CN109916634B - 一种航空涡扇发动机剩余使用寿命预测方法及系统 - Google Patents

一种航空涡扇发动机剩余使用寿命预测方法及系统 Download PDF

Info

Publication number
CN109916634B
CN109916634B CN201910140906.6A CN201910140906A CN109916634B CN 109916634 B CN109916634 B CN 109916634B CN 201910140906 A CN201910140906 A CN 201910140906A CN 109916634 B CN109916634 B CN 109916634B
Authority
CN
China
Prior art keywords
turbofan engine
data
aviation turbofan
aviation
degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910140906.6A
Other languages
English (en)
Other versions
CN109916634A (zh
Inventor
刘振兴
杨天琦
张永
袁烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201910140906.6A priority Critical patent/CN109916634B/zh
Publication of CN109916634A publication Critical patent/CN109916634A/zh
Application granted granted Critical
Publication of CN109916634B publication Critical patent/CN109916634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明实施例提供了一种航空涡扇发动机剩余使用寿命预测方法及系统,方法包括:获取航空涡扇发动机的检测数据,并根据所述检测数据判断所述航空涡扇发动机所处的退化阶段;基于航空涡扇发动机所处的退化阶段对应的经验模态分解方法,获取所述检测数据对应的特征向量;将所述检测数据对应的特征向量输入预先建立的航空涡扇发动机退化模型中,输出所述航空涡扇发动机的剩余使用寿命预测值。本发明实施例提供的航空涡扇发动机剩余使用寿命预测方法及系统,能够根据航空涡扇发动机的运行状态判断当前所处的退化阶段,预测剩余使用寿命,延长定期检修周期,降低运维成本。

