the above-described structural block diagrams may be implemented as hardware, software, firmware, or a combination thereof. When implemented in hardware, it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, a plug-in, a function card, or the like. When implemented in software, elements of the invention are programs or code segments used to perform the required tasks. The program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communication link by a data signal carried in a carrier wave. A "machine-readable medium" may include any medium that can store or transmit information. Examples of machine-readable media include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like. The code segments may be downloaded via a computer network such as the Internet, an intranet, or the like.
还需要说明的是,本发明中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本发明不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。It should also be noted that the exemplary embodiments mentioned in the present invention describe some methods or systems based on a series of steps or devices. However, the present invention is not limited to the order of the above steps, that is, the steps may be performed in the order mentioned in the embodiments, or may be different from the order in the embodiments, or several steps may be performed simultaneously.
以上所述,仅为本发明的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。The above are only specific implementations of the present invention. Those skilled in the art can clearly understand that, for the convenience and simplicity of the description, the specific working process of the above-described systems, modules and units may refer to the foregoing method embodiments. The corresponding process in , will not be repeated here. It should be understood that the protection scope of the present invention is not limited to this. Any person skilled in the art can easily think of various equivalent modifications or replacements within the technical scope disclosed by the present invention, and these modifications or replacements should all cover within the protection scope of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711373301.9A CN109934657A (en) | 2017-12-19 | 2017-12-19 | Business data processing method, device, equipment and medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711373301.9A CN109934657A (en) | 2017-12-19 | 2017-12-19 | Business data processing method, device, equipment and medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109934657A true CN109934657A (en) | 2019-06-25 |
Family
ID=66983519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711373301.9A Pending CN109934657A (en) | 2017-12-19 | 2017-12-19 | Business data processing method, device, equipment and medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109934657A (en) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1347253A (en) * | 2001-11-23 | 2002-05-01 | 杨大成 | Algorithm for scheduling and distributing packet data service resources in mobile environment |
US20070226042A1 (en) * | 2006-03-27 | 2007-09-27 | Business Objects, S.A. | Apparatus and method for improved forecasting |
CN101360319A (en) * | 2007-07-30 | 2009-02-04 | 鼎桥通信技术有限公司 | Resource reservation method and apparatus based on traffic |
CN101686553A (en) * | 2008-09-24 | 2010-03-31 | 中国移动通信集团公司 | Resource adapting method, device and system |
CN101753344A (en) * | 2008-12-12 | 2010-06-23 | 华为技术有限公司 | Method, device and system for logging |
CN102025512A (en) * | 2009-09-14 | 2011-04-20 | 中国移动通信集团北京有限公司 | Service operation support system, service fulfillment method and device |
CN102177504A (en) * | 2008-10-10 | 2011-09-07 | 阿尔卡特朗讯美国公司 | Method and system of traffic processor selection for broadcast/multicast service in a wireless network |
CN102308540A (en) * | 2011-06-15 | 2012-01-04 | 华为技术有限公司 | Scheduling method and device for business processing resources |
CN102361515A (en) * | 2011-07-22 | 2012-02-22 | 中国联合网络通信集团有限公司 | Assessment method and device based on utilization of wireless network resources |
CN103338461A (en) * | 2013-06-18 | 2013-10-02 | 中国联合网络通信集团有限公司 | Method and device for network planning based on prediction of volume of business |
CN103561428A (en) * | 2013-10-10 | 2014-02-05 | 东软集团股份有限公司 | Method and system for elastically distributing nodes in short message gateway cluster system |
CN104219167A (en) * | 2013-05-31 | 2014-12-17 | 中国电信股份有限公司 | Network resource scheduling method and server |
CN105392154A (en) * | 2014-09-05 | 2016-03-09 | 中兴通讯股份有限公司 | Resource occupation prediction method and system |
CN106411392A (en) * | 2016-09-26 | 2017-02-15 | 中央军委装备发展部第六十三研究所 | Satellite communication system based on communication traffic prediction and wireless resource dynamic allocation |
CN107135323A (en) * | 2017-07-04 | 2017-09-05 | 中国联合网络通信集团有限公司 | The processing method and system of prepayment service |
CN107205248A (en) * | 2016-03-17 | 2017-09-26 | 中国移动通信集团内蒙古有限公司 | A kind of resource allocation methods and system |
-
2017
- 2017-12-19 CN CN201711373301.9A patent/CN109934657A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1347253A (en) * | 2001-11-23 | 2002-05-01 | 杨大成 | Algorithm for scheduling and distributing packet data service resources in mobile environment |
US20070226042A1 (en) * | 2006-03-27 | 2007-09-27 | Business Objects, S.A. | Apparatus and method for improved forecasting |
CN101360319A (en) * | 2007-07-30 | 2009-02-04 | 鼎桥通信技术有限公司 | Resource reservation method and apparatus based on traffic |
CN101686553A (en) * | 2008-09-24 | 2010-03-31 | 中国移动通信集团公司 | Resource adapting method, device and system |
CN102177504A (en) * | 2008-10-10 | 2011-09-07 | 阿尔卡特朗讯美国公司 | Method and system of traffic processor selection for broadcast/multicast service in a wireless network |
CN101753344A (en) * | 2008-12-12 | 2010-06-23 | 华为技术有限公司 | Method, device and system for logging |
CN102025512A (en) * | 2009-09-14 | 2011-04-20 | 中国移动通信集团北京有限公司 | Service operation support system, service fulfillment method and device |
CN102308540A (en) * | 2011-06-15 | 2012-01-04 | 华为技术有限公司 | Scheduling method and device for business processing resources |
CN102361515A (en) * | 2011-07-22 | 2012-02-22 | 中国联合网络通信集团有限公司 | Assessment method and device based on utilization of wireless network resources |
CN104219167A (en) * | 2013-05-31 | 2014-12-17 | 中国电信股份有限公司 | Network resource scheduling method and server |
CN103338461A (en) * | 2013-06-18 | 2013-10-02 | 中国联合网络通信集团有限公司 | Method and device for network planning based on prediction of volume of business |
CN103561428A (en) * | 2013-10-10 | 2014-02-05 | 东软集团股份有限公司 | Method and system for elastically distributing nodes in short message gateway cluster system |
CN105392154A (en) * | 2014-09-05 | 2016-03-09 | 中兴通讯股份有限公司 | Resource occupation prediction method and system |
CN107205248A (en) * | 2016-03-17 | 2017-09-26 | 中国移动通信集团内蒙古有限公司 | A kind of resource allocation methods and system |
CN106411392A (en) * | 2016-09-26 | 2017-02-15 | 中央军委装备发展部第六十三研究所 | Satellite communication system based on communication traffic prediction and wireless resource dynamic allocation |
CN107135323A (en) * | 2017-07-04 | 2017-09-05 | 中国联合网络通信集团有限公司 | The processing method and system of prepayment service |
Non-Patent Citations (2)
Title |
---|
TIANLELONG: "中国移动BOSS业务规范(正式版)pdf186", 《道客巴巴》 * |
杜翠凤,蒋仕宝: "4G时代一种市场评估选择的方法研究", 《移动通信》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107545338B (en) | Service data processing method and service data processing system | |
Jelenković et al. | Heavy traffic limits for queues with many deterministic servers | |
Salah | A queueing model to achieve proper elasticity for cloud cluster jobs | |
CN110365748A (en) | Treating method and apparatus, storage medium and the electronic device of business datum | |
CN111950988A (en) | Distributed workflow scheduling method and device, storage medium and electronic equipment | |
CN103516690A (en) | Service processing state information query method and apparatus thereof | |
CN104317638A (en) | Application stretching management method and device | |
CN110569252B (en) | Data processing system and method | |
WO2019061999A1 (en) | Breakpoint call method, electronic device and computer-readable storage medium | |
CN103813033B (en) | A kind of call route method and system | |
CN113467892A (en) | Distributed cluster resource configuration method and corresponding device, equipment and medium | |
CN104618162A (en) | Management method, device and system of system docking | |
Veretennikov | On the rate of convergence for infinite server Erlang–Sevastyanov’s problem | |
WO2021012506A1 (en) | Method and apparatus for realizing load balancing in speech recognition system, and computer device | |
CN109934657A (en) | Business data processing method, device, equipment and medium | |
CN206480045U (en) | A kind of customer care server and customer service system | |
KR101349603B1 (en) | Method of updating software in real-time system and apparatus for the same | |
CN105426978B (en) | Service concurrency prediction method and prediction system | |
CN116226104A (en) | Data table maintenance method and device, storage medium and electronic equipment | |
JP2012038053A (en) | Computer system and transferred data determination method | |
CN106533730B (en) | Hadoop cluster component index acquisition method and device | |
Huang et al. | Learning-aided stochastic network optimization with imperfect state prediction | |
CN115619114A (en) | Numbering method, numbering device, electronic equipment and computer readable storage medium | |
CN108268363A (en) | For the method and apparatus of volume of business management | |
CN110209645A (en) | Task processing method, device, electronic equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190625 |
|
RJ01 | Rejection of invention patent application after publication |