CN109919084A - 一种基于深度多索引哈希的行人重识别方法 - Google Patents
一种基于深度多索引哈希的行人重识别方法 Download PDFInfo
- Publication number
- CN109919084A CN109919084A CN201910166071.1A CN201910166071A CN109919084A CN 109919084 A CN109919084 A CN 109919084A CN 201910166071 A CN201910166071 A CN 201910166071A CN 109919084 A CN109919084 A CN 109919084A
- Authority
- CN
- China
- Prior art keywords
- hash
- pedestrian
- picture
- index
- real
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000006870 function Effects 0.000 claims abstract description 30
- 238000012549 training Methods 0.000 claims abstract description 22
- 235000019580 granularity Nutrition 0.000 claims description 33
- 238000005192 partition Methods 0.000 claims description 8
- 238000013527 convolutional neural network Methods 0.000 claims description 7
- 238000010606 normalization Methods 0.000 claims description 7
- 238000013461 design Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 5
- 230000035945 sensitivity Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 230000001174 ascending effect Effects 0.000 claims description 2
- 238000009795 derivation Methods 0.000 claims description 2
- 238000005457 optimization Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 238000013528 artificial neural network Methods 0.000 claims 1
- 230000000007 visual effect Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000013135 deep learning Methods 0.000 abstract 1
- 238000000605 extraction Methods 0.000 abstract 1
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Image Analysis (AREA)
Abstract
本发明公开了一种基于深度多索引哈希的行人重识别方法,达到了非重叠视角域多摄像头网络场景下行人检索存储空间低且检索高效的效果。该方法首先从原始视频数据中构造行人图片训练集,再结合深度学习构造端到端的有互反馈的多粒度特征学习网络,基于训练集对网络模型进行训练,得到哈希函数和训练集对应的哈希编码,并基于哈希编码构建索引。对于摄像头新收集的数据,使用哈希函数计算对应的哈希编码,并实时增加到索引中。在线检索时,对于给定的目标行人图片,首先使用多粒度网络模型进行特征的提取,使用哈希函数计算目标行人图片的哈希编码,然后基于哈希编码在索引中进行近邻检索,最后基于实值特征在近邻范围内进行重排序,得到检索结果。
Description
技术领域
本发明涉及一种基于深度多索引哈希的行人重识别方法,用于实现非重叠视角域多摄像头网络场景下利用低存储空间的高效行人检索。
背景技术
随着计算机视觉技术的发展,图像和视频等相关的应用在国民日常生活中的地位日益突出。此外,图像处理学科既是科学领域中具有挑战的研究方向,也是工程领域中的重要应用技术。行人重识别是近几年计算机视觉领域新兴的研究热点,是指在非重叠视角域多摄像头网络场景下进行行人匹配的任务,即确认不同位置的摄像头在不同的时刻拍摄到的行人目标是否为同一行人,属于在复杂视频环境下的图像处理和分析范畴,是许多监控和安防应用中的主要任务。
由于公共安全需求的增加,以及摄像监控网络规模的扩大,单纯依靠人力劳动力进行行人重识别任务的成本极高,甚至是无法完成的。因此在大规模行人数据中,如何自动准确地进行待查询行人的匹配备受关注。
大多数的行人重识别研究工作主要关注算法的效果却很少在意其检索的效率。在实际的应用中,行人图片数据是呈爆炸式增长的,因此设计一种准确、高效的行人重识别算法至关重要。
发明内容
发明目的:为了解决这个问题,本发明主要从哈希学习的角度出发,用离散哈希对行人图片进行表示,一方面降低行人图片的存储开销,另一方面通过哈希检索技术在海明空间内进行行人图片的匹配,大大提高了算法运行的效率。
技术方案:一种基于深度多索引哈希的行人重识别方法,引入多索引哈希意在解决行人图片的存储开销大以及检索效率低的问题。同时,通过多粒度深度网络学习行人图片的实值特征表示和哈希编码来提升算法性能。主要包括特征学习和多索引哈希检索两部分,具体包括以下的步骤:
1)基于行人区域检测技术,从原始视频数据中构造行人图片训练集;
2)基于行人图片训练集,构建并训练多粒度网络模型,得到哈希函数以及训练集图片对应的实值特征和哈希编码;
3)基于哈希编码,设计分块划分策略构建索引;
4)对于摄像头新收集的数据,使用哈希函数计算哈希编码,并实时增加到索引中;使得在线检索可以返回实时的结果;
5)对于给定的目标行人图片,使用哈希函数计算哈希编码,基于哈希编码在索引中进行检索,再基于实值特征进行重排序。
上述步骤1)的过程为:对于来自监控摄像头的原始视频数据,首先需要进行视频切帧操作,然后对切帧后的图片数据进行行人区域检测,以生成行人图片作为训练集。
上述步骤2)的过程为:使用预训练的卷积神经网络多粒度网络模型提取行人图片的特征表示,预训练的卷积神经网络多粒度网络模型以ResNet-50(Kaiming He,XiangyuZhang,Shaoqing Ren,Jian Sun,Deep Residual Learning for Image Recognition,2016{IEEE}Conference on Computer Vision and Pattern Recognition)作为主干,并将其划分为:全局分支、上下身分支、上中下身分支。在训练和测试的过程中将三个分支的输出进行合并从而得到行人图片的实值特征表示,这样的特征表示蕴含了多粒度的行人信息。对于每一个分支,在特征表示层后添加一层全连接层作为哈希层,哈希层的维度对应于哈希编码的长度。
在多粒度网络模型的训练过程中,使用归一化指数函数损失为行人图片的实值特征表示建模,使用三元组损失为行人图片的哈希编码建模,使用多索引查询敏感损失来为检索进行加速。在求解时,使用梯度反向传播优化深度网络的参数。
上述步骤3)的过程为:在需要建立多个哈希索引的情况下,使用分块划分策略,对行人图片的哈希编码进行划分,划分后的子串分别进行索引的建立,从而缓解直接对哈希编码进行划分可能导致的单个索引中不存在多粒度的信息,即多粒度的信息在划分过程中遭到破坏的问题。
上述步骤5)的过程为:基于多索引哈希的近邻检索通常会返回大量的近邻,且近邻之间的排序关系较为粗糙,在此基础上,基于多粒度网络模型输出的实值特征表示,在近邻范围内进行重排序,再根据要求按序返回重排序后的检索结果,可以进一步提升系统在精确度方面的表现。
附图说明
图1为本发明索引构建流程图;
图2为本发明索引更新流程图;
图3为本发明在线检索流程图。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
图1展示了基于深度多索引哈希的行人重识别方法的索引构建流程。首先收集来自监控摄像头的原始视频数据,进行视频切帧操作,然后对切帧后的图片数据进行行人区域检测,以生成行人图片作为训练集。
将行人图片作为多粒度网络模型的输入,学习行人图片的实值特征表示和哈希编码。多粒度网络模型以ResNet-50作为主干,包括五层卷积神经网络,一层全局池化层,一层维度压缩层,一层哈希层,其中第五层卷积神经网络将原始的ResNet-50划分为:全局分支、上下身分支、上中下身分支,具体参数配置如表1。网络的配置可能包含如下几个部分:"filter"指定卷积感受野的大小和卷积个数;"stride"指定两个卷积操作间的间隔;"pad"表示零填充的数目;"max pool"指定最大值下采样的区域大小。维度压缩层用2048维作为实值特征表示,哈希层的维度为对应的哈希编码的长度。
多粒度网络模型的目标函数由三部分组成,对于第i个输入图片xi,令表示多粒度网络模型输出的实值特征表示,令{di,gi,hi}表示对应的离散二值编码,其中di,gi,hi∈{-1,+1}r,r为单个分支输出的哈希编码的长度。规定[]T表示向量的转置,[x]+表示函数max(0,x),||bi-bj||H表示二值向量bi和bj之间的海明距离:
1)以最小批处理量为N的数据为例,三元组损失函数可以如下定义:
其中di,分别表示锚点、正样例点、负样例点,α表示间隔超参数。
由此我们可以定义关于离散二值编码{di,gi,hi}的三元组损失函数如下:
2)为了能够学习到更加鲁棒的实值特征标志,我们使用归一化指数函数损失为行人图片的实值特征表示建模,我们定义分类损失函数如下:
由此我们可以定义关于实值特征的归一化指数函数损失如下:
3)在需要建立m个哈希索引的情况下,需要对哈希编码进行m等份的划分。然而直接对哈希编码[di;gi;hi]T进行划分可能会导致单个索引中不存在多粒度的信息,即多粒度的信息在划分的过程中遭到了破坏。为了缓解这个问题,设计分块划分策略,对每个分支输出的哈希编码单独进行m等份的划分,然后将各分支的第j份划分进行合并以形成第j个索引
这种划分方式可以使每个索引都具有多粒度的信息。基于这种划分方式,令和分别表示离散二值变量bi和bj的第l个索引,定义和之间的海明距离为定义多索引查询敏感损失如下:
综合式(2),(4),(6),可以得到多粒度网络模型的最终目标函数如下:
这里β,γ是折中超参数,均为正实数,N是最小批处理量,r为单个分支输出的哈希编码的长度。在求解时,对目标函数(7)进行求导,使用梯度反向传播优化模型的参数。训练完成后,将实值特征保存在外存,构建外存数据库;基于哈希编码构建索引,并将哈希编码及索引保存在内存,构建内存数据库,以便于快速检索。
图2展示了基于深度多索引哈希的行人重识别方法的索引更新流程。对于摄像头新收集的数据,使用多粒度网络模型得到对应的实值特征和哈希编码,并实时地添加到内外存数据库中。
图3展示了基于深度多索引哈希的行人重识别方法的在线检索流程。对于给定的目标行人图片,将该图片作为多粒度网络模型的输入,计算并输出对应的实值特征表示和哈希编码。然后基于哈希编码,使用多索引哈希检索技术在内存中检索待查询行人图片的近邻。由于基于多索引哈希的近邻检索通常会检索出大量的近邻,且近邻之间的排序关系较为粗糙,为了进一步提升系统在精确度方面的表现,可以将保存在外存中的近邻图片的实值特征读入内存,计算其与目标行人图片的实值特征之间的欧氏距离,并根据计算得到的欧氏距离对近邻图片进行升序排序,再根据检索的要求按序返回检索结果。
表1多粒度网络模型参数配置
层名 | 配置 |
卷积层一 | filter 64×7×7;stride 2×2;pad 0;max pool 3×3; |
卷积层二 | filter 64×1×1;filter 64×3×3;filter 256×1×1; |
卷积层三 | [filter 128×1×1;filter 128×3×3;filter 512×1×1;]×3 |
卷积层四 | [filter 256×1×1;filter 256×3×3;filter 1024×1×1;]×3 |
全局分支 | [filter 512×1×1;filter 512×3×3;filter 2048×1×1;]×3 |
上下身分支 | [filter 512×1×1;filter 512×3×3;filter 2048×1×1;]×3 |
上中下身分支 | [filter 512×1×1;filter 512×3×3;filter 2048×1×1;]×3 |
全局池化层 | [max pool 24×8;max pool 12×8;max pol 8×8;] |
维度压缩层 | [filter 256×1×1;]×8 |
哈希层 | 哈希编码长度 |
Claims (10)
1.一种基于深度多索引哈希的行人重识别方法,其特征在于,该方法包括以下的步骤:
1)基于行人区域检测技术,从原始视频数据中构造行人图片训练集;
2)基于行人图片训练集,构建并训练多粒度网络模型,得到哈希函数以及训练集图片对应的实值特征和哈希编码;
3)基于哈希编码,设计分块划分策略构建索引;
4)对于摄像头新收集的数据,使用哈希函数计算哈希编码,并实时增加到索引中;
5)对于给定的目标行人图片,使用哈希函数计算哈希编码,基于哈希编码在索引中进行检索,再基于实值特征进行重排序。
2.如权利要求1所述的基于深度多索引哈希的行人重识别方法,其特征在于,所述步骤1)中,对于来自监控摄像头的原始视频数据,首先需要进行视频切帧操作,然后对切帧后的图片数据进行行人区域检测,以生成行人图片作为训练集。
3.如权利要求1所述的基于深度多索引哈希的行人重识别方法,其特征在于,所述步骤2)中,使用预训练的卷积神经网络多粒度网络模型提取行人图片的特征表示,预训练的卷积神经网络多粒度网络模型以ResNet-50作为主干,并将其划分为:全局分支、上下身分支、上中下身分支;在训练和测试的过程中将三个分支的输出进行合并从而得到行人图片的实值特征表示,这样的特征表示蕴含了多粒度的行人信息;对于每一个分支,在特征表示层后添加一层全连接层作为哈希层,哈希层的维度对应于哈希编码的长度;
在多粒度网络模型的训练过程中,使用归一化指数函数损失为行人图片的实值特征表示建模,使用三元组损失为行人图片的哈希编码建模,使用多索引查询敏感损失来为检索进行加速;在求解时,使用梯度反向传播优化深度网络的参数。
4.如权利要求1所述的基于深度多索引哈希的行人重识别方法,其特征在于,步骤3)中,在需要建立多个哈希索引的情况下,使用分块划分策略,对行人图片的哈希编码进行划分,划分后的子串分别进行索引的建立,从而缓解直接对哈希编码进行划分可能导致的单个索引中不存在多粒度的信息,即多粒度的信息在划分过程中遭到破坏的问题。
5.如权利要求1所述的基于深度多索引哈希的行人重识别方法,其特征在于,步骤5)中,对于给定的目标行人图片,将该图片作为多粒度网络模型的输入,计算并输出对应的实值特征表示和哈希编码;然后基于哈希编码,使用多索引哈希检索技术在内存中检索待查询行人图片的近邻;将保存在外存中的近邻图片的实值特征读入内存,计算其与目标行人图片的实值特征之间的欧氏距离,并根据计算得到的欧氏距离对近邻图片进行升序排序,再根据检索的要求按序返回检索结果。
6.如权利要求3所述的基于深度多索引哈希的行人重识别方法,其特征在于,所述多粒度网络模型以ResNet-50作为主干,包括五层卷积神经网络,一层全局池化层,一层维度压缩层,一层哈希层,其中第五层卷积神经网络将原始的ResNet-50划分为:全局分支、上下身分支、上中下身分支。
7.如权利要求3所述的基于深度多索引哈希的行人重识别方法,其特征在于,多粒度网络模型的目标函数由三部分组成:
1)为行人图片的哈希编码建模的三元组损失其中di,gi,hi分别表示三个分支输出的哈希编码;
2)为行人图片的实值特征表示建模归一化指数函数损失其中fi (1),fi (2),fi (3)分别表示三个分支输出的实值特征表示;
3)为检索进行加速的多索引查询敏感损失
由此可以得到多粒度网络模型的最终目标函数如下:
这里β,γ是折中超参数,N是最小批处理量,r为单个分支输出的哈希编码的长度;在求解时,对目标函数(7)进行求导,使用梯度反向传播优化模型的参数;训练完成后,将实值特征保存在外存,构建外存数据库;基于哈希编码构建索引,并将哈希编码及索引保存在内存,构建内存数据库,以便于快速检索。
8.如权利要求7所述的基于深度多索引哈希的行人重识别方法,其特征在于,对于最小批处理量为N的数据三元组损失函数定义为:
其中di,分别表示锚点、正样例点、负样例点,α表示间隔超参数,[x]+表示函数max(0,x),||bi-bj||H表示二值向量bi和bj之间的海明距离;
由此我们可以定义关于离散二值编码{di,gi,hi}的三元组损失函数如下:
9.如权利要求7所述的基于深度多索引哈希的行人重识别方法,其特征在于,为了能够学习到更加鲁棒的实值特征标志,使用归一化指数函数损失为行人图片的实值特征表示建模,定义分类损失函数如下:
由此定义关于实值特征的归一化指数函数损失如下:
10.如权力要求7所述的基于深度多索引哈希的行人重识别方法,其特征在于,在需要建立m个哈希索引的情况下,需要对哈希编码进行m等份的划分;然而直接对哈希编码[di;gi;hi]T进行划分可能会导致单个索引中不存在多粒度的信息,即多粒度的信息在划分的过程中遭到了破坏;为了缓解这个问题,设计分块划分策略,对每个分支输出的哈希编码单独进行m等份的划分,然后将各分支的第j份划分进行合并以形成第j个索引
这种划分方式可以使每个索引都具有多粒度的信息;基于这种划分方式,令和分别表示离散二值变量bi和bj的第l个索引,定义和之间的海明距离为定义多索引查询敏感损失如下:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910166071.1A CN109919084B (zh) | 2019-03-06 | 2019-03-06 | 一种基于深度多索引哈希的行人重识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910166071.1A CN109919084B (zh) | 2019-03-06 | 2019-03-06 | 一种基于深度多索引哈希的行人重识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109919084A true CN109919084A (zh) | 2019-06-21 |
CN109919084B CN109919084B (zh) | 2023-04-25 |
Family
ID=66963325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910166071.1A Active CN109919084B (zh) | 2019-03-06 | 2019-03-06 | 一种基于深度多索引哈希的行人重识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109919084B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110852152A (zh) * | 2019-09-27 | 2020-02-28 | 中山大学 | 一种基于数据增强的深度哈希行人重识别方法 |
CN111104566A (zh) * | 2019-12-26 | 2020-05-05 | 腾讯科技(深圳)有限公司 | 特征索引编码方法、装置、电子设备及存储介质 |
WO2021036070A1 (zh) * | 2019-08-30 | 2021-03-04 | 深圳计算科学研究院 | 一种海明空间近似查询方法及存储介质 |
CN115017366A (zh) * | 2022-07-11 | 2022-09-06 | 中国科学技术大学 | 基于多粒度语境化和多结构保存的无监督视频哈希检索方法 |
CN117034385A (zh) * | 2023-08-30 | 2023-11-10 | 四开花园网络科技(广州)有限公司 | 一种支持人形角色创意设计的ai系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012146217A (ja) * | 2011-01-13 | 2012-08-02 | Dainippon Printing Co Ltd | タッチパネルセンサ、当該タッチパネルセンサの製造方法、および当該タッチパネルセンサを備えた入出力装置の製造方法 |
CN108197538A (zh) * | 2017-12-21 | 2018-06-22 | 浙江银江研究院有限公司 | 一种基于局部特征和深度学习的卡口车辆检索系统及方法 |
CN108647295A (zh) * | 2018-05-08 | 2018-10-12 | 南京大学 | 一种基于深度协同哈希的图片标注方法 |
-
2019
- 2019-03-06 CN CN201910166071.1A patent/CN109919084B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012146217A (ja) * | 2011-01-13 | 2012-08-02 | Dainippon Printing Co Ltd | タッチパネルセンサ、当該タッチパネルセンサの製造方法、および当該タッチパネルセンサを備えた入出力装置の製造方法 |
CN108197538A (zh) * | 2017-12-21 | 2018-06-22 | 浙江银江研究院有限公司 | 一种基于局部特征和深度学习的卡口车辆检索系统及方法 |
CN108647295A (zh) * | 2018-05-08 | 2018-10-12 | 南京大学 | 一种基于深度协同哈希的图片标注方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021036070A1 (zh) * | 2019-08-30 | 2021-03-04 | 深圳计算科学研究院 | 一种海明空间近似查询方法及存储介质 |
CN110852152A (zh) * | 2019-09-27 | 2020-02-28 | 中山大学 | 一种基于数据增强的深度哈希行人重识别方法 |
CN110852152B (zh) * | 2019-09-27 | 2024-04-09 | 中山大学 | 一种基于数据增强的深度哈希行人重识别方法 |
CN111104566A (zh) * | 2019-12-26 | 2020-05-05 | 腾讯科技(深圳)有限公司 | 特征索引编码方法、装置、电子设备及存储介质 |
CN111104566B (zh) * | 2019-12-26 | 2023-07-21 | 腾讯科技(深圳)有限公司 | 特征索引编码方法、装置、电子设备及存储介质 |
CN115017366A (zh) * | 2022-07-11 | 2022-09-06 | 中国科学技术大学 | 基于多粒度语境化和多结构保存的无监督视频哈希检索方法 |
CN115017366B (zh) * | 2022-07-11 | 2024-04-02 | 中国科学技术大学 | 基于多粒度语境化和多结构保存的无监督视频哈希检索方法 |
CN117034385A (zh) * | 2023-08-30 | 2023-11-10 | 四开花园网络科技(广州)有限公司 | 一种支持人形角色创意设计的ai系统 |
CN117034385B (zh) * | 2023-08-30 | 2024-04-02 | 四开花园网络科技(广州)有限公司 | 一种支持人形角色创意设计的ai系统 |
Also Published As
Publication number | Publication date |
---|---|
CN109919084B (zh) | 2023-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109919084A (zh) | 一种基于深度多索引哈希的行人重识别方法 | |
CN111127385B (zh) | 基于生成式对抗网络的医学信息跨模态哈希编码学习方法 | |
CN111192270A (zh) | 一种基于点全局上下文关系推理的点云语义分割方法 | |
CN111680176A (zh) | 基于注意力与双向特征融合的遥感图像检索方法及系统 | |
CN109993100B (zh) | 基于深层特征聚类的人脸表情识别的实现方法 | |
CN113569672B (zh) | 轻量级目标检测与故障识别方法、装置及系统 | |
CN113034506B (zh) | 遥感图像语义分割方法、装置、计算机设备和存储介质 | |
CN113516133B (zh) | 一种多模态图像分类方法及系统 | |
CN109871892A (zh) | 一种基于小样本度量学习的机器人视觉认知系统 | |
CN109284741A (zh) | 一种基于深度哈希网络的大规模遥感影像检索方法和系统 | |
CN112949740A (zh) | 一种基于多级度量的小样本图像分类方法 | |
CN105243154A (zh) | 基于显著点特征和稀疏自编码的遥感图像检索方法及系统 | |
CN110321862A (zh) | 一种基于紧致三元损失的行人再识别方法 | |
CN113269224A (zh) | 一种场景图像分类方法、系统及存储介质 | |
CN117011883A (zh) | 一种基于金字塔卷积和Transformer双分支的行人重识别方法 | |
CN116204673A (zh) | 一种关注图像块间关系的大规模图像检索哈希方法 | |
CN114898775B (zh) | 一种基于跨层交叉融合的语音情绪识别方法及系统 | |
CN114676769A (zh) | 一种基于视觉Transformer的小样本昆虫图像识别方法 | |
CN114037699B (zh) | 一种病理图像分类方法、设备、系统及存储介质 | |
CN114579794A (zh) | 特征一致性建议的多尺度融合地标图像检索方法及系统 | |
Prasomphan | Toward Fine-grained Image Retrieval with Adaptive Deep Learning for Cultural Heritage Image. | |
CN109784404A (zh) | 一种融合标签信息的多标签分类原型系统及方法 | |
CN115797795B (zh) | 基于强化学习的遥感影像问答式检索系统及方法 | |
CN115100681B (zh) | 一种衣着识别方法、系统、介质及设备 | |
CN116797821A (zh) | 一种基于融合视觉信息的广义零样本图像分类方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |