CN109929553B - Borophosphate orange-red fluorescent powder and preparation method and application thereof - Google Patents

Borophosphate orange-red fluorescent powder and preparation method and application thereof Download PDF

Info

Publication number
CN109929553B
CN109929553B CN201811594355.2A CN201811594355A CN109929553B CN 109929553 B CN109929553 B CN 109929553B CN 201811594355 A CN201811594355 A CN 201811594355A CN 109929553 B CN109929553 B CN 109929553B
Authority
CN
China
Prior art keywords
orange
borophosphate
fluorescent powder
red
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811594355.2A
Other languages
Chinese (zh)
Other versions
CN109929553A (en
Inventor
朱静
向继云
杨美华
车毅
周杨
张卓辉
葛鑫晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Original Assignee
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan University YNU filed Critical Yunnan University YNU
Priority to CN201811594355.2A priority Critical patent/CN109929553B/en
Publication of CN109929553A publication Critical patent/CN109929553A/en
Application granted granted Critical
Publication of CN109929553B publication Critical patent/CN109929553B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)

Abstract

The invention discloses borophosphate orange red fluorescent powder and a preparation method and application thereof, wherein the chemical formula of the fluorescent powder is
Figure DDA0001921018390000011
X is more than or equal to 0.01 and less than or equal to 0.04. The borophosphate orange-red fluorescent powder disclosed by the invention is boron phosphate orange-red fluorescent powder which can be excited by near ultraviolet light, can be excited by a near ultraviolet light LED chip to realize orange-red luminescence, and is used as a component of tricolor fluorescent powder for outputting white light.

Description

Borophosphate orange-red fluorescent powder and preparation method and application thereof
Technical Field
The invention relates to fluorescent powder, in particular to borophosphate orange-red fluorescent powder and a preparation method and application thereof.
Background
In recent years, with the acceleration of urbanization and the application of new-generation information technologies such as the internet, urban lighting has made higher demands on artificial lighting technologies, and intelligent lighting, healthy lighting, and green lighting have become hot directions for people to study.
Due to the excellent light, color and electricity controllability of the LED, the LED becomes a perfect choice for a green illumination light source. As a novel all-solid-state lighting source, the white light LED has the advantages of energy conservation, environmental protection, high luminous efficiency, high stability, low voltage, extremely high response speed, small volume, long service life, strong designability and the like, has replaced incandescent lamps, fluorescent lamps and high-pressure mercury lamps to become a fourth generation lighting source, and is regarded as one of the most important green lighting sources in the new century because of wide application prospect and market.
At present, the LED illumination market at home and abroad is briskly developed, the policy of continuously banning the selling of incandescent lamps in all countries in the world is popularized, the global LED industry is advanced in the mature period, and the application technologies of white light LEDs, ultraviolet LEDs, vehicle LEDs, intelligent illumination, plant illumination and the like are continuously developed.
In LED lighting, the development of white LED technology has become one of the hot research spots in the optical field. At present, one of the technical ways to realize white light of an LED is to add three primary colors fluorescent powder to obtain white light with high luminous efficiency. However, red phosphors capable of being excited by ultraviolet light are still lacking in the market.
Most of red fluorescent powder with higher conversion efficiency is a sulfide system, but the sulfide has poor luminous stability and chemical stability, so that the performance attenuation is serious in the working process, and the large-scale application of the red fluorescent powder is limited. Therefore, there is a need to develop a novel red phosphor with high luminous efficiency, good stability and excellent performance.
Disclosure of Invention
The invention aims to provide borophosphate orange-red fluorescent powder, a preparation method and application thereof, the fluorescent powder solves the problem of low luminous efficiency of the existing sulfide system, and has the advantages of high color purity, low correlated color temperature, low raw material price and the like.
In order to achieve the purpose, the invention provides a borophosphate orange-red fluorescent powder, and the chemical formula of the fluorescent powder is
Figure BDA0001921018370000021
0.01≤x≤0.04。
Preferably, the fluorescent powder is effectively excited by near ultraviolet light with the wavelength of 350-400 nm.
Preferably, the emission centers of the fluorescent powder are positioned at 561nm, 597nm, 643nm and 699nm under the excitation wavelength of 400 nm.
Preferably, the phosphor has a chemical formula of
Figure BDA0001921018370000022
The invention also provides a preparation method of the borophosphate orange-red fluorescent powder, which comprises the following steps:
(1) mixing Li2CO3Anhydrous Na2CO3、H3BO3、NH4H2PO4And Sm2O3Sintering the powder at 300-450 ℃, and keeping the temperature to remove gas and impurities generated in the reaction process;
(2) after the heat preservation is finished, sintering at 550-650 ℃, preserving heat, and repeating the process of taking out the powder, grinding and preserving heat for a plurality of times in the heat preservation process;
(3) and after the heat preservation is finished, cooling and grinding to obtain the borophosphate orange-red fluorescent powder.
Preferably, the method further comprises: weighing Li2CO3Anhydrous Na2CO3、H3BO3、NH4H2PO4And Sm2O3And grinding to obtain powder with uniform particles.
Preferably, in step (1), the Li2CO3Anhydrous Na2CO3、H3BO3、NH4H2PO4And Sm2O3The weight ratio of (A) to (B) is 0.369: 0.260: 0.309: 1.150: 0.017.
preferably, in the step (1), the powder is sintered and insulated for 5 hours at 400 ℃ in a resistance furnace.
Preferably, in the step (2), the powder is sintered and insulated for 24 hours in a resistance furnace at 600 ℃.
The present invention also provides a white light LED, comprising: the LED fluorescent lamp comprises red fluorescent powder, green fluorescent powder, blue fluorescent powder and an LED chip for exciting the fluorescent powder; wherein the red phosphor comprises: the borophosphate is orange-red fluorescent powder.
The borophosphate orange-red fluorescent powder, the preparation method and the application thereof solve the problem of low luminous efficiency of the existing sulfide system, and have the following advantages:
(1) the borophosphate orange-red fluorescent powder can be excited by near ultraviolet light, can be excited by a near ultraviolet light LED chip to realize orange-red luminescence, and is used as a component of tricolor fluorescent powder for outputting white light;
(2) the borophosphate orange-red fluorescent powder disclosed by the invention is high in color purity and low in correlated color temperature, the color purity is over 85%, and the correlated color temperature is 2104-2483K;
(3) the invention takes the borophosphate as a matrix material, and has the advantages of low price of raw materials, low sintering temperature, mild reaction condition, energy conservation, environmental protection, good thermal stability and the like;
(4) the preparation method provided by the invention is simple and efficient, the adopted raw materials are easy to obtain, the cost is low, the popularization is easy, and the preparation method is suitable for large-scale industrial production;
(5) sm is selected and used in the invention3+Sm ion as activator in orange red fluorescent powder3+Ions can be effectively excited under ultraviolet light, and orange red light with main peaks at 561, 597, 643 and 699nm wavelengths is emitted;
(6) the green fluorescent powder has stronger luminous performance under the excitation of ultraviolet light with the wavelength of 400nm, can be well matched with a near ultraviolet LED chip (350-400nm), and can be used as fluorescent powder for a white light LED based on the ultraviolet LED chip.
Drawings
Fig. 1 is an XRD diffraction pattern of the borophosphate orange-red phosphor of example 1 of the present invention.
Fig. 2 is an excitation spectrum obtained by the borophosphate orange-red phosphor of embodiment 1 of the present invention at a monitoring wavelength of 597 nm.
FIG. 3 is a spectrum of light emitted from borophosphate orange-red phosphor of examples 1-4 of the present invention at an excitation wavelength of 400 nm.
FIG. 4 is a graph showing the relationship between the luminous intensity and the value of x of the borophosphate orange-red phosphor.
FIG. 5 is a CIE chromaticity coordinate diagram of the borophosphate orange-red phosphor of the present invention taken at a wavelength of 400 nm.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
A borophosphate orange red fluorescent powder has a chemical formula of
Figure BDA0001921018370000031
0.01≤x≤0.04。
Further, the fluorescent powder is effectively excited by near ultraviolet light with the wavelength of 350-400 nm.
Further, the emission centers of the phosphors at an excitation wavelength of 400nm are located at 561nm, 597nm, 643nm, and 699 nm.
Further, the chemical formula of the fluorescent powder is
Figure BDA0001921018370000041
The invention also provides a preparation method of the borophosphate orange-red fluorescent powder, which comprises the following steps:
(1) mixing Li2CO3Anhydrous Na2CO3、H3BO3、NH4H2PO4And Sm2O3Sintering the powder at 300-450 ℃, and keeping the temperature to remove gas and impurities generated in the reaction process;
(2) after the heat preservation is finished, sintering at 550-650 ℃, preserving heat, and repeating the process of taking out the powder, grinding and preserving heat for a plurality of times in the heat preservation process;
(3) and after the heat preservation is finished, cooling and grinding to obtain the borophosphate orange-red fluorescent powder.
Further, the method further comprises: weighing Li2CO3Anhydrous Na2CO3、H3BO3、NH4H2PO4And Sm2O3And grinding to obtain powder with uniform particles.
Further, in the step (1), Li2CO3Anhydrous Na2CO3、H3BO3、NH4H2PO4And Sm2O3The weight ratio of (A) to (B) is 0.369: 0.260: 0.309: 1.150: 0.017.
further, in the step (1), the powder is sintered and insulated for 5 hours at 400 ℃ in a resistance furnace.
Further, in the step (2), the powder is sintered and insulated for 24 hours in a resistance furnace at 600 ℃.
The present invention also provides a white light LED, comprising: the LED fluorescent lamp comprises red fluorescent powder, green fluorescent powder, blue fluorescent powder and an LED chip for exciting the fluorescent powder; wherein, the red phosphor comprises: borophosphate orange-red phosphor.
More specifically, the borophosphate green phosphor and the preparation method thereof provided by the present invention are described in detail below with reference to examples 1 to 4.
Example 1
Figure BDA0001921018370000042
Figure BDA0001921018370000043
The preparation method specifically comprises the following steps:
(1) weighing 0.369g Li according to stoichiometric ratio2CO30.260g of anhydrous Na2CO3、0.309g H3BO3、1.150gNH4H2PO4And 0.017g Tb4O7Fully grinding the weighed reactant in a mortar until powder with uniform particles is obtained;
(2) after uniform mixing, transferring the mixture into a corundum crucible, placing the corundum crucible into a box-type resistance furnace, pre-sintering at 400 ℃, and keeping the temperature for 5 hours so as to remove gas and other impurities generated in the reaction process;
(3) taking out and grinding, sintering at 600 ℃, preserving heat for 1 day at 600 ℃, taking out and grinding for many times in the process of preserving heat, ensuring that reactants are in full contact, reducing agglomeration of powder and ensuring that experiments are carried out completely and fully;
(4) cooling to room temperature, taking out the sample, and grinding to obtain
Figure BDA0001921018370000051
The green phosphor, as shown in FIG. 1, is an XRD diffraction pattern obtained by sintering at 600 ℃ in example 1 of the present invention.
As shown in FIG. 2, which is an excitation spectrum obtained by the borophosphate orange-red phosphor of embodiment 1 of the present invention at a monitoring wavelength of 597nm, it can be seen from the graph that the positions of the excitation peaks are respectively located at 343, 361, 374, 400, 415-420, and 438nm, which respectively correspond to Sm3+Ion(s)6H5/24D9/26H5/24D3/26H5/24D1/26H5/2→(4F7/2+6P3/2),6H5/2→(6P5/2+4P5/2),6H5/24G9/2Is detected. Of these, the strongest excitation peak is located at 400 nm.
Example 2
Figure BDA0001921018370000052
The preparation method is basically the same as that of the example 1, except that the dosage of each raw material is different, and the specific dosage of the raw material is Li2CO3:0.369g,Na2CO3:0.262g,H3BO3:0.309g,NH4H2PO4:1.150g,Tb4O7:0.009g。
Example 3
Figure BDA0001921018370000053
The preparation method is basically the same as that of the example 1, except that the dosage of each raw material is different, and the specific dosage of the raw material is Li2CO3:0.369g,Na2CO3:0.257g,H3BO3:0.309g,NH4H2PO4:1.150g,Tb4O7:0.026g。
Example 4
Figure BDA0001921018370000054
The preparation method is basically the same as that of the example 1, except that the dosage of each raw material is different, and the specific dosage of the raw material is Li2CO3:0.369g,Na2CO3:0.254g,H3BO3:0.309g,NH4H2PO4:1.150g,Tb4O7:0.035g。
The experimental results are as follows:
as shown in FIG. 3, which is a spectrum of the emission light of the borophosphate orange-red phosphor of examples 1-4 of the present invention at an excitation wavelength of 400nm, it can be seen that the emission centers are located at 561, 597, 643 and 699nm, respectively, wherein the maximum emission light is obtained at 597 nm.
As shown in FIG. 4, it is a graph of the relationship between the luminous intensity of borophosphate orange red fluorescent powder and the value of x, and Sm is shown in the graph3+The optimum doping amount of (3) is 0.02 mol.
As shown in fig. 5, which is a CIE chromaticity diagram of the borophosphate orange-red phosphor of the present invention obtained at a wavelength of 400nm, it can be seen that the color coordinates of the sample are located in the orange-red region on the CIE chromaticity diagram.
Color purity and color temperature measurements of examples 1-5, example 1
Figure BDA0001921018370000061
Color purity of (2) was 85%, of example 2
Figure BDA0001921018370000062
Color purity of (2) 85%, example 3
Figure BDA0001921018370000063
Color purity of 86%, example 4
Figure BDA0001921018370000064
The color purity of (2) was 96%. Examples 1 to 4
Figure BDA0001921018370000065
The correlated color temperature of (2) is 2104-2483K.
While the present invention has been described in detail with reference to the preferred embodiments, it should be understood that the above description should not be taken as limiting the invention. Various modifications and alterations to this invention will become apparent to those skilled in the art upon reading the foregoing description. Accordingly, the scope of the invention should be determined from the following claims.

Claims (10)

1. The borophosphate orange red fluorescent powder is characterized in that the chemical formula of the fluorescent powder is
Figure FDA0001921018360000011
0.01≤x≤0.04。
2. The borophosphate orange-red phosphor of claim 1, wherein the phosphor is effectively excited by near ultraviolet light having a wavelength of 350-400 nm.
3. The borophosphate orange-red phosphor of claim 2, wherein the phosphor has emission centers at 561nm, 597nm, 643nm, and 699nm at an excitation wavelength of 400 nm.
4. The borophosphate orange-red phosphor of claim 1, wherein the phosphor has the formula
Figure FDA0001921018360000012
5. A method of making the borophosphate orange-red phosphor of any of claims 1-4, comprising:
(1) mixing Li2CO3Anhydrous Na2CO3、H3BO3、NH4H2PO4And Sm2O3Sintering the powder at 300-450 ℃, and keeping the temperature to remove gas and impurities generated in the reaction process;
(2) after the heat preservation is finished, sintering at 550-650 ℃, preserving heat, and repeating the process of taking out the powder, grinding and preserving heat for a plurality of times in the heat preservation process;
(3) and after the heat preservation is finished, cooling and grinding to obtain the borophosphate orange-red fluorescent powder.
6. The method of claim 5, further comprising: weighing Li2CO3Anhydrous Na2CO3、H3BO3、NH4H2PO4And Sm2O3And grinding to obtain powder with uniform particles.
7. The method of claim 5, wherein in step (1), the Li is added to the phosphor2CO3Anhydrous Na2CO3、H3BO3、NH4H2PO4And Sm2O3The weight ratio of (A) to (B) is 0.369: 0.260: 0.309: 1.150: 0.017.
8. the method for preparing borophosphate orange-red fluorescent powder according to claim 5, wherein in the step (1), the powder is sintered and insulated for 5 hours at 400 ℃ in a resistance furnace.
9. The method for preparing borophosphate orange-red fluorescent powder according to claim 5, wherein in the step (2), the powder is sintered and insulated in a resistance furnace at 600 ℃ for 24 hours.
10. A white LED, comprising: the LED fluorescent lamp comprises red fluorescent powder, green fluorescent powder, blue fluorescent powder and an LED chip for exciting the fluorescent powder; wherein the red phosphor comprises: the borophosphate orange-red phosphor of any one of claims 1-4.
CN201811594355.2A 2018-12-25 2018-12-25 Borophosphate orange-red fluorescent powder and preparation method and application thereof Active CN109929553B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811594355.2A CN109929553B (en) 2018-12-25 2018-12-25 Borophosphate orange-red fluorescent powder and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811594355.2A CN109929553B (en) 2018-12-25 2018-12-25 Borophosphate orange-red fluorescent powder and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN109929553A CN109929553A (en) 2019-06-25
CN109929553B true CN109929553B (en) 2021-12-24

Family

ID=66984793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811594355.2A Active CN109929553B (en) 2018-12-25 2018-12-25 Borophosphate orange-red fluorescent powder and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN109929553B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1177144A (en) * 1966-07-08 1970-01-07 Matsushita Electronics Corp Cathode-Ray Tube for Colour Television and Phosphorus therefor
JP2005008843A (en) * 2003-06-18 2005-01-13 Kasei Optonix Co Ltd Sm-ACTIVATING RED LIGHT EMITTING FLUOROPHOR AND LIGHT-EMITTING DEVICE
CN101343541A (en) * 2008-08-26 2009-01-14 江苏技术师范学院 Red fluorescent powder for white radiation LED and preparation thereof
CN102134488A (en) * 2010-01-26 2011-07-27 海洋王照明科技股份有限公司 Vacuum ultraviolet induced high colour purity red phosphor and preparation method thereof
CN102134487A (en) * 2010-01-26 2011-07-27 海洋王照明科技股份有限公司 Green emitting phosphor for plasma display panel and preparation method thereof
CN102660276A (en) * 2012-04-20 2012-09-12 中国海洋大学 Near ultraviolet stimulated borophosphate white light fluorescent powder and preparation method
CN103237867A (en) * 2010-10-26 2013-08-07 发光物质工厂布赖通根有限责任公司 Borophosphate phosphor and light source
CN104449723A (en) * 2014-12-25 2015-03-25 英特美光电(苏州)有限公司 Borophosphate fluorescent powder capable of emitting green fluorescence as well as preparation method and application of borophosphate fluorescent powder
CN107043625A (en) * 2017-05-08 2017-08-15 陕西科技大学 A kind of near ultraviolet excitated charge compensation type feux rouges borophosphate luminescent material and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1177144A (en) * 1966-07-08 1970-01-07 Matsushita Electronics Corp Cathode-Ray Tube for Colour Television and Phosphorus therefor
JP2005008843A (en) * 2003-06-18 2005-01-13 Kasei Optonix Co Ltd Sm-ACTIVATING RED LIGHT EMITTING FLUOROPHOR AND LIGHT-EMITTING DEVICE
CN101343541A (en) * 2008-08-26 2009-01-14 江苏技术师范学院 Red fluorescent powder for white radiation LED and preparation thereof
CN102134488A (en) * 2010-01-26 2011-07-27 海洋王照明科技股份有限公司 Vacuum ultraviolet induced high colour purity red phosphor and preparation method thereof
CN102134487A (en) * 2010-01-26 2011-07-27 海洋王照明科技股份有限公司 Green emitting phosphor for plasma display panel and preparation method thereof
CN103237867A (en) * 2010-10-26 2013-08-07 发光物质工厂布赖通根有限责任公司 Borophosphate phosphor and light source
CN102660276A (en) * 2012-04-20 2012-09-12 中国海洋大学 Near ultraviolet stimulated borophosphate white light fluorescent powder and preparation method
CN104449723A (en) * 2014-12-25 2015-03-25 英特美光电(苏州)有限公司 Borophosphate fluorescent powder capable of emitting green fluorescence as well as preparation method and application of borophosphate fluorescent powder
CN107043625A (en) * 2017-05-08 2017-08-15 陕西科技大学 A kind of near ultraviolet excitated charge compensation type feux rouges borophosphate luminescent material and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Photoluminescence properties of Sm3+ doped barium borophosphate phosphors;Jie Zhang et al.,;《Optik》;20180131;第158卷;第1499-1503页 *
Synthesis and crystal structure analysis of Li2NaBP2O8 and LiNa2B5P2O14;Toru Hasegawa et al.,;《Journal of Solid State Chemistry》;20141208;第225卷;第65-71页 *

Also Published As

Publication number Publication date
CN109929553A (en) 2019-06-25

Similar Documents

Publication Publication Date Title
CN112094647A (en) Narrow-band emission nitrogen oxide red fluorescent powder and preparation method thereof
CN109971477B (en) Samarium-doped borophosphate orange-red fluorescent powder and preparation method and application thereof
CN105349147A (en) Ultraviolet-to-blue light excited phosphate-based red fluorescent powder and preparation method thereof
CN110028964B (en) Dysprosium-silicon synergistic apatite structure blue-light fluorescent powder for white light LED and preparation method thereof
CN103059849B (en) Silicophosphate green fluorescent powder activated by Eu<2+> and preparation method as well as application thereof
CN101307228A (en) Chlorine-aluminosilicate fluorescent powder and method for preparing same
CN104403668A (en) Silicate green fluorescent powder and preparation method thereof
CN110804438B (en) Light color adjustable spinel fluorescent powder and preparation method and application thereof
CN105542771A (en) Single-matrix white light fluorescent powder for white light LED and preparation method thereof
CN105131953A (en) Rare earth ion doping novel polysilicate green fluorescent powder for near ultraviolet stimulated white light LED and preparation method of novel polysilicate green fluorescent powder
CN109929555B (en) White boron phosphate fluorescent powder and preparation method and application thereof
CN109929553B (en) Borophosphate orange-red fluorescent powder and preparation method and application thereof
CN107163943B (en) Spectrum-adjustable fluorescent powder suitable for near ultraviolet excitation and preparation method thereof
CN109929554B (en) Boron phosphate green fluorescent powder and preparation method and application thereof
CN110283588B (en) Fluorescent powder for white light LED for illumination display and preparation and application thereof
CN101759362A (en) Rare earth doped luminescent glass and preparation method thereof
CN101759361A (en) Rare earth doped luminescent glass and preparation method thereof
CN108865143B (en) Near ultraviolet excited single-matrix white light fluorescent powder and preparation method and white light regulation
CN107858146B (en) Eu (Eu)3+Ion-doped borates (K)6Ba4B8O19) Synthesis method of red-based fluorescent powder
CN105586038A (en) Red or green rare-earth phosphate fluorescent powder material and preparation method thereof
CN110257068A (en) A kind of yellow green phosphate fluorescent and the preparation method and application thereof
CN105885834A (en) Phosphate blue fluorescent powder for white light LEDs and preparation method of phosphate blue fluorescent powder
CN113549457B (en) Europium (III) -doped scheelite type red fluorescent powder, preparation and application
CN107557011B (en) Multi-wavelength emission phosphate fluorescent powder and preparation method thereof
CN115595152B (en) Ga with near infrared emission enhancement 2 O 3 :Cr 3+ Luminescent material and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant