CN109934256A - 一种基于ga-ann特征降维与som特征优选的稻田杂草识别方法 - Google Patents

一种基于ga-ann特征降维与som特征优选的稻田杂草识别方法 Download PDF

Info

Publication number
CN109934256A
CN109934256A CN201910081161.0A CN201910081161A CN109934256A CN 109934256 A CN109934256 A CN 109934256A CN 201910081161 A CN201910081161 A CN 201910081161A CN 109934256 A CN109934256 A CN 109934256A
Authority
CN
China
Prior art keywords
feature
weeds
image
ann
paddy field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910081161.0A
Other languages
English (en)
Inventor
陈学深
方贵进
陈林涛
马旭
齐龙
陈涛
黄柱健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN201910081161.0A priority Critical patent/CN109934256A/zh
Publication of CN109934256A publication Critical patent/CN109934256A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)

Abstract

本发明公开了一种基于GA‑ANN特征降维与SOM特征优选的稻田杂草识别方法,包括下述步骤:步骤一,图像采集;在不同自然条件的情况下,采集稻田杂草的图像作为样本;步骤二,图像预处理;为克服水田光照强度变化和水面反光影响杂草识别精度的问题,在RGB颜色特征分割算法的基础上,引入RGB线性加权系数对图像进行分割,获得二值化图像,然后再利用形态学算子进行后处理,分离出杂草二值图像;本发明不仅能减少数据冗余,简化计算量,而且筛选出的主要特征具有独立性、可区分性、数量少的特点,能有效应用于杂草分类识别,提高分类精度。

Description

一种基于GA-ANN特征降维与SOM特征优选的稻田杂草识别 方法
技术领域
本发明涉及稻田杂草识别领域,具体涉及一种基于GA-ANN特征降维与SOM特征优选的稻田杂草识别方法。
背景技术
水稻是我国主要粮食作物之一,稻田杂草是影响水稻产量和品质的一个重要因素。对杂草进行有效识别、准确分类,是实现智能化精准除草至关重要的一步。由于水田的特点,存在光照强度变化、水面反光对杂草识别精度影响很大的问题,为提高不同杂草识别的准确率,需要对杂草多种特征(形状特征、纹理特征、颜色特征)融合应用,但随着特征维数的增加,识别时间及空间复杂度明显提高。如何抑制光照等环境因素影响分割精度,构建合理有效的算法,在众多相互关联的特征中快速、准确地提取有效特征是杂草识别的难点。
查阅文献可知,多数识别算法都是人为设定阈值处理图像,对光照适应性有限,不能有效地减低光照强度的影响;多数使用特征融合进行降维,降低了分类识别的复杂度,但是难以分析特征参数对不同类别杂草影响的显著性;如李先锋等人提出了基于SVM和D-S证据理论的多特征融合的杂草识别方法,解决了特征空间复杂度和分类维数过高的问题,但是识别速度有待提高;李慧等利用主成分分析降维得到3个主成分,有效减少SVM的训练时间、提高了分类准确率,但是模型的适应性有限;张新明等人提出了基于改进概率神问题经网络的玉米与杂草识别算法,实现了最优特征选择,提高了分类准确率,但是不能筛选出相关性强的特征,识别准确率有待提高。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种基于GA-ANN特征降维与SOM特征优选的稻田杂草识别方法,该方法能够有效应用于杂草分类识别,能够提高分类的精度。
本发明的目的通过下述技术方案实现:
一种基于GA-ANN特征降维与SOM特征优选的稻田杂草识别方法,包括下述步骤:
步骤一,图像采集;在不同自然条件的情况下,采集稻田杂草的图像作为样本;
步骤二,图像预处理;为克服水田光照强度变化和水面反光影响杂草识别精度的问题,在RGB颜色特征分割算法的基础上,引入RGB线性加权系数对图像进行分割,获得二值化图像,然后再利用形态学算子进行后处理,分离出杂草二值图像;
其中,所述RGB线性加权系数,是为了有效抑制光照变化对分割精度的影响,改进传统固定参数颜色特征因子组合分割算子|G-B|+|G-R|,引入加权系数,该算子通过设置加权因子数值,可对不同光照下田间图像进行分割处理,具体如下所示:
IGray=ε|G-B|+(1-ε)|G-R| (1)
上式中,IGray为像素点灰度值;R、G、B分别为像素点的红颜色、绿颜色和蓝颜色的分量值;ε为加权系数;
步骤三,图像特征提取;杂草存在形状特征、纹理特征和颜色特征的不同,为区分秧苗与不同类别的杂草,则将这些不同的特征作为识别标准;从预处理后的图像中,分别提取和计算出杂草的形状特征、纹理特征和颜色特征的特征参数;
其中,所述形状特征具体为:不同杂草叶片的外观存在一定的差异,在处理后的叶片上提取宽长比、伸长度和致密度共三个无量纲的几何特征,以及具有旋转、缩放和平移不变性,且常作为有效的形状特征的七个Hu不变矩,总计十个形状特征参数;
纹理特征具体为:选用叶片图像四个不同方向的灰度共生矩阵,并进行归一化,求对应的对比度、能量、相关性、同质性和熵共五个纹理特征参数;
颜色特征具体为:提取HSV空间的H和S分量的前三阶矩共六个特征向量作为颜色特征参数;
步骤四,特征降维;将形状特征、纹理特征和颜色特征的特征参数进行遗传编码,利用ANN网络模式识别算法构造适应度函数,利用GA算法收敛的最优解对应提取优良特征参数组合,从而有效降低特征参数的复杂度;
步骤五,特征优选;通过SOM对降维后的优良特征参数组合可视化处理,并进行植物类别的相关性检验,优选出相关性强的特征参数;
步骤六,特征反馈;优选出相关性强的特征参数后,重复步骤三至步骤六,加强提取与杂草分类准确率有强相关性的特征参数,直至满足杂草辨识的精度要求。
优选地,所述步骤四中的GA-ANN算法具体为:GA算法是一种随机搜索的智能方法,是模拟达尔文的遗传学和自然界优胜劣汰的生物进化过程的计算模型;ANN是一种模仿动物神经网络的工作特征,进行分布式并行信息处理的数学模型;GA-ANN算法,即以样本的所有特征参数进行遗传编码,通过神经网络模式识别函数计算的分类精度评估出特征参数不同组合分类结果的优劣,求得最优特征组合。
优选地,所述步骤五中的SOM网络具体为:SOM网络的学习规则是胜者为王,当输入一个样本时,寻找与其最为相似的竞争层神经元,即是获胜神经元,以获胜的神经元为中心,调整周围其他神经元的权值,调整结果是使竞争层特定的神经元变得对输入层的某些样本敏感,从而达到分类目的;自组织特征映射图可保留各模式的拓扑关系,便于有效、直观地研究各特征对分类结果影响的显著性。
本发明与现有技术相比具有以下的有益效果:
(1)本发明改进传统固定参数颜色特征因子组合,引入RGB线性加权系数有效抑制光照变化对分割精度影响;
(2)本发明采用GA-ANN融合算法不仅能减少数据冗余,简化计算量,而且筛选出的主要特征具有独立性、可区分性、数量少的特点,能有效应用于杂草分类识别,提高分类精度;
(3)本发明利用SOM神经网络的可视化优势,分析特征对分类结果的影响,从而反馈到特征提取阶段,以不断提高杂草识别精度,对智能除草装备发展具有参考意义。
附图说明
图1为本发明的作业流程图;
图2为本发明的GA-ANN算法示意图;
图3为本发明的SOM结构示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如图1~3所示,一种基于GA-ANN特征降维与SOM特征优选的稻田杂草识别方法,该方法的稻田杂草识别流程分为三个阶段:特征提取、特征降维和特征优选,并通过反馈实现稻田杂草的精确识别;所述的特征提取阶段,包括杂草的图像采集、图像预处理、形状、纹理和颜色特征参数的提取和保存;所述的特征降维阶段,通过GA-ANN算法,对高维杂草特征参数实现有效降维,以最优特征组合提高辨识的准确率;所述的特征优选阶段,基于SOM网络可视化的优势,选出相关性强的杂草特征,通过反馈从特征优选阶段选出优良特征,反馈到特征提取阶段,如此重复,直至优选出满足杂草辨识的精度要求。
具体来说,包括下述步骤:
步骤一,图像采集;在不同自然条件的情况下,采集稻田杂草的图像作为样本;
步骤二,图像预处理;为克服水田光照强度变化和水面反光影响杂草识别精度的问题,在RGB颜色特征分割算法的基础上,引入RGB线性加权系数对图像进行分割,获得二值化图像,然后再利用形态学算子进行后处理,分离出杂草二值图像;
其中,所述RGB线性加权系数,是为了有效抑制光照变化对分割精度的影响,改进传统固定参数颜色特征因子组合分割算子|G-B|+|G-R|,引入加权系数,该算子通过设置加权因子数值,可对不同光照下田间图像进行分割处理,具体如下所示:
IGray=ε|G-B|+(1-ε)|G-R| (1)
上式中,IGray为像素点灰度值;R、G、B分别为像素点的红颜色、绿颜色和蓝颜色的分量值;ε为加权系数;
步骤三,图像特征提取;杂草存在形状特征、纹理特征和颜色特征的不同,为区分秧苗与不同类别的杂草,则将这些不同的特征作为识别标准;从预处理后的图像中,分别提取和计算出杂草的形状特征、纹理特征和颜色特征的特征参数;
其中,所述形状特征具体为:不同杂草叶片的外观存在一定的差异,在处理后的叶片上提取宽长比、伸长度和致密度共三个无量纲的几何特征,以及具有旋转、缩放和平移不变性,且常作为有效的形状特征的七个Hu不变矩,总计十个形状特征参数;
纹理特征具体为:选用叶片图像四个不同方向的灰度共生矩阵,并进行归一化,求对应的对比度、能量、相关性、同质性和熵共五个纹理特征参数;
颜色特征具体为:提取HSV空间的H和S分量的前三阶矩共六个特征向量作为颜色特征参数;
步骤四,特征降维;将形状特征、纹理特征和颜色特征的特征参数进行遗传编码,利用ANN网络模式识别算法构造适应度函数,利用GA算法收敛的最优解对应提取优良特征参数组合,从而有效降低特征参数的复杂度;
所述GA-ANN算法具体为:GA算法是一种随机搜索的智能方法,是模拟达尔文的遗传学和自然界优胜劣汰的生物进化过程的计算模型;ANN是一种模仿动物神经网络的工作特征,进行分布式并行信息处理的数学模型;GA-ANN算法,即以样本的所有特征参数进行遗传编码,通过神经网络模式识别函数计算的分类精度评估出特征参数不同组合分类结果的优劣,求得最优特征组合
步骤五,特征优选;通过SOM对降维后的优良特征参数组合可视化处理,并进行植物类别的相关性检验,优选出相关性强的特征参数;
所述SOM网络具体为:SOM网络的学习规则是胜者为王,当输入一个样本时,寻找与其最为相似的竞争层神经元,即是获胜神经元,以获胜的神经元为中心,调整周围其他神经元的权值,调整结果是使竞争层特定的神经元变得对输入层的某些样本敏感,从而达到分类目的;自组织特征映射图可保留各模式的拓扑关系,便于有效、直观地研究各特征对分类结果影响的显著性。
步骤六,特征反馈;优选出相关性强的特征参数后,重复步骤三至步骤六,加强提取与杂草分类准确率有强相关性的特征参数,直至满足杂草辨识的精度要求。
下述为一种具体的实施方式:
步骤一,图像采集,在不同自然条件情况下,数码相机拍摄,空心莲子草、丁香蓼、鳢肠、野慈姑、稗草、千金子的稻田杂草的图像,分辨率为640×480像素,拍摄距离为离地面50cm。
步骤二,图像预处理,有效抑制光照变化对分割精度影响,改进传统固定参数颜色特征因子组合分割算子|G-B|+|G-R|,引入加权系数如下式(1),该算子通过设置加权因子数值,可对不同光照下田间图像分割处理,获得二值化图像,然后利用形态学算子进行后处理并分离出杂草,得到杂草二值图像。
IGray=ε|G-B|+(1-ε)|G-R| (1)
式中,IGray为像素点灰度值;R、G、B分别像素点红、绿、蓝颜色分量值;ε为加权系数。
步骤三,图像特征提取,为区分秧苗与不同类别杂草,根据杂草叶的形状、纹理、颜色特征的不同,作为识别标准。
在处理后的叶片上提取宽长比S1、伸长度S2、致密度S3共3个无量纲的几何特征,具体公式如下:
其中,W表示叶片最小外接矩形的宽度,L表示叶片最小外接矩形的长度,A表示叶片区域面积,P表示叶片区域边界的周长。
Hu不变矩,具有旋转、缩放和平移不变性,常作为有效的形状特征被广应用于图像识别领域。对于数字图像f(x,y),其7个Hu不变矩定义为:
其中,ηij由下列公式计算:
在计算时,为了便于区分,分别对以上7个Hu不变矩取对数,即:
便可得到叶片的十个形状特征:[S1,S2,S3,H1,H2,H3,H4,H5,H6,H7]。
选用叶片图像上四个方向(0°、45°、90°、135°)的灰度共生矩阵,所对应的特征值来提取纹理特征;设图像f(x,y)的大小为M×N,灰度级为L,行列方向上的距离为dx、dy。灰度共生矩阵是一个二维相关矩阵,用来描述图像在特定方向θ上,相隔为d=(dx,dy)且像素为i,j同时出现的联合概率P(i,j|d,θ),则4个方向的灰度共生矩阵定义如下:
P(i,j|d,0°)={(x,y)f(x,y)=i,f(x+dx,y+dy)=j),dx=d,dy=0}
P(i,j|d,45°)={(x,y)f(x,y)=i,f(x+dx,y+dy)=j),dx=d,dy=-dx}
P(i,j|d,90°)={(x,y)f(x,y)=i,f(x+dx,y+dy)=j),dx=0,dy=d}
P(i,j|d,135°)={(x,y)f(x,y)=i,f(x+dx,y+dy)=j),dx=d,dy=dx}
对上述灰度共生矩阵进行归一化:
然后提取不同方向的特征值,并求平均作为最后的纹理特征。
所对应的纹理特征对比度M1、能量M2、相关性M3、同质性M4、熵M5的具体计算公式如下:
其中,σx、σy和μx、μy分别是相应的边缘分布的均值和标准差。
提取HSV空间的H和S分量的前三阶矩,共六个特征向量作为颜色特征参数,具体表达式如下:
其中i代表H或S分量Pij为相应分量的颜色值,N为像素个数,共提取了叶片的21个相关特征作为分类的依据。
步骤四,特征降维,如图2所示,利用GA-ANN有效降低特征参数的复杂度,以样本的21个特征参数进行遗传编码,生成初始群体,通过ANN识别训练,混淆矩阵计算适应度,遗传操作(交叉、变异)等步骤,最终获得维数缩小为7~12维降维优良特征组合。
步骤五,特征优选,对降维后的优良特征参数组合通过SOM可视化优势,与植物类别的相关性检验,优选出相关性强的特征。
SOM结构如图3所示,它由输入层和竞争层(输出层)组成;输入层神经元数为n,竞争层由m个神经元组成的一维或者二维平面阵列,网络是全连接的,即每个输入结点都同所有的输出结点相连接。根据自组织特征映射图,对各特征参数与空心莲子草、丁香蓼、鳢肠、野慈姑、稗草、千金子,六类样本的分类准确率进行同样的相关性分析,H一阶矩、S三阶矩对杂草分类影响显著。
步骤六,特征反馈,通过步骤五,得知H一阶矩、S三阶矩对杂草分类影响显著,重复步骤三,加强H一阶矩、S三阶矩参数的提取;再重复步骤至六,杂草识别精度试验可达标98%。
本发明改进传统固定参数颜色特征因子组合,引入RGB线性加权系数有效抑制光照变化对分割精度影响;采用GA-ANN融合算法不仅能减少数据冗余,简化计算量,而且筛选出的主要特征具有独立性、可区分性、数量少的特点,能有效应用于杂草分类识别,提高分类精度;利用SOM神经网络的可视化优势,分析特征对分类结果的影响,从而反馈到特征提取阶段,以不断提高杂草识别精度,对智能除草装备发展具有参考意义。
上述为本发明较佳的实施方式,但本发明的实施方式并不受上述内容的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (3)

1.一种基于GA-ANN特征降维与SOM特征优选的稻田杂草识别方法,其特征在于,包括下述步骤:
步骤一,图像采集;在不同自然条件的情况下,采集稻田杂草的图像作为样本;
步骤二,图像预处理;为克服水田光照强度变化和水面反光影响杂草识别精度的问题,在RGB颜色特征分割算法的基础上,引入RGB线性加权系数对图像进行分割,获得二值化图像,然后再利用形态学算子进行后处理,分离出杂草二值图像;
其中,所述RGB线性加权系数,是为了有效抑制光照变化对分割精度的影响,改进传统固定参数颜色特征因子组合分割算子|G-B|+|G-R|,引入加权系数,该算子通过设置加权因子数值,可对不同光照下田间图像进行分割处理,具体如下所示:
IGray=ε|G-B|+(1-ε)|G-R| (1)
上式中,IGray为像素点灰度值;R、G、B分别为像素点的红颜色、绿颜色和蓝颜色的分量值;ε为加权系数;
步骤三,图像特征提取;杂草存在形状特征、纹理特征和颜色特征的不同,为区分秧苗与不同类别的杂草,则将这些不同的特征作为识别标准;从预处理后的图像中,分别提取和计算出杂草的形状特征、纹理特征和颜色特征的特征参数;
其中,所述形状特征具体为:不同杂草叶片的外观存在一定的差异,在处理后的叶片上提取宽长比、伸长度和致密度共三个无量纲的几何特征,以及具有旋转、缩放和平移不变性,且常作为有效的形状特征的七个Hu不变矩,总计十个形状特征参数;
纹理特征具体为:选用叶片图像四个不同方向的灰度共生矩阵,并进行归一化,求对应的对比度、能量、相关性、同质性和熵共五个纹理特征参数;
颜色特征具体为:提取HSV空间的H和S分量的前三阶矩共六个特征向量作为颜色特征参数;
步骤四,特征降维;将形状特征、纹理特征和颜色特征的特征参数进行遗传编码,利用ANN网络模式识别算法构造适应度函数,利用GA算法收敛的最优解对应提取优良特征参数组合,从而有效降低特征参数的复杂度;
步骤五,特征优选;通过SOM对降维后的优良特征参数组合可视化处理,并进行植物类别的相关性检验,优选出相关性强的特征参数;
步骤六,特征反馈;优选出相关性强的特征参数后,重复步骤三至步骤六,加强提取与杂草分类准确率有强相关性的特征参数,直至满足杂草辨识的精度要求。
2.根据权利要求1所述的基于GA-ANN特征降维与SOM特征优选的稻田杂草识别方法,其特征在于,所述步骤四中的GA-ANN算法具体为:GA算法是一种随机搜索的智能方法,是模拟达尔文的遗传学和自然界优胜劣汰的生物进化过程的计算模型;ANN是一种模仿动物神经网络的工作特征,进行分布式并行信息处理的数学模型;GA-ANN算法,即以样本的所有特征参数进行遗传编码,通过神经网络模式识别函数计算的分类精度评估出特征参数不同组合分类结果的优劣,求得最优特征组合。
3.根据权利要求1所述的基于GA-ANN特征降维与SOM特征优选的稻田杂草识别方法,其特征在于,所述步骤五中的SOM网络具体为:SOM网络的学习规则是胜者为王,当输入一个样本时,寻找与其最为相似的竞争层神经元,即是获胜神经元,以获胜的神经元为中心,调整周围其他神经元的权值,调整结果是使竞争层特定的神经元变得对输入层的某些样本敏感,从而达到分类目的;自组织特征映射图可保留各模式的拓扑关系,便于有效、直观地研究各特征对分类结果影响的显著性。
CN201910081161.0A 2019-01-28 2019-01-28 一种基于ga-ann特征降维与som特征优选的稻田杂草识别方法 Pending CN109934256A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910081161.0A CN109934256A (zh) 2019-01-28 2019-01-28 一种基于ga-ann特征降维与som特征优选的稻田杂草识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910081161.0A CN109934256A (zh) 2019-01-28 2019-01-28 一种基于ga-ann特征降维与som特征优选的稻田杂草识别方法

Publications (1)

Publication Number Publication Date
CN109934256A true CN109934256A (zh) 2019-06-25

Family

ID=66985243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910081161.0A Pending CN109934256A (zh) 2019-01-28 2019-01-28 一种基于ga-ann特征降维与som特征优选的稻田杂草识别方法

Country Status (1)

Country Link
CN (1) CN109934256A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111414805A (zh) * 2020-02-27 2020-07-14 华南农业大学 一种触觉智能的稻-草辨识装置和方法
CN112633082A (zh) * 2020-12-04 2021-04-09 西安理工大学 一种多特征融合杂草检测方法
CN113312988A (zh) * 2021-05-11 2021-08-27 清华大学 信号特征筛选及降维方法及系统
WO2022208427A1 (en) * 2021-03-31 2022-10-06 Upl Limited System and method for identifying weeds
CN116778477A (zh) * 2023-06-20 2023-09-19 上海市农业科学院 一种基于图像处理的玉米果穗性状指标计算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936919A (zh) * 2005-09-23 2007-03-28 中国农业机械化科学研究院 利用位置和纹理特征自动识别作物苗期田间杂草的方法
CN1945601A (zh) * 2005-10-08 2007-04-11 中国农业机械化科学研究院 一种自动识别田间杂草的方法与喷药装置
KR20120051441A (ko) * 2010-11-12 2012-05-22 경희대학교 산학협력단 잡초 이미지에 포함된 잡초 분류 방법 및 그 장치
EP3244343A1 (en) * 2016-05-12 2017-11-15 Bayer Cropscience AG Recognition of weed in a natural environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936919A (zh) * 2005-09-23 2007-03-28 中国农业机械化科学研究院 利用位置和纹理特征自动识别作物苗期田间杂草的方法
CN1945601A (zh) * 2005-10-08 2007-04-11 中国农业机械化科学研究院 一种自动识别田间杂草的方法与喷药装置
KR20120051441A (ko) * 2010-11-12 2012-05-22 경희대학교 산학협력단 잡초 이미지에 포함된 잡초 분류 방법 및 그 장치
EP3244343A1 (en) * 2016-05-12 2017-11-15 Bayer Cropscience AG Recognition of weed in a natural environment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
权龙哲 等: "智能除草装备苗草模式识别方法研究", 《东北农业大学学报》 *
王淑芬 等: "基于GA-ANN 融合算法的棉田杂草特征降维及分类识别", 《河南农业科学》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111414805A (zh) * 2020-02-27 2020-07-14 华南农业大学 一种触觉智能的稻-草辨识装置和方法
CN111414805B (zh) * 2020-02-27 2023-10-24 华南农业大学 一种触觉智能的稻-草辨识装置和方法
CN112633082A (zh) * 2020-12-04 2021-04-09 西安理工大学 一种多特征融合杂草检测方法
CN112633082B (zh) * 2020-12-04 2023-08-18 西安理工大学 一种多特征融合杂草检测方法
WO2022208427A1 (en) * 2021-03-31 2022-10-06 Upl Limited System and method for identifying weeds
CN113312988A (zh) * 2021-05-11 2021-08-27 清华大学 信号特征筛选及降维方法及系统
CN113312988B (zh) * 2021-05-11 2022-12-09 清华大学 信号特征筛选及降维方法及系统
CN116778477A (zh) * 2023-06-20 2023-09-19 上海市农业科学院 一种基于图像处理的玉米果穗性状指标计算方法
CN116778477B (zh) * 2023-06-20 2024-05-17 上海市农业科学院 一种基于图像处理的玉米果穗性状指标计算方法

Similar Documents

Publication Publication Date Title
CN109934256A (zh) 一种基于ga-ann特征降维与som特征优选的稻田杂草识别方法
Ramesh et al. Plant disease detection using machine learning
Anand et al. An application of image processing techniques for detection of diseases on brinjal leaves using k-means clustering method
Al Bashish et al. Detection and classification of leaf diseases using K-means-based segmentation and
Khirade et al. Plant disease detection using image processing
Tripathi et al. Recent machine learning based approaches for disease detection and classification of agricultural products
Arya et al. Detection of unhealthy plant leaves using image processing and genetic algorithm with Arduino
Manso et al. A smartphone application to detection and classification of coffee leaf miner and coffee leaf rust
CN106446942A (zh) 基于增量学习的农作物病害识别方法
Vamsidhar et al. Plant disease identification and classification using image processing
CN107346434A (zh) 一种基于多特征及支持向量机的植物病虫害检测方法
de Luna et al. Size classification of tomato fruit using thresholding, machine learning, and deep learning techniques
Zermas et al. A methodology for the detection of nitrogen deficiency in corn fields using high-resolution RGB imagery
Patil et al. Grape leaf disease detection using k-means clustering algorithm
Prakash et al. A study of image processing in agriculture
Dubey et al. Superpixel based roughness measure for cotton leaf diseases detection and classification
Pinto et al. Crop disease classification using texture analysis
Amlekar et al. Leaf features based plant classification using artificial neural network
Liang et al. Low-cost weed identification system using drones
Sabri et al. Nutrient deficiency detection in maize (Zea mays L.) leaves using image processing
Kumar et al. Automatic leaf disease detection and classification using hybrid features and supervised classifier
Batista et al. Classification of live moths combining texture, color and shape primitives
Mendigoria et al. Seed architectural phenes prediction and variety classification of dry beans (phaseolus vulgaris) using machine learning algorithms
Vijayakanthan et al. Classification of vegetable plant pests using deep transfer learning
Sakthiprasad et al. A Survey on Machine Learning in Agriculture-background work for an unmanned coconut tree harvester

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190625

WD01 Invention patent application deemed withdrawn after publication