Description

一种航空涡扇发动机剩余使用寿命预测方法及系统
技术领域
本发明实施例涉及航空涡扇发动机的健康管理技术领域,尤其涉及一种航空涡扇发动机剩余使用寿命预测方法及系统。
背景技术
航空涡扇发动机是各种尖端科技的集合体,是一个国家整体航空事业科技实力的标志,它的发展对推动国家科技进步有着十分重要的意义。然而,一旦航空涡扇发动机中任何一个部件发生故障都有可能带来机毁人亡的灾难,不仅给国家造成巨大的经济损失,同时也会在国际上造成不可估量的消极政治影响。因此通过航空涡扇发动机性能参数的变化进行剩余寿命的预测,可提前有规划地进行航空涡扇发动机的更换和维护,从而提高航空涡扇发动机的利用率和安全性。
目前,现有技术的方法包括:利用全寿命运行周期的传感器测量数据,对选中的传感器参数进行融合,形成用于描述发动机健康状况的第一健康指标。然后依据失效传播建模原理,用每组健康指标去拟合指数型的失效传播模型,构建失效传播模型库。再使用在役的航空发动机历史运行传感器测量数据,把对应的传感器参数融合成第二健康指标。最后将得到的健康指标序列与失效传播模型库中的模型进行相似性匹配,根据最为相似的匹配结果来确定特定型号的航空发动机的剩余寿命。
但现有技术的方法是通过建立健康指标,设定一个固定的失效阈值来确定剩余使用寿命,健康指标的优劣性难以评价,失效阈值的设定也需要大量的实验。并且建立的退化模型是一个指数模型,需要与模型库进行匹配来确定航空发动机的剩余使用寿命,匹配程度使用的是标准化欧氏距离,匹配结果的可信度难以证明。因此,现在亟需一种航空涡扇发动机剩余使用寿命预测方法来解决上述问题。
发明内容
为了解决上述问题,本发明实施例提供一种克服上述问题或者至少部分地解决上述问题的一种航空涡扇发动机剩余使用寿命预测方法及系统。
第一方面本发明实施例提供一种航空涡扇发动机剩余使用寿命预测方法,包括:
获取航空涡扇发动机的检测数据,并根据所述检测数据判断所述航空涡扇发动机所处的退化阶段;
基于航空涡扇发动机所处的退化阶段对应的经验模态分解方法,获取所述检测数据对应的特征向量;
将所述检测数据对应的特征向量输入预先建立的航空涡扇发动机退化模型中,输出所述航空涡扇发动机的剩余使用寿命预测值。
第二方面本发明实施例提供了一种航空涡扇发动机剩余使用寿命预测系统,包括:
退化阶段判断模块,用于获取航空涡扇发动机的检测数据,并根据所述检测数据判断所述航空涡扇发动机所处的退化阶段;
特征提取模块,用于基于航空涡扇发动机所处的退化阶段对应的经验模态分解方法,获取所述检测数据对应的特征向量;
预测模块,用于将所述检测数据对应的特征向量输入预先建立的航空涡扇发动机退化模型中,输出所述航空涡扇发动机的剩余使用寿命预测值。
第三方面本发明实施例提供了一种电子设备,包括:
处理器、存储器、通信接口和总线;其中,所述处理器、存储器、通信接口通过所述总线完成相互间的通信;所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行上述航空涡扇发动机剩余使用寿命预测方法。
第四方面本发明实施例提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行上述航空涡扇发动机剩余使用寿命预测方法。
本发明实施例提供的航空涡扇发动机剩余使用寿命预测方法及系统,能够根据航空涡扇发动机的运行状态判断当前所处的退化阶段,预测剩余使用寿命,延长定期检修周期,降低运维成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种航空涡扇发动机剩余使用寿命预测方法流程示意图;
图2是本发明实施例提供的一种航空涡扇发动机剩余使用寿命预测系统结构示意图;
图3是本发明实施例提供的电子设备的结构框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前,现有技术中对于航空涡扇发动机剩余使用寿命的预测方式仍采用传统的设置健康指标和失效阈值的方式,但现有技术的这种方式会增加不必要的检修次数,提高维修费用。
针对现有技术中存在的问题,图1是本发明实施例提供的一种航空涡扇发动机剩余使用寿命预测方法流程示意图,如图1所示,包括:
101、获取航空涡扇发动机的检测数据,并根据所述检测数据判断所述航空涡扇发动机所处的退化阶段;
102、基于航空涡扇发动机所处的退化阶段对应的经验模态分解方法,获取所述检测数据对应的特征向量;
103、将所述检测数据对应的特征向量输入预先建立的航空涡扇发动机退化模型中,输出所述航空涡扇发动机的剩余使用寿命预测值。
具体的,在步骤101中,当需要对航空涡扇发动机的剩余使用寿命进行预测时,本发明实施例首先会在线采集航空涡扇发动机的检测数据,检测指标和传统发动机检测一致,例如:压力压缩机,涡轮等等。根据在线采集的数据长度,本发明实施例能够判断当前时刻航空涡扇发动机所处的退化状态,可以理解的是,发动机状态可以分为健康状态和退化状态,当航空涡扇发动机的工作状态在短时间内发生转变时,监测信号的波形中就会出现一个细小的突变,该突变时刻可以视为航空涡扇发动机退化起始点,也可以称为数据异常点,那么通过检测该数据异常点,本发明实施例可以将每段检测数据的退化状态进行识别。
进一步的,在步骤102中,本发明实施例会根据退化状态的不同选择相应的最合适的处理方法,处理方法采用的是经验模态分解方法。具体的,例如:对信号s(t)添加标准的白噪声:s(t)+a0ni(t),然后进行一次EMD分解:
Figure BDA0001978489920000041
其中i=1,2,…M,M为添加白噪声的次数;对M个固有模态分量
Figure BDA0001978489920000042
集合平均得到新的第一阶固有模态分量:
Figure BDA0001978489920000043
然后提取第1个模态分量并求出剩余分量:
Figure BDA0001978489920000051
接着对剩余分量r1(t)添加经EMD分解的噪声分量E1(ni(t)),再进行一次EMD分解:
Figure BDA0001978489920000052
其中,E1(ni(t))为白噪声ni(t)经过EMD分解后得到的第一阶模态分量。对上述M个固有模态分量
Figure BDA0001978489920000053
集合平均后得到新的第二阶固有模态分量:
Figure BDA0001978489920000054
最后得到剩余分量:
Figure BDA0001978489920000055
其中,第k个剩余分量为:
Figure BDA0001978489920000056
k=2,3,…,对剩余分量继续加噪声rk(t)+akEk(ni(t)),然后再进行一次EMD分解:
Figure BDA0001978489920000057
对上述M个固有模态分量
Figure BDA0001978489920000058
集合平均,得到第k+1阶固有模态分量:
Figure BDA0001978489920000061
计算出剩余分量rk+1(t):
Figure BDA0001978489920000062
循环进行上述操作,直到提取出所有的固有模态分量之后得到剩余分量R(t)。然后继续分析重构误差,将M个
Figure BDA0001978489920000063
相加得到:
Figure BDA0001978489920000064
将M个
Figure BDA0001978489920000065
相加得到:
Figure BDA0001978489920000066
将M个
Figure BDA0001978489920000067
相加的得到:
Figure BDA0001978489920000068
Figure BDA0001978489920000069
Figure BDA00019784899200000610
迭代相加得到:
Figure BDA0001978489920000071
其中,
Figure BDA0001978489920000072
为各阶集合平均固有模态分量,
Figure BDA0001978489920000073
为最后的剩余分量R(t);
Figure BDA0001978489920000074
为重构误差,从分解的整体来看,即为残留在信号中的剩余噪声。
Figure BDA0001978489920000075
其中ak(k=2,3,…,N-1)通常取信号标准差的0.1~0.2倍;EN-1(ni(t))为白噪声ni(t)进行EMD分解后得到的第N-1阶模态分量,幅值很小。
按照上述计算方式能够提取出检测数据对应的特征向量。
最后,在步骤103中,将特征向量输入预先训练好的航空涡扇发动机退化模型中,输出所述航空涡扇发动机的剩余使用寿命预测值。该航空涡扇发动机退化模型是本发明实施例根据历史数据预先建立好的,其中已经将特征向量和航空涡扇发动机剩余使用寿命建立好对应关系,当输入特征向量时即可自动输出航空涡扇发动机的剩余使用寿命预测值。
本发明实施例提供的航空涡扇发动机剩余使用寿命预测方法,能够根据航空涡扇发动机的运行状态判断当前所处的退化阶段,预测剩余使用寿命,延长定期检修周期,降低运维成本。
在上述实施例的基础上,所述方法还包括:
获取航空涡扇发动机的特征数据;
基于支持向量回归机方法,建立特征数据与所述航空涡扇发动机的剩余使用寿命具有关联关系的所述航空涡扇发动机退化模型。
由上述实施例的内容可知,本发明实施例需要预先训练好一个航空涡扇发动机退化模型,对航空涡扇发动机的剩余使用寿命进行预测。
优选的,本发明实施例采用了支持向量回归机的方法,建立该航空涡扇发动机退化模型。其中建模所用的训练数据采用的是航空涡扇发动机的特征数据。
具体的,本发明实施例利用从美国国家航空航天局(NASA)数据库中获取商用模块化航空推进系统仿真(C-MAPSS)数据集,该数据集由基于商业模块化航空推进系统仿真(C-MAPSS)的仿真模型生成的多变量时间序列信号组成。总共产生了26个信号。21个是传感器数据的记录,3个是操作条件的设定,其余的表示引擎编码和循环次数。每个时间序列代表同一个复杂系统的不同引擎例如压力压缩机,涡轮等等,然后根据一定处理方式从原始传感器数据中提取得到本发明实施例所需的特征数据。
在上述实施例的基础上,所述获取航空涡扇发动机的特征数据,包括:
获取航空涡扇发动机的全寿命运行周期的传感器测量数据中的目标数据;
对所述目标数据进行小波变换后,获取在全寿命运行周期内的数据异常点个数;
根据数据异常点个数划分退化阶段;
使用经验模态分解方法,对不同退化阶段的全寿命运行周期数据进行处理,提取所述特征数据。
由上述实施例的内容可知,本发明实施例需要从原始数据中提取得到特征数据。
具体的,本发明实施例需要经过数据筛选、小波变换、数据异常点检测、退化阶段划分、特征数据提取等多个步骤,才能原始数据中获取能够使用的特征数据。
在上述实施例的基础上,所述获取航空涡扇发动机的全寿命运行周期的传感器测量数据中的目标数据,包括:
获取航空涡扇发动机的全寿命运行周期的传感器测量数据中具有单调变化特征的监测数据;
将所述具有单调变化特征的监测数据作为所述目标数据。
其中,本发明实施例首先要对数据进行筛选,筛选的条件是选出具有单调变化特征的监测数据。具体的,根据一定的单调性原则,从21组传感器数据中选择满足该单调性原则的14组数据作为目标数据,从而能够舍弃毫无规律的波动数据。
在上述实施例的基础上,在所述对所述目标数据进行小波变换后,获取在全寿命运行周期内的数据异常点个数之前,所述获取航空涡扇发动机的特征数据还包括:
基于sym7的小波分解基函数和9层的分解层数对所述目标数据进行小波变换。
可以理解的是,由于传统的傅里叶变换只能确定函数奇异性的整体性质,而难以确定其奇异点在空间的分布情况,而由于暂态信号具有突变、非平稳、持续时间短等特性,因此只了解它们的全局特性是不够的,还必须确定奇异点在空间的分布情况。因为暂态信号中的奇异突变点常常与航空涡扇发动机的工作状态有着密切联系,利用小波模极大值原理可以实现退化点检测,进而抓住设备退化起始点实现设备剩余使用寿命的预测。
如果在x0的邻域的一边有如下条件:
|fω(s0,x)<|fω(s0,x0)|,
在x0的邻域的另一边有如下条件:
|fω(s0,x)|≤|fω(s0,x0)|,
则|fω(s0,x0)称为s0尺度上x0附近的小波变换模极大值。
那么本发明实施例根据小波模极大值理论,对信号进行小波分解求解小波系数。小波系数的模极大值点体现了信号的突变点的特性。当航空涡扇发动机的工作状态在短时间内发生转变时,监测信号的波形中就会出现一个细小的突变。小波变换可以将该突变点放大出来,从而准确地检测出扰动的起止时刻。通过小波变换进行信号的奇异性检测,可以实现航空涡扇发动机退化起始点的准确定位。
其中,本发明实施例选择的小波分解基函数为sym7,对应的分解层数为9层,小波重构基函数为db1,对应的重构近似系数选择第7层。
在上述实施例的基础上,所述基于支持向量回归机方法,建立特征数据与所述航空涡扇发动机的剩余使用寿命具有关联关系的所述航空涡扇发动机退化模型,包括:
根据ε-SVR的支持向量回归机和径向基核函数,建立特征数据与所述航空涡扇发动机的剩余使用寿命具有关联关系的所述航空涡扇发动机退化模型。
优选的,本发明实施例采用了ε-SVR的支持向量回归机,核函数选择径向基核函数,参数C设置为99.92,参数γ设置为171.82,参数ε设置为0.01。
特征数据与每个数据采集时刻所对应的航空涡扇发动机剩余使用寿命对应关系可以表示为:将某一时刻的14种重构特征定义为xt=(x1,x2,…xN),将判定为健康状态下的标签定义为健康,将判定为退化状态下的标签定义为yi=全寿命长度(Tk)-当前采样时刻(ti)。
图2是本发明实施例提供的一种航空涡扇发动机剩余使用寿命预测系统结构示意图,如图2所示,包括:退化阶段判断模块201、特征提取模块202以及预测模块203,其中:
退化阶段判断模块201用于获取航空涡扇发动机的检测数据,并根据所述检测数据判断所述航空涡扇发动机所处的退化阶段;
特征提取模块202用于基于航空涡扇发动机所处的退化阶段对应的经验模态分解方法,获取所述检测数据对应的特征向量;
预测模块203用于将所述检测数据对应的特征向量输入预先建立的航空涡扇发动机退化模型中,输出所述航空涡扇发动机的剩余使用寿命预测值。
本发明实施例提供的航空涡扇发动机剩余使用寿命预测系统,能够根据航空涡扇发动机的运行状态判断当前所处的退化阶段,预测剩余使用寿命,延长定期检修周期,降低运维成本。
在上述实施例的基础上,所述系统还包括:
特征数据获取模块,用于获取航空涡扇发动机的特征数据;
模型建立模块,用于基于支持向量回归机方法,建立特征数据与所述航空涡扇发动机的剩余使用寿命具有关联关系的所述航空涡扇发动机退化模型。
在上述实施例的基础上,所述特征数据获取模块,包括:
目标数据提取单元,用于获取航空涡扇发动机的全寿命运行周期的传感器测量数据中的目标数据;
异常点提取单元,用于对所述目标数据进行小波变换后,获取在全寿命运行周期内的数据异常点个数;
退化阶段划分单元,用于根据数据异常点个数划分退化阶段;
经验模态分解单元,用于使用经验模态分解方法,对不同退化阶段的全寿命运行周期数据进行处理,提取所述特征数据。
在上述实施例的基础上,所述目标数据提取单元具体用于:
获取航空涡扇发动机的全寿命运行周期的传感器测量数据中具有单调变化特征的监测数据;
将所述具有单调变化特征的监测数据作为所述目标数据。
在上述实施例的基础上,所述特征数据获取模块还包括:
小波变换单元,用于基于sym7的小波分解基函数和9层的分解层数对所述目标数据进行小波变换。
在上述实施例的基础上,所述模型建立模块具体用于:
根据ε-SVR的支持向量回归机和径向基核函数,建立特征数据与所述航空涡扇发动机的剩余使用寿命具有关联关系的所述航空涡扇发动机退化模型。
本发明实施例提供一种电子设备,包括:至少一个处理器;以及与所述处理器通信连接的至少一个存储器,其中:
图3是本发明实施例提供的电子设备的结构框图,参照图3,所述电子设备,包括:处理器(processor)301、通信接口(Communications Interface)302、存储器(memory)303和总线304,其中,处理器301,通信接口302,存储器303通过总线304完成相互间的通信。处理器301可以调用存储器303中的逻辑指令,以执行如下方法:获取航空涡扇发动机的检测数据,并根据所述检测数据判断所述航空涡扇发动机所处的退化阶段;基于航空涡扇发动机所处的退化阶段对应的经验模态分解方法,获取所述检测数据对应的特征向量;将所述检测数据对应的特征向量输入预先建立的航空涡扇发动机退化模型中,输出所述航空涡扇发动机的剩余使用寿命预测值。
本发明实施例公开一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法实施例所提供的方法,例如包括:获取航空涡扇发动机的检测数据,并根据所述检测数据判断所述航空涡扇发动机所处的退化阶段;基于航空涡扇发动机所处的退化阶段对应的经验模态分解方法,获取所述检测数据对应的特征向量;将所述检测数据对应的特征向量输入预先建立的航空涡扇发动机退化模型中,输出所述航空涡扇发动机的剩余使用寿命预测值。
本发明实施例提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行上述各方法实施例所提供的方法,例如包括:获取航空涡扇发动机的检测数据,并根据所述检测数据判断所述航空涡扇发动机所处的退化阶段;基于航空涡扇发动机所处的退化阶段对应的经验模态分解方法,获取所述检测数据对应的特征向量;将所述检测数据对应的特征向量输入预先建立的航空涡扇发动机退化模型中,输出所述航空涡扇发动机的剩余使用寿命预测值。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行每个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种航空涡扇发动机剩余使用寿命预测方法,其特征在于,包括:
获取航空涡扇发动机的检测数据,并根据所述检测数据判断所述航空涡扇发动机所处的退化阶段;
基于航空涡扇发动机所处的退化阶段对应的经验模态分解方法,获取所述检测数据对应的特征向量;
将所述检测数据对应的特征向量输入预先建立的航空涡扇发动机退化模型中,输出所述航空涡扇发动机的剩余使用寿命预测值;
其中,所述方法还包括:
获取航空涡扇发动机的特征数据;
基于支持向量回归机方法,建立特征数据与所述航空涡扇发动机的剩余使用寿命具有关联关系的所述航空涡扇发动机退化模型;
所述获取航空涡扇发动机的特征数据,包括:
获取航空涡扇发动机的全寿命运行周期的传感器测量数据中的目标数据;
对所述目标数据进行小波变换后,获取在全寿命运行周期内的数据异常点个数;
根据数据异常点个数划分退化阶段;
使用经验模态分解方法,对不同退化阶段的全寿命运行周期数据进行处理,提取所述特征数据。
2.根据权利要求1所述的方法,其特征在于,所述获取航空涡扇发动机的全寿命运行周期的传感器测量数据中的目标数据,包括:
获取航空涡扇发动机的全寿命运行周期的传感器测量数据中具有单调变化特征的监测数据;
将所述具有单调变化特征的监测数据作为所述目标数据。
3.根据权利要求1所述的方法,其特征在于,在所述对所述目标数据进行小波变换后,获取在全寿命运行周期内的数据异常点个数之前,所述获取航空涡扇发动机的特征数据还包括:
基于sym7的小波分解基函数和9层的分解层数对所述目标数据进行小波变换。
4.根据权利要求1所述的方法,其特征在于,所述基于支持向量回归机方法,建立特征数据与所述航空涡扇发动机的剩余使用寿命具有关联关系的所述航空涡扇发动机退化模型,包括:
根据ε-SVR的支持向量回归机和径向基核函数,建立特征数据与所述航空涡扇发动机的剩余使用寿命具有关联关系的所述航空涡扇发动机退化模型。
5.一种航空涡扇发动机剩余使用寿命预测系统,其特征在于,包括:
退化阶段判断模块,用于获取航空涡扇发动机的检测数据,并根据所述检测数据判断所述航空涡扇发动机所处的退化阶段;
特征提取模块,用于基于航空涡扇发动机所处的退化阶段对应的经验模态分解方法,获取所述检测数据对应的特征向量;
预测模块,用于将所述检测数据对应的特征向量输入预先建立的航空涡扇发动机退化模型中,输出所述航空涡扇发动机的剩余使用寿命预测值;
其中,所述系统还包括:
特征数据获取模块,用于获取航空涡扇发动机的特征数据;
模型建立模块,用于基于支持向量回归机方法,建立特征数据与所述航空涡扇发动机的剩余使用寿命具有关联关系的所述航空涡扇发动机退化模型;
其中,所述特征数据获取模块,包括:
目标数据提取单元,用于获取航空涡扇发动机的全寿命运行周期的传感器测量数据中的目标数据;
异常点提取单元,用于对所述目标数据进行小波变换后,获取在全寿命运行周期内的数据异常点个数;
退化阶段划分单元,用于根据数据异常点个数划分退化阶段;
经验模态分解单元,用于使用经验模态分解方法,对不同退化阶段的全寿命运行周期数据进行处理,提取所述特征数据。
6.一种电子设备,其特征在于,包括存储器和处理器,所述处理器和所述存储器通过总线完成相互间的通信;所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行如权利要求1至4任一所述的方法。
7.一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行如权利要求1至4任一项所述的方法。
CN201910140906.6A 2019-02-26 2019-02-26 一种航空涡扇发动机剩余使用寿命预测方法及系统 Active CN109916634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910140906.6A CN109916634B (zh) 2019-02-26 2019-02-26 一种航空涡扇发动机剩余使用寿命预测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910140906.6A CN109916634B (zh) 2019-02-26 2019-02-26 一种航空涡扇发动机剩余使用寿命预测方法及系统

Publications (2)

Publication Number Publication Date
CN109916634A CN109916634A (zh) 2019-06-21
CN109916634B true CN109916634B (zh) 2021-03-23

Family

ID=66962330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910140906.6A Active CN109916634B (zh) 2019-02-26 2019-02-26 一种航空涡扇发动机剩余使用寿命预测方法及系统

Country Status (1)

Country Link
CN (1) CN109916634B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110501154B (zh) * 2019-09-05 2020-12-29 国网河北省电力有限公司电力科学研究院 一种基于mosvr与箱形图分析的gis设备故障检测与定位方法
CN111198100B (zh) * 2020-01-09 2021-09-03 中国航发沈阳发动机研究所 一种航空发动机关键件使用寿命监控方法
CN112084648A (zh) * 2020-09-03 2020-12-15 上海明略人工智能(集团)有限公司 设备剩余使用寿命的预测方法、装置及电子设备
CN113449472A (zh) * 2021-06-28 2021-09-28 哈尔滨工业大学 一种涡扇发动机剩余寿命预测方法
CN113722985B (zh) * 2021-08-12 2024-04-09 武汉科技大学 航空发动机健康状态评估和剩余寿命预测方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789545A (zh) * 2012-07-12 2012-11-21 哈尔滨工业大学 基于退化模型匹配的涡轮发动机剩余寿命的预测方法
CN104166787A (zh) * 2014-07-17 2014-11-26 南京航空航天大学 一种基于多阶段信息融合的航空发动机剩余寿命预测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104713728B (zh) * 2014-12-15 2017-05-10 南京工业大学 基于多维数据驱动的大型回转支承剩余寿命在线预测方法
CN104713730B (zh) * 2015-01-29 2017-02-22 西北工业大学 一种根据振动信号确定飞机发动机退化率的方法
US10724398B2 (en) * 2016-09-12 2020-07-28 General Electric Company System and method for condition-based monitoring of a compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789545A (zh) * 2012-07-12 2012-11-21 哈尔滨工业大学 基于退化模型匹配的涡轮发动机剩余寿命的预测方法
CN104166787A (zh) * 2014-07-17 2014-11-26 南京航空航天大学 一种基于多阶段信息融合的航空发动机剩余寿命预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于一致性检验的航空发动机剩余寿命预测;黄亮等;《系统工程与电子技术》;20181231;第40卷(第12期);第2736-2742页 *

Also Published As

Publication number Publication date
CN109916634A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
CN109916634B (zh) 一种航空涡扇发动机剩余使用寿命预测方法及系统
CN110865929B (zh) 异常检测预警方法及系统
US11493911B2 (en) System and method for proactive handling of multiple faults and failure modes in an electrical network of energy assets
CN111045894B (zh) 数据库异常检测方法、装置、计算机设备和存储介质
CN110688617B (zh) 风机振动异常检测方法及装置
CN109657982B (zh) 一种故障预警方法及装置
CN113569338B (zh) 一种基于时间扩张卷积网络的压气机旋转失速预警方法
EP3223095A1 (en) Method and apparatus for optimizing diagnostics of rotating equipment
JP2020073361A (ja) 航空機内の関連し合うイベントを特定するための方法及び装置
WO2008157505A1 (en) Remote monitoring systems and methods
CN110119787B (zh) 一种旋转型机械设备工况检测方法及设备
CN113037575B (zh) 网元异常的根因定位方法、装置、电子设备及存储介质
CN112598172A (zh) 一种风电机组轴承温度预警方法
EP2923311A1 (en) Method and apparatus for deriving diagnostic data about a technical system
CN112835769A (zh) 一种业务数据异常诊断方法、装置、设备及存储介质
CN110610226A (zh) 一种发电机故障预测方法及装置
Qin et al. Remaining useful life prediction for rotating machinery based on optimal degradation indicator
CN114465874A (zh) 故障预测方法、装置、电子设备与存储介质
CN114978956A (zh) 智慧城市网络设备性能异常突变点检测方法及装置
CN112578213A (zh) 轨道电源屏的故障预测方法及装置
CN115577851A (zh) 能源消耗预测方法、装置、设备及存储介质
CN113987027A (zh) 一种基于故障预测的设备状态确定方法、装置及介质
KR101884907B1 (ko) 빅데이터 분석 기반 신뢰도 예측 방법
CN110622140B (zh) 用于传感器数据集中的冻结时段检测的系统、设备和方法
CN115878598A (zh) 监控数据处理方法、电子设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant