CN109915011A - 用于井下液压喷射喷嘴的导向系统和可操纵钻孔挖掘设备 - Google Patents

用于井下液压喷射喷嘴的导向系统和可操纵钻孔挖掘设备 Download PDF

Info

Publication number
CN109915011A
CN109915011A CN201910044675.9A CN201910044675A CN109915011A CN 109915011 A CN109915011 A CN 109915011A CN 201910044675 A CN201910044675 A CN 201910044675A CN 109915011 A CN109915011 A CN 109915011A
Authority
CN
China
Prior art keywords
jet hose
jet
drilling
fluid
hose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910044675.9A
Other languages
English (en)
Other versions
CN109915011B (zh
Inventor
布鲁斯·L·兰德尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Special Tubing Co Ltd
Original Assignee
Special Tubing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Special Tubing Co Ltd filed Critical Special Tubing Co Ltd
Publication of CN109915011A publication Critical patent/CN109915011A/zh
Application granted granted Critical
Publication of CN109915011B publication Critical patent/CN109915011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/14Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells for displacing a cable or cable-operated tool, e.g. for logging or perforating operations in deviated wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/001Self-propelling systems or apparatus, e.g. for moving tools within the horizontal portion of a borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0078Nozzles used in boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/114Perforators using direct fluid action on the wall to be perforated, e.g. abrasive jets
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/119Details, e.g. for locating perforating place or direction
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/061Deflecting the direction of boreholes the tool shaft advancing relative to a guide, e.g. a curved tube or a whipstock
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/064Deflecting the direction of boreholes specially adapted drill bits therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/065Deflecting the direction of boreholes using oriented fluid jets
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets

Abstract

本文提供了用于井下液压喷射喷嘴的导向系统以及可操纵钻孔挖掘设备。该导向系统包括至少三条纵向定向且导电的致动器线以及液压喷射喷嘴;致动器线中的每一条均固定至柔性管状主体的远端致动器线中的每一条均被构造成响应于接收电流而进行收缩;以及液压喷射喷嘴固定至柔性管状主体的远端。可操纵钻孔挖掘设备包括管状主体、液压喷射喷嘴、位于管状主体的远端附近的一个或多个地理空间IC芯片、一组数据线、一组电力线以及一组致动器线;该管状主体的尺寸被设置成沿钻孔传输喷射流体,该主体具有近端和远端;以及该液压喷射喷嘴设置在该管状主体的远端,且被构造成响应于喷射流体的传输挖掘地层中的岩石基质,作为钻孔。

Description

用于井下液压喷射喷嘴的导向系统和可操纵钻孔挖掘设备
本申请是申请日为2016年1月29日发明名称为“用于井下钻探装置的可操纵液压喷射喷嘴和导向系统”的申请号为201680018738.8(国际申请号为PCT/US2016/015786)的发明专利申请的分案申请。
关于联邦赞助研究或开发的声明
不适用。
合作研究协议当事方的姓名
不适用。
相关申请的声明
本申请要求2015年7月29日提交的美国临时专利申请号62/198,575的权益。该美国临时专利申请题为“Downhole Hydraulic Jetting Assembly,and Method for FormingMini-Lateral Boreholes”。本申请还要求2015年2月24日提交的相同题目的美国临时专利申请号62/120,212的权益。
本申请还提交作为2015年2月3日提交的美国专利申请号14/612,538的部分继续申请案。该美国专利申请题为“Method of Testing a Subsurface Formation for thePresence of Hydrocarbon Fluids”。该美国专利申请又是2015年3月31日授权的美国专利号8,991,522的分案。
这些申请全部通过引用合并至本文。
技术领域
本公开内容涉及完井领域。更具体地,本公开内容涉及通过使用液压喷射组件从现有钻井孔生成小直径钻孔进行完井以及烃生产地层的增产。本公开内容还涉及在一次起下钻中受控地生成多个延伸入地下地层数英尺的横向钻孔。
背景技术
本部分旨在介绍本技术的选定方面,这些方面可能与本公开内容的各种实施方案相关联。相信这种讨论有助于提供便于更好地理解本公开内容的特定方面的一种框架。相应地,应理解的是,本部分应从这个角度理解而并不一定是对现有技术的承认。
技术讨论
在钻探油井和气井时,使用在钻柱下端处向下推动的钻头穿过地表形成近似竖向的钻井孔。在钻探至预定井底(bottomhole)位置后,移除钻柱和钻头,并用套管柱内衬钻井孔。因此在该套管柱与由钻井孔穿进的地层之间形成环形区域。特别地,在竖向钻井孔或水平井的竖向段中,为了沿着钻井孔的部分或全部的长度用水泥填充或“挤满”整个环形体积,进行了固井作业。水泥和套管的组合加固了钻井孔,并促进层位封隔(zonalisolation,层间隔离)以及随后在套管后面的可能的成烃产区的某些段的完井。
在最近的二十年里,钻探技术的发展已经使得油气操作员经济地“开钻(kick-off)”,并使钻井孔轨迹从大体竖向的定向转向大体水平的定向。现在,这些钻井孔中每个的水平“支柱”通常超过一英里的长度。这显著增加了钻井孔向目标含烃地层(或“产区”)的暴露。例如,对于具有100英尺的(竖向)厚度的给定目标产区,一英里的水平支柱暴露于水平钻井孔的产区是常规竖向钻井孔的100英尺暴露的产区的52.8倍。
图1A提供了在水平定向上已经完工的钻井孔4的截面视图。可以看出,已从地表1,穿过数个地层2a、2b……2h且下至生烃地层3形成钻井孔4。地下地层3对于油气操作员而言表示“产区”。钻井孔4包括在产区上方的竖向段4a,以及水平段4c。水平段4c限定柱脚跟部4b和柱脚尖部4d以及在它们之间的延伸穿过产区3的长形支柱。
随着钻井孔4的完工,具有逐渐变小的外径的若干套管柱已用水泥固定于钻井孔4中。这些套管柱包括表面套管柱6,并且可以包括一个或多个中间套管柱9,以及最后包括生产套管12。(没有示出最浅且直径最大的套管(其被称为导管),该套管是与表面套管分隔开的且直接位于表面套管上方的短管段。)表面套管6的主要功能之一是隔离且保护较浅的含淡水的地下水层不被任何钻井孔流体污染。因此,导管和表面套管6几乎始终完全通过水泥固定7回地面1。
重复若干次钻探且然后粘接逐渐变小的套管柱的过程,直到井到达完钻井深。在一些情况下,最后的套管柱12是衬里,即,未约束回地面1的套管柱。被称为生产套管的最后的套管柱12还通常通过水泥固定13到位。在水平完工的情况下,生产套管12可被水泥固定,或者可以使用外部套管封隔器(“ECP”)、膨胀封隔器或它们的一些组合而提供层位封隔。
完井中可以包括额外的管状主体。这些管状主体包括放置在生产套管或衬里内的一个或多个生产油管柱(图1A未示出)。在竖向完井中,每个油管柱从地面1延伸至靠近生产区段3的指定深度,并且可以附接至封隔器(未示出)。封隔器用于封闭生产油管柱与周围的套管12之间的环形空间。在水平完井中,生产油管通常(通过封隔器或不通过封隔器)布置于钻井孔4的柱脚跟部4b处或附近。
在一些情况下,产区3不能有效地使流体流至地面1。当发生这种情况时,操作员可以安置人造举升设施(图1A未示出)作为钻井孔完工的一部分。人造举升设施可以包括井下泵,所述井下泵经由在油管内延伸的一系列抽油杆连接至地面泵送单元。可替代地,可以在生产油管的底端处放置电力驱动的潜水泵。还可以采用气举阀、液力喷射泵、柱塞举升系统或各种其他类型的人造举升设施和技术,以辅助流体流至地面1。
作为完工过程的一部分,井口装置5安装在地面1处。井口装置5用于控制钻井孔压力并且指引地面1处的生产流体的流动。还可以设置流体聚集和处理设施(图1A未示出),诸如管、阀、分离器、脱水器、气体脱硫单元以及油水储罐。产区完工后,安装任何必要的井下管件、人造举升设施和井口装置5,然后可以开始生产作业。使钻井孔压力保持受控,并适当分离和分配产出的钻井孔流体。
在美国,现在钻探的许多井主要是用以从之前被认为是难以穿进而不能以经济可行的量产出烃的产区中开采油和/或天然气,以及可能的液化天然气。这种“紧实”或“非常规”的地层可能是砂岩、粉砂岩或者甚至是页岩地层。可替代地,这种非常规地层可以包括煤层甲烷。在任何情况下,“低渗透率”通常指岩石层段具有低于0.1毫达西的渗透率。
为了增强特别是低渗透率地层中烃的开采,之后(即,在对生产套管或衬里进行穿孔后)在产区的完工中可以采用增产技术。这种技术包括液力压裂和/或酸化。另外,为了创建一个或多个新定向或水平完工的钻孔,可以从主要的钻井孔形成“开钻”钻井孔。这允许井沿着地下地层的平面穿进,以增加对于产区的暴露。在地层的天然或液力导致的压裂平面为竖向的情况下,水平完工的钻井孔允许生产套管横穿或“找到(source)”多个压裂平面。相应地,竖向定向的钻井孔通常限制于每个产区的单个液力导致的压裂平面,而水平钻井孔可以沿水平支柱4c在多个位置或“阶”中进行射孔并液力压裂。
图1A示出了沿钻井孔4的水平段4c的一系列压裂半平面16。压裂半平面16表示将与射孔/压裂作业有关地形成的裂缝的定向。根据地质力学的原理,压裂平面将通常沿垂直于岩石基质中的最小主应力面的方向形成。更简单地说,在大多数钻井孔中,当钻井孔的水平段位于地面下3,000英尺以下并且有时浅至1,500英尺时,岩石基质将沿竖线分裂。在这种情况下,液力裂缝将趋于从钻井孔的射孔15沿垂直于最小主应力面的竖向椭圆平面蔓延。如果已知最小主应力面的定向,则水平钻井孔4的支柱4c的纵向轴线理想地定向成与其平行,使得多个裂缝平面16将贯穿正交于或近似正交于钻井孔的水平支柱4c的钻井孔,如图1A所示。
通过计算下述各项来优化产区3内沿水平支柱4c的射孔的和压裂的层段的期望密度:
·每个裂缝将排出的烃的估计最终开采率(“EUR”),这要求计算每个压裂处理将经由其相应的射孔连接至钻井孔的增产储层体积(“SRV”);减去(less)
·与边界压裂层段的相应SRV的任何重叠;加上(coupled with)
·从每个裂缝中开采烃的预期时间分配;与
·增加另一射孔/压裂层段的增量成本之比(versus)。
沿单个水平钻井孔重复多次竖向完工的能力是在相对近的时间内从非常规储层(特别是页岩)中经济可行地寻找烃储层所做的。这种革命性技术具有下述深远影响,当前美国的Baker Hughes Rig Count信息表明在美国钻探的井中仅有约四分之一(26%)被分类为“竖向的”,而另外四分之三则被分类为“水平的”或“定向的”(分别为62%和12%)。即,目前美国钻探的每三个井中约有两个都是水平井。
相比于竖向井,钻探和完工水平井的额外成本并不小。实际上,钻探和完工水平井(“D&C”)最高成本是其对应竖向井的多倍(两倍、三倍或更多)并不罕见。取决于地质盆地,特别是决定钻探穿进速率、所需钻探泥浆流变学、套管设计和粘接等标准的地质特征,钻探和完工水平井的重大额外成本包括控制开钻的曲率半径、和在产区3内最初获得然后维持内的钻井孔4的优选水平轨迹或近似水平轨迹中引导钻头和钻探组件(包括MWD和LWD技术)以及水平段4c的整体长度所涉及的那些成本。在压裂的阶之间获得钻井孔隔离(由于具有额外水泥固定和/或ECP)的关键过程通常会对增加的完井费用造成显著增加,“桥塞射孔联作”或套筒或端口(通常坠球致动)完井系统的成本也是如此。
然而,在许多情况下,钻探和完工水平井的最高单个成本是与泵送液力压裂处理本身相关联的成本。给定水平井的液力压裂处理成本的总和达到或者甚至超过其总的钻探和完井成本的50%并不罕见。
对于任何水平井在经济上成功至关重要的是,在完井的产区内实现满意的液压压裂几何结构。许多因素都可能促成实现期望几何结构的成功或失败。这包括产区的岩石性质、由钻井孔的建造和/或地面泵送设施的施加的泵送限制以及压裂流体的特性。另外,通常向压裂混合物添加各种筛孔(筛眼)尺寸的支撑剂,以使液压压力致使的裂缝宽度维持在“撑开”的状态,从而提高裂缝产出烃流体的传导能力。
通常,为了在产区中实现期望的裂缝特性(裂缝宽度、裂缝传导性以及特别地裂缝半长),必须创建显著超过产区的边界的整体裂缝高度。幸运的是,竖向层外裂缝高度增长通常限制为整体产地层厚度的几倍(即,数十英尺或数百英尺),因此不会对几乎始终与产区分隔数千英尺岩石地层的浅得多的淡水水源造成污染威胁。参照K.Fisher和N.Warpinski,“Hydraulic Fracture-Height Growth:Real Data”,SPE论文编号145,949,SPE Annual Technical Conference and Exhibit,科罗拉多州丹佛市(2012年10月30至11月2日)。
尽管如此,这增加了各种“压裂”阶处所需的压裂流体和支撑剂数量,并且进一步增加了所需的泵送马力。已知对于典型压裂作业而言,大量的压裂流体、流体添加剂、支撑剂、液压(“泵送”)马力(或“HHP”)及其相关成本都是花费在裂缝的非产出部分。这表示仅在美国每年就存在数十亿美元的问题。
另外,使水平钻井孔的规划复杂化是与非常规储层内的裂缝几何结构相关联的不确定因素。基于对来自于倾斜仪和微震勘测的实时数据的分析,许多专家认为在渗透性更小的且特别是更易裂的非常规储层中的裂缝几何结构可以产生高度复杂的裂缝几何结构。即,与被认为是符合最常规储层的相对过分简单的双翼椭圆模型(如图1A中的理想化演示所示)相反,非常规储层中的裂缝几何结构可能是难以预测的。
在大多数情况下,由于过度的流体泄漏和/或减少的裂缝宽度(其可能引起较早滤沙),远场裂缝的长度和复杂性被认为是不利的(而不是有利的)。因此,裂缝复杂性(或者,其不足)是否增强或减少裂缝网络将使钻井孔能够钻探的SRV通常是根据个例(如,逐个储层)基础来确定的。
因此,期望的是,特别是用于紧密储层的水平完井中,获得对于从水平支柱4c朝外垂直延伸的初级裂缝网络的几何形状增长更多的控制。还期望的是延伸裂缝网络方位的长度而不显著地侵入水平产区3的边界。进一步地,期望的是通过沿着水平支柱使用两个或更多个液力喷射的微型支渠增加钻井孔之间的裂缝网络的效率,来减少钻探给定储层体积所需要的井的密度。更进一步地,期望的是通过创建一个或多个微型支渠钻孔作为使用要求穿孔、滑动套筒等的常规完成程序所提供的常规套管端口的替代,来提供SRV的这种引导、制约和增强。
因此,存在对具有喷射软管和造斜器的井下组件的需求,从而组件可以被运送到任何倾斜的任何钻井孔层段中,包括延伸的水平支柱。还存在对于液力喷射系统的需求,该液力喷射系统提供与套管出口点相反的基本上90°转向的喷射软管,优选地利用整个套管内径作为喷射软管的弯曲半径,从而提供喷射软管的最大可能内径,并且因此向喷射嘴提供最大可能的液压马力。
存在本文在某些实施方案中论述的额外的需要。需要使用液压定向力形成横向钻井孔的改进方法,其中,喷射软管的期望长度可以甚至是从水平钻井孔中运送。此外,还存在对形成从水平支柱分出的微型横向钻孔的方法的需求,这些微型横向钻孔帮助将随后的SRV局限于但不显著超过产层边界。此外,存在对下述方法的需求,通过该方法可以用使喷射喷嘴和连接的软管能够移入地层中的液压和/或机械推力运送和操作造斜器和喷射软管,在期望的尽可能多的主钻井孔深度和侧向方位定向上多次取回、重新定向、重新部署和重新操作造斜器和喷射软管,以在单次起下钻中不仅在钻井孔的竖向部分生成多个微型横向钻孔,也在钻井孔高度定向甚至水平的部分生成多个微型横向钻孔。此外,还存在对下述方法的需求,该方法能够运送处于展开状态的喷射软管,使得生产套管内以及沿着造斜器的弯曲半径是软管必须满足的最严格的弯曲限制。
此外,还需要下述液压压裂横向钻孔的方法,该方法在从钻井孔的水平支柱喷射出该微型横向钻孔,紧接着在级中形成横向钻孔,并且不需要将喷射软管、造斜器和运送系统拉出主钻井孔。最后,还需要下述方法,该方法远程控制喷射喷嘴和连接的液压软管的侵蚀挖掘路径,使得横向钻孔或多个横向钻孔的轮廓可以设置为设计的“群”,以最佳地控制增产处理形成的SRV几何结构
发明内容
本文描述的系统和方法在进行油井和气井的完井活动中具有各种益处。本文首先提供了一种液压喷射喷嘴。一方面,喷射喷嘴包括沿喷嘴的纵向轴线形成钻孔的管状定子主体,以及位于定子主体的钻孔内而且还沿喷嘴的纵向轴线形成钻孔的管状转子主体。喷射喷嘴具有位于定子主体和周围的转子主体之间的用以适应转子主体和定子主体之间的相对旋转移动的一个或多个轴承。一方面,喷嘴的长度在一英寸至三英寸之间。
喷射喷嘴包括被构造成密封地连接至喷射软管的端部并且接收喷射流体的近端。喷射喷嘴被焊接至或可替代地螺纹连接至定子主体。在这种情况下,转子主体被构造成在定子主体固定地连接至喷射软管时旋转。优选地,喷嘴具有与喷射软管的外径相等或比喷射软管的外径略大的外径。
此外,喷射喷嘴包括电磁线圈。线圈被设计成响应于电流引发转子主体和定子主体之间的相对旋转移动。在喷射软管下设置有电线,用以输送电力,以引发相对旋转移动。
喷嘴还包括在转子主体的端部处的排放槽。该排放槽被构造成以规定的喷射角度输送高压喷射流体,以侵蚀岩石基质。一方面,排放槽是与转子主体的中心线对准的单个向前槽。优选地,槽以扇形平面分布喷射流体,并在喷射期间响应于相对旋转形成基本上圆柱形的钻孔。另一方面,排放槽限定围绕转子主体的中心线等距离径向设置的至少三个槽。
在一个实施方案中,喷嘴还包括位于定子主体内的第一组向后推力喷口。该向后推力喷口被构造成在作业期间接收喷射流体,并且以与定子主体的近端偏离的角度指引喷射流体,从而提供向前推进力。在替代实施方案中,喷嘴还包括第二组向后推力喷口。第二组向后推力喷口位于转子主体内并延伸到定子主体中。这些第二向后推力喷口也被构造成接收喷射流体并且以与定子主体的近端偏离的角度指引喷射流体,从而提供额外的向前推进力。第二组向后推力喷口被定位成使得当转子主体的旋转将第二组推力喷口短暂地与第一组向后推力喷口对准时,建立连续的推力喷口通道,用于从定子主体的钻孔内传导出喷射流体,并且从定子主体的外部排放。这种短暂的对准因此产生通过向后推力喷口的脉动流,并因此产生部分向前通过排放槽的脉动流。
在优选实施方案中,液压喷嘴还包括套筒和轴环。套筒位于转子主体的钻孔沿线,并且被构造成在第一位置和第二位置之间滑动,在第一位置,第一组向后推力喷口(通过转子主体)关闭,并且在第二位置,第一组向后推力喷口打开。在该实施方案中,喷嘴还包括用于将套筒偏置到其关闭位置的偏置机构,其中,偏置力通过可滑动轴环传递至套筒。偏置机构可以包括弹簧、磁体、电磁力或它们的组合。在一个特别实施方案中,偏置机构包括弹簧和轴环,在作业期间该偏置机构将可滑动套筒偏置到关闭位置,以相对于液压喷射流体的流动密封向后推力喷口,从而迫使喷射流体流全部离开排放槽。通过向与轴环相关联的肩状物诸如在套筒上施加液压压力而克服弹簧的偏置力,使弹簧向前移位,这导致打开了开口,允许喷射流体流到向后推力喷口的入口的进入,从而利用喷射流体的一部分向喷嘴提供向后推力。
在其他实施方案中,可滑动套筒或者完全省略,或者沿喷嘴喉道相对于纵向移动静止。在这些情况下,喷射流体进入向后推力喷口受在可滑动轴环上作用的电磁力控制,不受液压力影响。在这些特别实施方案中,通过向定子极供应(至少)阈值数量的电流克服弹簧的偏置力,从而在轴环上提供足够的磁拉力,以打开推力喷口。
在一个实施方案中,液压喷射组件包括位于喷射组件的远端沿线诸如喷射喷嘴的定子主体沿线的至少一个地理空间集成电路(“IC”)芯片。该芯片被设计成(i)测量液压喷嘴的地理位置、方位和定向中的任意一种作为地理定位(或地理位置)数据,以及(ii)将地理定位数据实时传输至处理器。在该实施方案中,喷嘴可以是导向系统的一部分,该导向系统包括至少三条致动器线,该至少三条致动器线位于喷射软管的远端并可选地向上延伸至喷射喷嘴的定子主体。致动器线由响应于电流或刺激收缩的材料制造。一条或多条电线的收缩将在喷射组件的远端引发弯曲力矩,从而改变喷嘴的定向。这样,操作员可以控制(或“导向”)通过排放槽的喷射流体的方向,以形成钻孔的期望地理轨迹。
导向系统优选地包括处理器。该处理器被配置成处理从IC芯片接收的地理空间数据,并因此计算喷射组件的远端的目前位置和/或定向。处理器还可以将目前地理位置和定向与储层中喷嘴的期望(或许是预编程的)地理轨迹关联起来。系统还包括一个或多个电流调节器,以及将电流调节器连接至致动器线的电力线。电力线根据来自处理器的指令和电流调节器的控制向对应致动器线输送电流。
处理器和该一个或多个电流调节器一起控制传到致动器线的电流,以使致动器线进行与通过每条电线的电流量成比例地收缩,并因此控制喷射组件的远端的弯曲力矩。这样,在作业期间处理器、地理空间IC芯片、电流调节器、电力线和致动器线为喷嘴提供导向系统。
本文单独提供了用于井下钻孔装置的导向系统。该钻孔装置被构造成挖掘岩石,以形成长形钻孔。该钻孔装置可以是例如钻头。可替代地,钻孔装置可以是根据上述实施方案中任一个的液压喷嘴。在这种情况下,喷嘴放置在喷射软管的下游端,该喷射软管的长度优选地为至少25英尺。
在一个实施方案中,导向系统包括至少三条纵向定向且导电的致动器线。致动器线中的每条均固定至钻孔装置的主体,其中,致动器线围绕钻孔装置的圆周等距间隔。另外,致动器线中的每条均被构造成进行与发送通过相应电线的电流量成比例地收缩,使得被指引通过致动器线中的一条或多条的不同的电流量将在钻孔装置的主体上引发弯曲力矩。该弯曲力矩在井下作业期间重新定向钻孔装置的远端,从而改变其地理轨迹。
一方面,钻孔装置是具有向前排放端口的液压喷嘴。液压喷嘴的主体包括管状定子主体和管状转子主体,该管状转子主体位于定子主体的钻孔内,并沿喷嘴的纵向轴线形成钻孔。液压喷嘴还包括位于转子主体和周围的定子主体之间的用以适应转子主体和定子主体之间的相对旋转移动的一个或多个轴承。通过对围绕转子的轴向截面等距间隔的转子极(通常在数量上少于定子极)的磁吸引,围绕定子主体的轴向截面等距间隔的磁化定子极激发转子和定子之间的相对旋转,如在直接驱动电动机的构造中一样。来自定子极的磁力可能实际上是通过用多圈电线包裹每个定子极提供的电磁力。因此,喷嘴可以额外地包括电磁线圈,该电磁线圈被设计成响应于电流引发转子主体和定子主体之间的相对旋转移动。
液压喷嘴将具有近端,该近端被构造成密封地连接至喷射软管的端部并且接收喷射流体。喷嘴还具有在转子主体的端部的至少一个排放槽,该至少一个排放槽被构造成输送高压喷射流体,用于侵蚀岩石基质。
导向系统可以包括与至少三条致动器线中的每条相关联的电力线。每条电力线均被构造成将电流输送至与其相关联的致动器线。电力线中的每条均优选地位于喷射软管内的腔或护层沿线,或者可以在其基质内交织。每条电力线的远端与对应致动器线的近端电连通并且可以贴附地连接至对应致动器线的近端。同样地,每条致动器线位于喷射软管内的腔或护层沿线,或可以在其基质内交织,并且可以向上延伸至喷射喷嘴或者甚至部分地延伸到喷射喷嘴内。
导向系统还可以包括一条或多条光纤线。每条光纤线均被构造成在导向系统内输送数据和/或指令信号。光纤线中的每条均优选地位于喷射软管内的腔或护层沿线,或者可以在其基质内交织。光纤线的远端可以将地理空间IC芯片与在光纤线的近端的微发射器连接。
导向系统还可以包括用于在井下生成电流的电池组、微处理器和用于根据钻孔的确定地理轨迹分布电流的电流调节器。导向系统还可以具有与设置在钻孔装置的主体上的一个或多个地理空间芯片相关联的地理位置工具。地理空间芯片被配置成通过电线或数据线将地理位置数据信号传输回去。
优选地,导向系统是液压井下喷射系统的一部分,该液压井下喷射系统可以伸入主钻井孔中,然后操作,以在单次完井起下钻中在不同轨迹和不同位置处形成多个横向钻孔。如下所述,组件将包括具有拱形面的造斜器构件。该组件被构造成(i)通过转移力将喷射软管转移出喷射软管承载件并抵靠造斜器面,到达钻井孔出口的期望点,(ii)在到达钻井孔出口的期望点时,指引喷射流体通过喷射软管和连接的喷射喷嘴,直到形成出口,(iii)沿操作员的设计地理轨迹继续喷射,形成穿进产区内的岩石基质中的横向钻孔,然后(iv)在形成横向钻孔后,将喷射软管拉回入喷射软管承载件。
本文还提供了一种可操纵钻孔挖掘设备。在一个实施方案中,设备包括尺寸被设置成沿钻孔传输喷射流体的柔性管状主体。该主体具有近(或上游)端和远(下游)端。设备还包括设置在管状主体的远端的钻孔装置。该钻孔该装置被构造成响应于喷射流体的传输在地层中挖掘岩石基质,作为钻孔。优选地,管状主体是本文所述实施方案的任一个中的喷射软管,并且钻孔装置是喷射喷嘴。
地理空间IC芯片位于管状主体沿线。地理空间芯片提供表示管状主体的纵向轴线的位置、方位、定向或它们的组合的地理位置数据。还提供了一组数据线或线缆,该组数据线或线缆被配置成将地理位置数据从地理空间芯片传输至(i)地面的操作员,(ii)沿钻井孔的微处理器或(iii)这二者。
设备还将具有一组电(或电传输)线和一组致动器线。每条致动器线位于对应电力线的远端,并且沿钻孔装置的主体固定。另外,每条致动器线均被构造成响应于通过电力线的电流的不均衡分布进行与通过对应电力线输送的电流成比例地收缩,向钻孔装置的主体施加弯曲力矩。
在一个实施方案中,致动器线包括由包括镍和钛的材料制造的至少三条电线。然后该设备还包括被配置成调节通过每条电线到达致动器线的电流的电流调节器。
优选地,喷射软管的长度为至少25英尺。在伸入期间,喷射软管位于长形管状喷射软管承载件内。喷射软管承载件的尺寸被设置成可滑动地接收喷射软管,并且在喷射软管和周围的喷射软管承载件之间形成微环隙。微环隙的尺寸设置成在装置的作业期间防止喷射软管在喷射软管承载件内滑动时弯曲。
在这种情况下,可操纵钻孔挖掘设备还包括:
-上密封组件,该上密封组件在上端处连接至喷射软管并且密封微环隙;
-喷射软管封隔段,该喷射软管封隔段连接至内导管的内径并在内导管的下端附近密封微环隙,并且可滑动地接收喷射软管;以及
-能够在第一位置和第二位置之间移动的主控制阀,其中,在第一位置,主控制阀将泵入钻井孔的喷射流体引入喷射软管,并且在第二位置,主控制阀将泵入钻井孔的液压流体引入形成在喷射软管承载件和周围的长形外导管之间的环形区域。
可操纵钻孔挖掘设备还可以包括压力调节阀。压力调节阀沿微环隙放置,优选地在微环隙的远端附近,并控制微环隙内的流体压力。在这种情况下,主控制阀在其第一位置的放置允许操作员将喷射流体泵送通过主控制阀,并抵靠微环隙中的上密封组件,从而活塞地推动展开状态下的喷射软管和连接的井下喷嘴,同时指引喷射流体通过喷嘴,并使液压流体从微环隙离开并通过压力调节阀。另外,主控制阀在其第二位置的放置允许操作员将液压流体泵送通过主控制阀,进入喷射软管承载件和周围的外导管之间的环形区域,通过压力调节阀并进入微环隙,从而将喷射软管在其展开状态下向上拉回到内导管中。
本文的可操纵钻孔挖掘设备能够生成超过10英尺、或超过25英尺甚至超过300英尺的横向钻孔。钻孔可以具有约1.0”或更大的直径。可以以远高于在此之前的任何系统的穿进速率形成微型支渠,这些微型支渠通常对生产套管内的喷射软管完成90°的转向。本系统将能够从水平和高度定向的主钻井孔的迄今为止认为是无法达到的部分形成微型支渠。常规连续油管在套管钻井孔内可以牵引到的任何地方,现在都可以液压地喷射出微型支渠。类似地,在单次起下钻中形成横向钻孔的多个层段时将得到优异的效率。新钻探井的整个水平支柱可以在不需要压裂塞、滑动套筒或坠落球的情况下进行“射孔和压裂”。
考虑到系统以可控方式“操纵”喷射喷嘴从而绘制微型横向钻孔(或,微型支渠钻孔“群”)的路径的能力,后续增产处理可以在产区内被更优化地被“引导”和限制。加上实际增产(特别地,压裂)级几何结构和所得的SRV(如来自微震的、倾斜仪和/或环境的微震调查)的实时反馈,可以定制化设置后续微型支渠钻孔的轮廓,以在泵送之前更好地指引每个增产级。
附图说明
本文附上了某些图示、图表和/或流程图,以便可以更好地理解本发明。然而,要注意的是,附图仅示出了本发明的选定的实施方案,因此不能视为对范围进行限制,因为本发明可以承认其他同等有效的实施方案和应用。
图1A是示例性水平钻井孔的截面图。以3-D示出了沿钻井孔的水平支柱的半裂缝平面,以示出相对于地下地层的裂缝阶段和裂缝定向。
图1B是图1A中的钻井孔的水平部分的放大视图。常规射孔被超深射孔或微型横向钻孔代替,以创建裂缝翼。
图2是本发明一个实施方案中的井下液压喷射组件的纵向截面图。该组件示出为处于生产套管的水平段内。喷射组件具有外部系统和内部系统。
图3是图2的液压喷射组件的内部系统的纵向截面图。内部系统从其近端处的上游电池组端盖(其与外部系统的系泊站配合)延伸至长形软管,所述长形软管在其远端处具有喷射喷嘴。
图3A是图3的内部系统的电池组段的剖视立体图。
图3B-1是位于电池组段的基部与喷射软管之间的喷射流体入口的剖视立体图。喷射流体接收漏斗示出为用于将流体接收到图3中的内部系统的喷射软管中。
图3B-1a是从电池组段的底部端盖的顶部截取的图3的内部系统的轴向截面图。
图3B-1b是从喷射流体入口的顶部截取的图3的内部系统的轴向截面图。
图3C是从喷射软管的流体接收漏斗一直到喷射软管的上密封组件截取的图3的内部系统的上部分的剖视立体图。
图3D-1呈现了具有如图3的内部系统中可以使用的电线和数据缆线的捆扎喷射软管的截面图。
图3D-1a是图3D-1的捆扎喷射软管的轴向截面图。
可以看见电线和光纤(或数据)缆线二者。
图3E是图3D-1的喷射软管的末端的展开截面图,示出了图3的内部系统的喷射喷嘴。喷射软管的弯曲半径示出为在图3的外部系统的造斜器的剖视段内。
图3F-1a至图3G-1c呈现了在各种实施方案中图3E的喷射软管的放大截面图。
图3F-1a是示出了基础喷嘴主体的轴向截面图。喷嘴主体包括转子和周围的定子。
图3F-1b是沿图3F-1a的线C-C’截取的喷射喷嘴的纵向截面图。此处,喷嘴使用位于转子的尖端处的单个排放槽。喷嘴还包括位于转子和周围定子之间的轴承。
图3F-1c是在改进的实施方案中图3F-1b的喷射喷嘴的纵向截面图。此处,喷射喷嘴包括地理空间缺口,并且被示出为连接至喷射软管。
图3F-1d是沿线c-c’截取的图3F-1c的喷射软管的轴向截面图。
图3F-2a和图3F-2b呈现了在可替代实施方案中图3E的喷嘴的纵向截面图。五个向后推力喷口连同转子的尖端处的单个排放槽一起放置在定子的主体中,通过可滑动喷嘴喉道套筒向前移置抵靠可滑动轴环和偏置机构来致动。
在图3F-2a中,套筒和轴环处于其闭合位置。在图3F-2b中,套筒和轴环处于其打开位置,允许流体流过向后推力喷口。当足够的泵送压力克服了弹簧的阻力时,喷口打开。
图3F-2c是图3F-2a的喷嘴的轴向截面图。五个向后推力喷口被示出为用于生成向后的推力。
图3F-3a和图3F-3c提供了另一可替代实施方案中的图3E的喷射喷嘴的纵向截面图。此处,使用了位于定子主体和转子主体二者内的多个向后推力喷口。在这种布置中,拉动被弹簧偏置的磁轴环上的电磁力用于打开/闭合向后推力喷口。
在图3F-3a中,喷射喷嘴的轴环处于其闭合位置中。在图3F-2b中,轴环处于其打开位置,允许流体流过向后推力喷口。
图3F-3b和图3F-3d示出了分别与图3F-3a和图3F-3c相关的喷射喷嘴的轴向截面图。看到有八个向后推力喷口。本实施方案提供了转子中的四个喷射端口与定子中的两组四个喷射端口中的任一组的间歇性对准,用以产生脉冲式向后推力流。
图3G-1a是示出了用于可以放置在喷射软管的一长度内的喷射轴环的基础轴环主体的轴向截面图。轴环主体也包括转子和周围的定子。该视图是沿图3G-1b的线D-D’所截取的。
图3G-1b是图3G-1a的喷射轴环的纵向截面图。与图3F-3a至图3F-3d的喷射喷嘴一样,定子中的两组四个喷射端口与转子中的四个喷射端口间歇性地对准,以产生脉冲式向后推力流。
图3G-1c是沿线d-d’截取的图3G-1b的喷射喷嘴的轴向截面图。
图4是在一个实施方案中图2的井下液压喷射组件的外部系统的纵向截面图。该外部系统位于图2的钻井孔的水平支柱的生产套管内。
图4A-1是将图4的外部系统运送入钻井孔和运送出钻井孔的捆扎连续油管运送媒介的一部分的放大纵向截面图。
图4A-1a是图4A-1的连续油管运送媒介的轴向截面图。在该实施方案中,内连续油管连同电线和数据缆线二者同心地“捆扎”在保护外层内。
图4A-2是在不同实施方案中的图4A-1a的连续油管运送媒介的另一轴向截面图。此处,内连续油管偏心地“捆扎”在保护外层内,用以提供对电线和数据缆线的更多均匀间隔的保护。
图4B-1是交叉连接件(crossover connection,转换连接件)的纵向截面图,该交叉连接件是图4的外部系统的最上面的构件。交叉段被构造成将图4A-1的连续油管运送媒介连接到主控制阀。
图4B-1a是在截面E-E’和F-F’之间看到的图4B-1的交叉连接件的放大立体图。该视图突出了配线腔室的截面形状从圆形到椭圆形的一般过渡。
图4C-1是图4的外部系统的主控制阀的纵向截面图。
图4C-1a是沿图4C-1的线G-G’截取的主控制阀的截面图。
图4C-1b是从4C-1a中分解示出的主控制阀的密封通道盖的立体图。
图4D-1是图4的外部系统的喷射软管承载段的纵向截面图。喷射软管承载段附接在主控制阀的下游。
图4D-1a示出了沿图4D-1的线H-H’截取的喷射软管承载段的主体的轴向截面图。
图4D-1b是图4D-1的喷射软管承载段的一部分的放大视图。更清楚地看见外部系统的系泊站。
图4D-2是具有来自图3的内部系统的喷射软管的、图4D-1的外部系统的喷射软管承载段的放大纵向截面图。
图4D-2a提供了具有位于其中的喷射软管的图4D-1的喷射软管承载段的轴向截面图。
图4E-1是图4的外部系统的选定部分的纵向截面图。可以看见喷射软管封隔段,以及从喷射软管承载段的前圆形主体(I-I’)到喷射软管封隔段的星形主体(J-J’)的过渡件的外主体。
图4E-1a是图4E-1的线I-I’和J-J’之间的过渡件的放大立体图。
图4E-2示出了喷射软管封隔段的一部分的放大视图。封隔段的内密封件符合位于其中的喷射软管(图3)的外圆周。压力调节阀示意地示出为位于该封隔段附近。
图4F-1是图4的外部系统的另一下游纵向截面图。再次示出了来自图4E-1的喷射软管封隔段以及外主体过渡件。此处还可以看见内部牵引机系统。注意,前述部件中的每一个均以具有位于其中的图3的喷射软管的纵向截面图示出。
图4F-2是图4F-1的内部牵引机系统的一部分的放大纵向截面图,并再次具有位于其中的喷射软管的截面。还示出了内部电动机、齿轮和夹具组件。
图4F-2a是沿图4F-1和图4F-2的线K-K’截取的图4F-2的内部牵引机系统的轴向截面图。
图4F-2b是图4F-2a的内部牵引机系统的一部分的放大半视图。
图4G-1是图4的外部系统的又一下游纵向截面图。该视图示出了从内部牵引机到上转环的过渡,该过渡之后是外部系统的上转环。
图4G-1a描绘了内部牵引机系统到上转环之间的外主体过渡的立体图。这是外主体从星形(L-L’)至圆形(M-M’)的过渡。
图4G-1b提供了沿线N-N’截取的图4-G1的上转环的轴向截面图。
图4H-1是竖向而非水平示出的图4的外部系统的造斜器构件的截面图。内部系统(图3)的喷射软管被示出为弯曲跨越该造斜器,并延伸通过生产套管中的窗口。内部系统的喷射喷嘴被示出为贴附至喷射软管的远端。
图4H-1a是造斜器构件的轴向截面图,其中,连续轴向喷射软管截面的立体图描绘了喷射软管在线O-O’处从造斜器构件的中心向下到喷射软管接近线P-P’时的弯曲半径的开始处的路径。
图4H-1b描绘了线P-P’处造斜器构件的轴向截面图。
图4I-1是图4的外部系统内的底部转环的轴向截面图,刚好位于前面的造斜器构件基部附近的滑动件(示出为接合周围的生产套管)的下游。
图4I-1a提供了沿线Q-Q’截取的图4I-1的底部转环的一部分的轴向截面图。
图4J是图4I-1的底部转环的另一纵向视图。此处,底部转环连接至过渡段,该过渡段又连接至常规泥浆电动机、外部牵引机以及测井探头,从而完成整个井下工具柱。为简化起见,该构造中并未包括封隔器或可取回桥塞。
具体实施方式
定义
本文所用术语“烃”指主要(但不排他地)包括元素氢和碳的有机化合物。烃通常分为两类:脂肪烃或直链烃,以及环烃或闭环烃,包括环萜。含烃材料的示例包括可以用作燃料或可以升级成燃料的任何形式的天然气、油、煤和沥青。
本文所用术语“烃类流体”指为气体或液体的烃或烃的混合物。例如,烃类流体可以包括在形成条件下、在加工条件下或在环境条件下为气体或液体的烃或烃的混合物。烃类流体可以包括例如油、天然气、凝析油(condensate)、煤层甲烷、页岩油、页岩气以及气态或液态的其他烃。
本文所用术语“流体”指气体、液体以及气体和液体的组合,也指气体和固体的组合以及液体和固体的组合。
本文所用术语“地下”指在地球表面以下出现的地质层。
术语“地下层段”指可能存在地层流体的地层或地层的一部分。该流体可以是例如烃类液体、烃类气体、水流体或其组合。
术语“区”或“目的区”指包含烃的地层的一部分。有时,可以使用术语“目标区”、“产区”或“层段”。
本文所用术语“钻井孔”指通过钻探或将导管插入地下而在地下形成的孔。钻井孔可以具有基本上圆形的截面或其他截面形状。当指在地层中的开口时,本文所用术语“井”可以与术语“钻井孔”交换使用。
术语“喷射流体”指为了从现有主钻井孔侵蚀地(erosionally)钻出横向钻孔的目的而被泵送通过喷射软管和喷嘴组件的任何流体。该喷射流体可以包含或者可以不包含磨蚀材料。
术语“磨蚀材料”或“磨蚀剂”指与喷射流体混合或悬浮在喷射流体中的小的固体颗粒,用以增强以下的侵蚀穿进:(1)产区;和/或(2)生产套管和产区之间的水泥;和/或(3)生产套管在期望的套管出口点处的壁。
术语“管状件”或“管状构件”指任何管,诸如套管的接箍、衬里的一部分、油管的接箍、短钻杆或连续油管。
术语“横向钻孔”或“微型支渠”或“超深射孔”(“UDP”)指通常在离开主钻井孔中的生产套管及其周围的水泥护层时在地下地层中形成的钻孔,其中所述钻孔形成在已知或潜在产区中。出于本文的目的,使用被指引通过喷射软管并且流出贴附至喷射软管的末端的喷射喷嘴的喷射流体,液压喷射力侵蚀钻探穿过产区,因此形成UDP。优选地,每个UDP将具有相对于主钻井孔大致法向的轨迹。
术语“可操纵”或“可引导”当应用于液压喷射组件时,指在喷射组件运行时,喷射组件的可以由操作员指引且控制其地理空间定向的一部分(通常,喷射喷嘴和/或紧邻喷嘴的喷射软管的部分)。这种在侵蚀挖掘期间指引并且随后重新指引喷射组件的定向的能力可以根据需要形成具有一种、两种或三种尺寸的定向部件的UDP。
术语“射孔群”或“UDP群”指从主井套管分出的一组设计的横向钻孔。这些组被理想地设计成通常在完成或重工水平井的过程中通过液力压裂(或“压裂”)接收和传输增产处理的特定“级”。
术语“级”指应用于完井或重新完井特定产区或产区的特定部分的增产处理的分立部分。在套管水平主钻井孔的情况下,最高达10、20、50或更多级可以应用于它们各自的射孔(或UDP)群。通常,这需要在泵送每个级之前有一定形式的层位封隔。
应用于单独UDP或者“群”中的UDP组的术语“轮廓(contour)”或“轮廓设置(contouring)”指可操纵挖掘UDP(或横向钻孔),以便最佳地接收、指引和控制给定增产(通常,压裂)级的增产流体或流体和支撑剂。这种“……最佳地接收、指引和控制…”给定级的增产流体的能力被设计成将所得的增产几何结构保持在“区中”,和/或在期望时使增产效果集中。结果是优化和通常最大化增产储层体积(“SRV”)。
在泵送增产(诸如压裂)处理级期间获得的地球物理学数据(诸如微地震、倾斜仪和或环境微地震数据)的“实时”或“实时分析”,这两个术语指所述数据分析的结果可以应用于:(1)改变增产处理(仍待泵送)的剩余部分的泵送速率、处理压力、流体流变和支撑剂浓度,以便优化其效益;以及(2)优化后续“群”内的射孔的放置或者UDP的轨迹的轮廓设置,以优化从后续增产级获得的SRV。
具体实施方案描述
本文提供了一种井下液压喷射组件。该喷射组件被设计成指引喷射喷嘴和连接的液压软管通过沿着生产套管柱形成的窗口,然后向外到地下地层“喷射”一个或多个钻孔。横向钻孔本质上表示通过使用被指引通过远端贴附有高压喷射喷嘴的柔性高压喷射软管的液压力形成的超深射孔。主体组件利用单个软管和喷嘴设备以连续喷射出可选地套管出口和后续横向钻孔二者。
图1A是水平井4的示意性描绘,其中,井口装置5位于地表1上面,并且水平井在到达产区3之前穿进若干系列的地下层2a到2h。钻井孔4的水平段4c描绘在“柱脚跟部”4b和“柱脚尖部”4d之间。表面套管6示出为完全从表面套管鞋8水泥固定7回地面1,而中间套管柱9仅部分地从其鞋11处水泥固定10。类似地,虽然生产套管柱12从其套管鞋14处仅部分地水泥固定13,但是充分隔离了产区3。注意图1A中描绘的典型水平钻井孔中,生产套管12内的常规射孔15如何上下成对示出,并且描绘为具有后续液力压裂半平面(或“裂缝翼”)16。
图1B是图1A的钻井孔4的下部分的放大图。此处,更清晰地看到柱脚跟部4b和柱脚尖部4d之间的水平段4c。在这种描绘中,此处主题设备和方法的应用用如图1B中描绘的成对的相对水平UDP 15代替常规射孔(图1A中的15),也具有后续形成的裂缝半平面16。在图1B中具体描绘的是裂缝翼16现在如何更好地限制在产区3内,同时从水平钻井孔4c显著更远地伸入产区3。换言之,通过由本文公开的组件和方法形成的UDP 15的预先存在显著增强区中的裂缝射孔。
图2提供了本发明的井下液压喷射组件50在一个实施方案中的纵向截面图。喷射组件50示出为位于生产套管柱12内。生产套管12可以具有例如4.5英寸的O.D.(4.0英寸I.D.)。生产套管12呈现为沿着钻井孔4的水平部分4c。如结合图1A和图1B所示,水平部分4c限定柱脚跟部4b和柱脚尖部4d。
喷射组件50通常包括内部系统1500和外部系统2000。喷射组件50被设计成在工作柱(有时在本文中被称为“运送媒介”)的端部伸入钻井孔4中。优选地,工作柱是连续油管柱100。运送媒介100可以是常规连续油管。可替代地,可以使用“捆扎”产品,该“捆扎”产品包括围绕连续油管芯的导电线和数据传导缆线(诸如光纤),该导电线和数据传导缆线由防侵蚀/磨蚀外层诸如PFE和/或Kevlar保护,或者甚至由另外的(外)连续油管柱保护。发现光纤缆线具有几乎可忽略的直径,并且经油田证明在提供与井下工具的直接、实时数据传输和通信方面是有效的。还可以采用其他新兴的传输媒介诸如碳纳米纤维。
其他运送媒介可以用于喷射组件50。这些包括例如标准电线圈系统、定制组件、的柔性聚合物钢管(“FSPT”)或柔性管线(“FTC”)油管。可替代地,油管具有PTFE(聚四氟乙烯)和基于的材料,或者可以使用Draka CableteqUSA,油管密封线(“TEC”)系统。在任何情况下,期望的是运送媒介100是柔性的、多少有些可延展性、非传导的、耐压的(以承受可选地被向下泵入环隙的高压压裂流体)、耐热的(以承受底孔钻井孔操作温度,通常超过200°F,而且有时候超过300°F)、耐化学性的(至少对包括在压裂流体中的添加剂有抗性)、耐摩擦的(在泵送压裂处理时减小由于摩擦导致的井下压力损失)、耐侵蚀的(以承受前述环形压裂流体的侵蚀效应)以及抗磨蚀的(以承受悬浮在前述环形压裂流体中的支撑剂的磨蚀效应)。
如果采用标准连续油管柱,则可以通过水下脉冲技术(或者所谓的泥浆脉冲遥测技术)、声波遥测技术、EM遥测技术或者一些其他远程传输/接收系统完成通信和数据传输。类似地,用于操作设备的电力可以在井下由常规泥浆电动机生成,这将会允许将用于系统的电路限制在连续油管的端部下方。本液压喷射组件50不受所采用的数据传输系统或者电力传输或者运送媒介的限制,除非在权利要求中清楚这样陈述。
优选的是将连续油管100的外径维持为在I.D.大约为4.0”的套管12内留出大于或者等于向3.5”O.D.压裂(油管)柱的流动开放的截面面积的环形区域。这是因为,在优选的方法中(在喷射出一个或多个(优选地两个)相对微型支渠后或甚至是具体设置轮廓的小直径横向钻孔“群”),沿着连续油管运送媒介100加上外部系统2000与井套管12之间的环隙向下可以立即(在将工具柱重新定位在朝井口后)发生压裂增产。对于9.2#、3.5”O.D.油管(即,压裂柱等同物),I.D.为2.992英寸,并且向流开放的截面面积为7.0309平方英寸。根据该同一7.0309in2倒推测算同等产生用于连续油管运送媒介100和2.655”的外部系统2000(具有大致圆形的截面)二者的最大O.D.。当然,可以对其中一者使用较小的O.D.,只要这可以容纳喷射软管1595。
在图2的视图中,组件50处于运行位置,其中,喷射软管1595延伸通过造斜器1000,并且喷射喷嘴1600穿过生产套管12的第一窗口“W”。在喷射组件50的端部处、且在造斜器1000的下方是若干可选的部件。这些部件包括常规泥浆电动机1300、外部(常规)牵引机1350和测井探头1400。结合图4更全面地示出和描述这些部件。
图3是图2的液压喷射组件50的内部系统1500的纵向截面图。内部系统1500是在处于运行时能够在外部系统2000内移动并且延伸到外面的可操纵系统。内部系统1500主要由以下项组成:
(1)电力和地质控制部件;
(2)喷射流体引入口;
(3)喷射软管1595;以及
(4)喷射喷嘴1600。
内部系统1500被设计成容置在外部系统2000内,同时由连续油管运送媒介100和附接的外部系统2000运送入和运送出主钻井孔4。通过施加以下项来完成内部系统1500从外部系统2000伸出和缩回:(a)液压力;(b)机械力;或者(c)液压力和机械力的组合。对由内部系统1500和外部系统2000构成的液压喷射设备50的设计有益的是运输、部署或者取回喷射软管1595,从不需要盘绕喷射软管。具体地,喷射软管1595绝不经受小于生产套管12的I.D.的弯曲半径,并且仅在沿着外部系统2000的喷射软管造斜器构件1000的造斜器1050推动时递增。注意,喷射软管1595通常为能够承受高内部压力的柔性油管的I.D.的1/4”到5/8”,最高达约1”O.D.。
内部系统1500首先包括电池组1510。图3A提供了图3的内部系统1500的电池组1510的剖视立体图。注意,出于展示的目的,该段1510从图3的水平视图旋转90°到竖向定向。独立AA电池1551示出为形成电池组1550的一系列端对端状电池。电池1551的保护主要经由电池组盒体1540进行,该电池组盒体由上游电池组端盖1520和下游电池组端盖1530密封。这些部件(1540、1520和1530)呈现暴露于高压喷射流体流的外部面。因此,它们优选地由非导电、高度耐磨蚀/侵蚀/腐蚀材料构造或者涂覆。
上游电池组端盖1520具有围绕其圆周的一部分的导电环。当内部系统1500被“插接”(即,配合地接收到外部系统2000的系泊站325中)时,电池组端盖1520可以接收和传输电流,并因而对电池组1550进行再充电。还要注意,端盖1520和1530的大小可以设置成容置和保护其内的任何伺服器、微芯片、电路、地理空间或发射器/接收器部件。
电池组端盖1520、1530可以螺纹地附接至电池组盒体1540。电池组端盖1520、1530可以由高度耐侵蚀和耐磨蚀的高压材料(诸如钛)构造,甚至还由薄的高度耐侵蚀或耐磨蚀涂层(诸如多晶金刚石)保护。端盖1520、1530的形状和构造优选地为使得它们可以在不引起显著磨蚀的情况下使高压喷射流体的流动转向磨蚀。上游端盖1520必须使流动转向至电池套管1540和喷射软管承载系统(在图4D-1中以400示出)的周围喷射软管导管420(在图3C中可见)之间的环形空间(图3中未示出)。下游端盖1530邻接从该环形空间通过喷射流体接收(或者,“引入”)漏斗(图3B-1中以1570示出)向下进入到喷射软管1595自身的I.D.中的喷射流体的流动路径的一部分。
因此,高压液压喷射流体(具有或者没有磨蚀剂)的路径如下:
(1)喷射流体从地面1处的高压泵中排放,沿着连续油管运送媒介100的I.D.向下,喷射流体在连续油管运送媒介的端部进入外部系统2000;
(2)喷射流体通过连续油管过渡连接件200进入外部系统2000;
(3)喷射流体通过喷射流体通道345进入主控制阀300;
(4)由于主控制阀300定位成接收喷射流体(与液压流体相对),密封通道盖320将会定位成密封液压流体通道340,留出通过喷射流体通道345的唯一可用流体路径,喷射流体通道的排放端密封地连接至喷射软管承载系统400的喷射软管导管420;
(5)在进入喷射软管导管420时,喷射流体将会首先通过系泊站325和喷射软管导管420之间的环隙经过系泊站325(贴附在喷射软管导管420内);
(6)由于喷射软管1595自身位于喷射软管导管420中,因此高压喷射流体现在必须通过或绕过喷射软管1595;以及
(7)由于内部系统1500的密封喷射软管1595和喷射软管导管420之间的环隙的密封件1580U,喷射流体无法绕过喷射软管1595(注意密封组件1580上的这种液压压力是趋于将内部系统1500泵送并因此将喷射软管1595泵送到“井下”的力),因此喷射流体被迫按照以下路径通过喷射软管1595:
(a)喷射流体首先在上游电池组端盖1520处经过内部系统1500的顶部;
(b)然后喷射流体经过电池组盒体1540和喷射软管承载系统400的喷射软管导管420之间的环隙;
(c)喷射流体经过下游电池组端盖1530之后,被迫在电池组支撑导管1560之间流动,并且进入喷射流体接收漏斗1570中;
以及
(d)由于喷射流体接收漏斗1570刚性且密封地连接至喷射软管1595,所以流体被迫进入喷射软管1595的I.D.。
在上述喷射流体流顺序中值得注意的是以下启动条件:
(i)内部牵引机系统700首先接合以沿着下游方向移动喷射软管1595的分立长度,使得喷射喷嘴1600和喷射软管1595进入喷射软管造斜器1000,并且具体地,在内壁(在图4H-1中以1020示出)内行进固定距离之后,被迫径向地向外以首先接合生产套管12的内壁,然后接合造斜器构件1050的上曲面1050.1,就在此时,
(ii)喷射软管1595被曲线地“弯曲”近似90°,形成其预限定弯曲半径(在图4H-1中以1599示出)并且指引附接至其末端的喷射喷嘴1600接合生产套管12的I.D.内期望的套管出口“W”的精确点;就在此时
(iii)然后实现内部牵引机系统700内夹具组件750扭矩增加,关于此的信号立即被电子地运送到地面,通知操作员关闭夹具(在图4F-2b中756处看到示意性夹具)的旋转。
(实际上,可以以某一扭矩水平将这种关闭预先编程入操作系统中。)要注意在阶段(i)到阶段(iii)期间,压力调节阀(在图4E-2中610处看到的)处于“打开”位置。这允许喷射软管1595和周围的软管导管420之间的环隙中的液压流体泄放。一旦喷射喷嘴1600的尖端接合生产套管12的I.D.(套管壁),那么操作员可以:
(iv)反转夹具756的旋转方向以将喷射软管1595移动回到喷射软管(或内)导管420中;以及
(v)打开主控制阀300以开始将液压流体泵送通过液压流体通道340,沿着导管承载件环隙440向下,通过压力调节阀610,并且进入喷射软管1595/喷射软管导管420环隙1595.420,用以:(1)向上泵送抵靠喷射软管的密封组件1580的下密封件1580L,以将喷射软管1595再延伸至教示位置;以及(2)帮助(现在为已反转的)夹具组件750定位内部系统1500,使得喷射喷嘴1600在其自身和生产套管12的I.D.之间具有期望的基准距(优选地小于1英寸),以开始喷射所述套管出口。
在到达该期望的基准距时,夹具756的旋转停止,并且压力调节阀610关闭以将内部系统锁定在用于喷射所述套管出口“W”的期望的固定位置。
返回参照图3A,在一个实施方案中,下游端盖1530的内部容置微地质导向系统。系统可以包括微发射器、微接收器、微处理器和电流调节器。该地质导向系统电力地或光纤地连接到位于喷射喷嘴1600的主体中的小的地理空间IC芯片(图3F-1c中以1670示出并且在下文中更全面地讨论)。这样,地理位置数据可以从喷射喷嘴1600发送到微处理器(或合适的控制系统),地理位置数据结合分散的软管长度的值可以用于计算任何点处的喷嘴的精确的地理位置,并因此计算UDP路径的轮廓。相反地,可以从控制系统(诸如系泊站中或地面处的微处理器)发送地质导向信号来通过一个或多个电流调节器修改沿(至少三个)致动器线(图3F-1c中以1590A示出)中每个的向下单独电流强度,因此根据需要重新定向喷嘴。
地质导向系统还可以用于控制喷射喷嘴1600内转子主体的旋转速度。如下文将更完整描述的,旋转喷嘴构造利用微型直接驱动电动机组件的转子部分1620也来形成旋转喷嘴自身的喉道和端排放槽1640。经由转子/定子构造的电磁力引发旋转。这样,可以将旋转速度调节成与向定子供应的电流成比例。
如图3F-1至图3F-3中所描绘的,转子(在这种描绘中为四极转子)1620的上游部分包括近似圆柱的内径(I.D.实际上从流体入口至排放槽略微减小,以在流体进入排放槽之前进一步加速流体),该内径为喷射流体提供通过转子1620的中心的流动渠道。该近似圆柱的流动渠道然后在其远处的下游端过渡成喷嘴1600的排放槽1640的形状。这是可能的,因为代替纵向插穿转子1620的中心直径的典型轴与轴承组件,转子1620是稳定的并定位成通过围绕上游平头端的内部且在流动渠道(“喷嘴喉道”)1650的外径外部定位的单组轴承1630围绕转子1620的纵向轴线平衡旋转,使得轴承1630在纵向和轴向上都稳定转子主体1620。
现在参照图3B-1a,并且再次讨论内部系统1500,示出了沿图3B-1的线A-A’截取的电池组段1510的截面图。该视图是从向下看到喷射流体接收漏斗1570中的电池组1510的底部端盖1530的顶部截取的。该图中能够看见从电池组1510延伸的三条电线1590。使用这些电线1590,将电力从“AA”尺寸的锂电池1551送至用于控制旋转喷射喷嘴1600的地质导向系统。通过调整经过电线1590的电流,地质导向系统控制转子1620的旋转速率及其定向。
注意,由于喷嘴的排放流的纵向轴线被设计成与喷嘴喉道的纵向轴线连续并且与其对准,因此出口喷射流体的推力实际上没有轴向力矩作用于喷嘴。即,由于喷嘴被设计成在轴向“平衡”的条件下运行,所以实际上使喷嘴围绕其纵向轴线旋转所需要的扭转力矩是相当小的。类似地,由于旋转挖掘所需的转速(RPM)相当低,因此喷嘴的转子/定子相互作用所需要的电磁力也是相当小的。
从图3中注意到,喷射喷嘴1600位于喷射软管1595的远处的下游端。虽然内部系统1500的部件的直径必须满足一些相当严格的直径限制,但是对于每个部件各自的长度(除了喷射喷嘴1600,并且如期望,还除了一个或多个喷射轴环)的限制通常少得多。这是因为喷射喷嘴1600和轴环只是贴附至喷射软管1595的部件,将会按照造斜器面1050.1所指引的一般形成近似90°的弯曲。内部系统1500的所有其他部件将始终位于喷射软管承载件系统400内、喷射软管封隔段600(下文讨论)上方的某个位置处。
许多部件的长度还可以进行调整。例如,虽然图3A中的电池组1510被描绘成容置六个AA电池1551,但是通过简单地构造较长的电池组盒体1540可以容易地容纳更多的数量的电池。类似地,也可以大幅长形电池组端盖1520,1530、支撑柱1560和流体引入漏斗1570,以符合流体流动和电力需求。
再次参照系泊站325,系泊站325用作物理“止动件”,超过该系泊站内部系统1500就不可以再向上游行进。具体地,内部系统1500(主要包括喷射软管1595)向上游行进的限制是上游电池组端盖1520插入(或“插接”)在系泊站325的底部圆锥形插座328内的点处。插座328用作下端盖。插座328提供配合导电的触点,该触点与上游电池组端盖1520对齐,以形成插接点。这样,在“插接”时就可以传输数据和/或电力(具体地,用以对电池1551再充电)。
系泊站325还具有在系泊站325的上游(近)端处的圆锥形端盖323。圆锥形状用于通过转移其主体周围的喷射流体的流动而最小化侵蚀效应,从而有助于保护容置在系泊站325内的系统部件。根据所期望的指导、转向和通信能力,系泊站325的上部分323可以容置被设计成与内部系统1500中的配对系统直接通信(以连续实时的方式或仅在插接时以离散的方式)的伺服、传输和接收电路和电子系统。注意,如图3中所示,圆柱形系泊站325的O.D.近似等于喷射软管1595的O.D.。
内部系统1500还包括喷射流体接收漏斗1570。图3B-1包括喷射流体接收漏斗1570的剖视立体图,具有如图3B-1b所示的沿B-B’的轴向截面图。喷射流体接收漏斗1570位于电池组段1510的基部下方,如上文结合图3A所示和所描述的。顾名思义,喷射流体接收漏斗1570用于在套管出口和微型支渠形成过程期间将喷射流体引入喷射软管1595的内部。具体地,喷射流体的环形流动(如,流经电池组盒体1540然后流经电池组端盖1530以及流入喷射软管导管420的I.D.内部)被迫使过渡为在三个电池组支撑导管1560之间的流动,因为上密封件(图3的1580U处所看到的)阻止沿喷射软管1595外部的路径流动的任何流体。因此,喷射流体(与液压流体相对)的所有流动被迫使在导管1560之间,并且流入流体接收漏斗1570。
在图3B-1的设计中,三个柱状支撑件1560用于容置电线1590。柱状支撑件1560还提供向流体流开放的区域。支撑件1560之间的间隔被设计成显著大于喷射软管1595的I.D.提供的间隔。同时,支撑件1560具有大到足以容置并保护高达AWG#5规格电线1590的I.D.。柱状支撑件1560还在喷射流体引入漏斗1570和喷射软管密封组件1580上方的特定距离处支撑电池组1510。支撑件1560可以用密封端盖1562密封,使得移除端盖1562提供到电线1590的入口。
图3B-1b提供了流体引入漏斗1570的第二轴向截面图。该视图是沿图3B-1的线B-B’截取的。还看见三个柱状支撑件1560。该视图是在喷射流体入口或接收漏斗1570的顶部截取的。
喷射流体接收漏斗1570的下游是喷射软管密封组件1580。图3C是密封组件1580的剖视立体图。在图3C的视图中,为清楚起见,已经移除柱状支撑构件1560和电线1590。然而,在密封组件1580的上端还看见接收漏斗1570。
图3C中还能够看见喷射软管1595的上端。喷射软管1595具有最外面的喷射软管包裹物O.D.1595.3(图3D-1a同样可见),最外面的喷射软管包裹物可以在多点处接合喷射软管导管420。喷射软管1595和周围的导管420之间形成微环隙1595.420(图3D-1和图3D-1a中示出)。喷射软管1595还具有在喷射作业期间传输喷射流体的芯(O.D.1595.2,I.D.1595.1)。喷射软管1595牢固地连接至密封组件1580,意味着当喷射软管推进到微型支渠中时,密封组件1580与喷射软管1595一起移动。
如前所述,喷射软管的密封组件1580的上密封件1580U(示出为具有略微向上凹陷的上表面的实心部分)阻止向下游的任何连续喷射流体流出喷射软管1595以外。类似地,该密封组件1580的下密封件1580L(示出为一系列向下凹陷的杯面)阻止来自下面的液压流体的任何向上游的流动。注意来自喷射流体的任何上游至下游的液压压力将如何趋于扩张喷射流体引入漏斗1570,并因此将密封组件1580的上密封件1580U径向地向外推动,以密封地接合喷射软管承载件的(内)喷射软管导管420的I.D.420.1。类似地,来自液压流体的任何下游至上游液压压力径向地扩张制成下密封件1580L的底部杯状面,以密封地接合喷射软管承载件的内导管420的I.D.420.1。因此,当喷射流体压力大于所捕获的液压流体压力时,失衡将趋于将整个组件“泵送”到“井下”。相反,当反转了压力失衡时,液压流体压力将趋于将整个密封组件1580和所连接的软管1595“泵送”回“井上”。
返回到图2和图3,上密封件1580U为内部系统1500到外部系统2000提供了上游压力以及流体密封连接。(类似地,如下文将进一步讨论的,封隔段600内的封装密封件650提供内部系统1500与外部系统2000之间的下游压力以及流体密封连接)。密封组件1580包括在软管1595与周围导管420之间保持不可压缩流体的密封件1580U、1580L。这样,喷射软管1595可操作地连接至连续油管柱100并密封地连接至外部系统2000。
图3C示出了在该上游密封件1580中包含的密封机构的效用。在作业其间,喷射流体:
(1)流经电池组盒体1540和喷射软管承载件内导管420之间的环隙420.2;
(2)在电池组支撑导管1560之间流动;
(3)流入流体接收漏斗1570;
(4)向下流入喷射软管1595的芯1595.1(I.D.);以及
(5)然后退出喷射喷嘴1600。
如所述,作用在喷射软管的流体接收漏斗1570的轴向截面区域上的喷射流体的向下游的液压压力创建了上游至下游力,该上游至下游力趋于将密封组件1580和所连接的喷射软管1595“泵送”入“井下”。另外,由于流体接收漏斗1570的部件和密封组件1580的支撑上密封件1580U是略有柔性的,因此上文所描述的净压降用于使上密封件1580U的外径径向向外膨胀和展开,从而产生阻止流体流到软管1595后面的流体密封。
图3D-1提供了当内部系统1500的“捆扎”喷射软管1595位于喷射软管承载件的内导管420中时的纵向截面图。纵向截面中还包括电线1590和数据缆线1591的立体图(虚线)。从图3D-1a的轴向截面图中注意到,“捆扎”喷射软管1595中的所有电线1590和数据缆线1591均安全地位于最外面的喷射软管包裹物1595.3内。
在优选实施方案中,喷射软管1595为“捆扎”产品。软管1595可以从制造商诸如Parker Hannifin公司处获得。捆扎软管包括至少三个导电线1590以及至少一条但优选为两条专用数据缆线1591(诸如光纤线缆),如图3B-1b和图3D-1a中描绘的。注意,这些电线1590和光纤绞合线1591位于喷射软管1595的芯1595.2的外周界上,并且被柔性的高强度材料或“包裹物”(诸如)的薄外层1595.3包围以进行保护。因此,保护电线1590和光纤绞合线1591免受高压喷射流体的任何侵蚀效应。
现在向下移软管1595至远端,图3E提供了喷射软管1595的端部的放大截面图。此处,喷射软管1595穿过造斜器构件1000,并最终沿造斜器面1050.1到达套管出口“W”。喷射喷嘴1600附接至喷射软管1595的远端。喷射喷嘴1600示出为处于随后即将在生产套管12中形成出口开口或窗口“W”的位置处。当然,可以理解本组件50可以重新构造成部署在无套管的钻井孔中。
如相关申请中所描述的,就在前述的该套管出口“W”的点处喷射软管1595跨越生产套管12的整个I.D.。这样,喷射软管1595的弯曲半径“R”设置成始终等于生产套管12的I.D.。这是重要的,因为主题组件50将始终能将整个套管(或钻井孔)I.D.用作喷射软管1595的弯曲半径“R”,从而利用最大I.D./O.D软管。这又可供在喷射喷嘴1600处布置最大液压马力(“HHP”),这进一步转化成最大化地层喷射结果的能力,诸如穿进速率或横向钻孔直径或者二者的一些优化。
此处观察到,喷射软管1595的弯曲半径“R”存在连贯的三个“接触点”。首先,在软管1595接触套管12的I.D.处存在接触点。这出现在与套管出口“W”的点直接相对并略微(近似一个套管I.D.宽度)在其上方的点处。第二,沿造斜器构件1000自身的造斜器曲面1050.1存在接触点。最后,至少直到窗口“W”形成,抵靠在套管出口“W”处的套管12的I.D.存在接触点。
如图3E(以及图4H-1中)描绘的,喷射软管造斜器构件1000在套管12内处于其设定和操作位置。(美国专利号8,991,522也表明造斜器构件1050处于其伸入位置,该专利通过引用合并至本文)。造斜器构件1000内的实际造斜器1050由下造斜器杆1060支撑。当造斜器构件1000处于其设定和操作位置时,造斜器构件1050自身的上曲面1050.1基本上跨越套管12的整个I.D.。例如,如果套管I.D.变得略大,显然情况不是这样的。然而虽然精确地形成等于套管12的(新的)放大I.D.的略大弯曲半径“R”,喷射软管1595的三个前述“接触点”将保持不变。
如共有的美国专利号8,991,522中更详细描述的,造斜器杆是工具组件的一部分,也包括定向机构和包括滑动件的锚固段。一旦滑动件固定,定向机构就利用棘轮状活动部件,该棘轮状活动部件可以以分立的10°的增量使得造斜器构件1000的上游部分旋转。因此,钻井孔内的造斜器构件1000的角度定向可以在井下递增地改变。
在一个实施方案中,造斜器1050是具有一体化凹入面的单个主体,该凹入面被构造成接收喷射软管并且使软管改向约90度。注意,造斜器1050被构造成使得当处于设定和操作位置时,在套管出口点处形成喷射软管的弯曲半径,该弯曲半径跨越主钻井孔的生产套管12的整个ID。
图4H-1是竖向而非水平示出的图4的外部系统的造斜器构件1000的截面图。内部系统(图3)的喷射软管被示出为弯曲跨越该造斜器面1050并延伸通过生产套管12的窗口“W”。内部系统1500的喷射喷嘴被示出为贴附至喷射软管1595的远端。
图4H-1a是造斜器构件1000的轴向截面图,其中,连续轴向喷射软管截面的立体图描绘了喷射软管从线O-O’处的造斜器构件1000的中心向下到喷射软管接近线P-P’时的弯曲半径的开始处的路径。
图4H-1b描绘了线P-P’处的造斜器构件1000的轴向截面图。注意造斜器构件的配线腔室和液压流体腔室二者从线O-O’到线P-P’的位置和构造的调整。
如上文所述,本组件50优选地用于与具有独特设计的喷嘴连接。图3F-1a和图3F-1b提供了第一实施方案中的图3的喷嘴1600的放大截面图。喷嘴1600利用转子/定子设计,其中,使得喷嘴1600的向前部分1620(并因此使得向前喷射槽(或“端口”)1640)旋转。相反,自身直接连接至喷射软管1595的喷嘴1600的向后部分相对于喷射软管1595保持固定。注意在这种布置中,喷射喷嘴1600具有单个向前排放槽1640。
首先,图3F-1a呈现了具有定子1610的基础喷嘴主体。定子1610限定环隙主体,具有近端1611,该环隙主体具有在其中等距地间隔的一系列面朝内的肩状物1615。喷嘴1600还包括转子1620。转子1620也限定一主体并具有在其周围等距地间隔的一系列面朝外的肩状物1625。在图3F-1a的布置中,定子1610具有六个面朝内的肩状物1615,而转子1620具有四个面朝外的肩状物1625。
沿每个肩状物1615布置有用多个包裹物包裹定子的面朝内的肩状物(或“定子极”)1615的小直径的导电线1616。因此根据DC转子/定子系统,通过电线1616的电流的移动会创建电磁力。从图3A的电池1551(或电池组1550)提供到电线的电力。
如上文所看到的,定子1610和转子1620主体类似于直接驱动电动机。该直接驱动电机类似物的定子1610(在本说明书中为六极定子)包括在喷嘴1600本身的外主体内,其中每个极直接从主体610突出,并同量地包裹在电线1616中。用于包裹定子极的电线1616的电流源来源于喷射软管1595的‘捆扎’电线1590,并因此由容置在锥形电池组的(下游)端盖1530中的电流调节器和微伺服机构操纵。喷嘴1600的转子1620的旋转,特别是旋转的速度(RPM),经由DC转子/定子系统的感应电磁力控制。
注意,图3F-1a可以用作表示基本上任何基础直流电磁电动机的轴向截面,其中移除了中心轴/轴承组件。通过消除中心轴和轴承,喷嘴1600现在可以容纳纵向通过其中心放置的喷嘴喉道1650。喉道1650适用于进行高压流体流动。
图3F-1b提供了沿图3F-1b的线C-C’截取的图3F-1a的喷嘴1600的纵向截面图。再次看见转子1620和周围的定子1610。提供轴承1630以促进定子主体1610和转子主体1620之间的相对旋转。
在图3F-1b中观察到喷嘴喉道1650在终止于单个扇形排放槽1640中之前具有锥形变窄部分。这种轮廓提供两个益处。第一,在喉道1650和喷嘴主体1620的向前部分的磁性转子部分1625之间可以放置额外的非磁性高强度材料。第二,在喷射流体进入排放槽1640之前调整通过喉道1650的喷射流体的最后加速度。也考虑轴承1630的尺寸、位置、负载能力以及移动自由度。向前槽1640开始于相对微型半球形开口,并且以弯曲的、相对椭圆的形状(或者可选地,以具有弯曲小端部的弯曲矩形)终止于喷嘴1600的向前部分。
用单个平坦槽进行了模拟,平坦槽略微扭曲,使得流体的排放角度产生足够的推力以便旋转喷嘴1600。发现的问题是,喷嘴旋转速率对流体流动速率的变化非常敏感,造成轴承1630瞬间过载和频繁过载(伴随由此造成的故障)的问题。解决方案是尽可能设计一种平衡单槽系统,使得流体排放不会产生可感知的轴向推力。换言之,喷嘴1600不再对注射速率敏感。
在这一点上重要的是,注意针对由喉道1650和槽1640元件构成的组合流动路径的流通能力方面的基础喷嘴的设计标准。即,喷嘴1600的这些内喉道1650和槽1640元件保持一尺寸,该尺寸可能近似于常规液压喷射套管射孔器的尺寸以及因此造成的液压。具体地,图3F-1a中描绘的喷嘴1600及图3F-1b中描绘的喉道1650和槽1640的尺寸设置成近似于通过射孔器的l/8英寸孔口获得的射孔液压。注意,槽1640的末端宽度不仅可以容纳100目的砂作为磨蚀剂,还可以容纳更大尺寸诸如80目的砂。
图3F-1b中示出了角度θSLOT 1641和θMAX 1642。(在图3F-2b和图3F-3b中也示出了这些角度,下文进行讨论。)角度θSLOT1641表示槽1640的外边沿的实际角度,角度θMAX 1642表示能够在喷嘴1600的现存几何结构和构造限制内实现的最大θSLOT 1641。在图3F-1b、图3F-2b和图3F-3b中,角度θSLOT 1641和θMAX 1642都示出为90度。这种几何结构加上转子主体1620的旋转(并且,因此喷射槽1640的旋转)提供即使在基准距(如,从喷嘴1600在纵向中心线处的尖端到沿着同一中心线的目标岩石的距离)为零的情况下也侵蚀出至少等于喷嘴的外直径的孔直径。
图3F-2a和图3F-2b提供了图3E的喷射喷嘴在可替代的实施方案中的纵向截面视图。在本实施方案中,对修改的喷嘴1601使用多个端口,包括向前端口1640和多个向后推力喷口1613。
图3F-2a和图3F-2b的喷嘴构造与图3F-1a的喷嘴构造相同,除了以下三个额外的部件:
(1)向后推力喷口1613的使用;
(2)通过偏置机构(弹簧)1635偏置的可滑动轴环1633的使用;以及
(3)可滑动喷嘴喉道衬套或套筒1631的使用。
这三个额外部件中的第一个,向后推力喷口1613,提供向后推力,在形成横向钻孔或微型支渠时沿横向钻孔或微型支渠有效地拖曳喷射软管1595。优选地,沿着主体1610使用五个向后推力喷口1613,尽管可以利用各种数量和/或出口角度1614的喷口1613。
图3F-2c是图3F-2a和图3F-2b的喷射喷嘴1601的轴向截面图。这展示了由多个向后推力喷口1613形成的星形喷口图案。在星中看到五个点,表示五个示意性的向后推力喷口1613。
特别注意,在匀质主产区中,以给定的穿透速率挖掘新鲜岩石所需的向前(喷射)液压马力基本上不变。然而,向后推力液压马力要求与微型支渠的长度增长成比例地恒定增加。因为微型支渠的持续延长要求沿着不断增加的距离拖曳喷射软管1595不断增加的长度,所以维持喷射喷嘴1601和软管1595的向前推进所需的向后推力液压马力同量地增加。
为了在最远的横向程度上延伸喷射软管1595和所连接的喷嘴1601、1602,可能需要消耗三分之二以上的可用马力通过向后推力喷口1613。如果在整个钻孔喷射过程中始终利用这种最大的要求,那么大部分可用马力将在喷射钻孔的早期被浪费掉。当在岩石挖掘中所用的相同喷射喷嘴和组件也用于形成初始套管出口“W”时,这是特别不利的。此外,如果切割星形岩石挖掘的‘点’的相同向后喷射力在钻井孔管件中是活跃的(特别地,在喷射套管出口“W”时),可能对附近的工具柱(特别地,造斜器构件1000)以及井套管12造成显著损坏。因此,优化设计将会在需要时(特别是,套管出口形成之后和横向钻孔的头(first,前)5英尺或10英尺形成之后)提供向后推力喷口1613的启用/停用。
存在若干可能的机构,通过这些机构可以使喷口启用/停用,以帮助保存HHP和保护工具柱和管件。一种方法是机械的,其中通过克服偏置机构的力来致动到喷口1613的流动的打开和关闭。结合图3F-2a和图3F-2b中的弹簧1635示出了这一点,其中喉道衬套1631和可滑动轴环1633一起移动以打开向后推力喷口1613。另一种方法是电磁的,其中,通过电磁力拉动轴环(无套筒)抵靠偏置机构(弹簧1635)。结合图3F-3a和图3F-3c示出这一点,下文进行讨论。
并入到图3F-2a和图3F-2b的喷嘴设计中的三个额外部件中的第二个是可滑动轴环1633。通过偏置机构(弹簧)1635偏置轴环1633。该轴环1633的功能是(不论是直接地还是间接地(通过在可滑动套筒1631上施加力))暂时地密封推力喷口1613的流体入口。注意,可滑动轴环1633的该密封功能是“暂时的”;也就是说,除非满足偏置机构1635确定的特定条件。如图3F-2a和图3F-2b中呈现的实施方案中示出的,偏置机构1635是简单的弹簧。
在图3F-2a中,轴环1633处于其关闭位置,而在图3F-2b中轴环1633处于其打开位置。因此,在套筒1631的截面区域上施加的特定差异压力已经克服了弹簧1635的预设压缩力。
并入到图3F-2a和图3F-2b的喷嘴1601设计中的三个额外部件的第三个是套筒1631。可滑动套筒1631具有两个基本功能。第一,套筒1631提供有意且预先限定的突伸到喷嘴喉道1650内的流动路径中。第二,套筒1631在内部系统1500的最高流体速度部分内提供抗侵蚀和抗磨蚀表面。对于这三个功能的第一个,待设计的突伸到可滑动喷嘴喉道衬套1631中的程度是操作员预期在微型横向地层中的什么点处致动推力喷口1613的功能。
为了说明目的,假设系统液压提供通过套管出口“W”点处的喷嘴1601的0.5BPM的适当泵送速率,并且可以以8,000psi的表面泵送压力维持该泵送速率。进一步假设在喷嘴1601实现离主钻井孔50英尺的横向距离处之前,不需要致动喷嘴1601中的推力喷口1613。即,特别地在对套管出口“W”自身进行喷射并且泵送磨蚀混合物(如,1磅瓜胶基淡水胶系统中1.0ppg的100目的砂)时,喷口l613均不打开(这可能存在被喷射流体混合物中的磨蚀剂堵塞的风险)。因此,在确定喷嘴1600已充分清洁套管出口“W”后,喷射流体中不包括磨蚀剂。相应地,当在生产套管12中喷射孔以形成套管出口“W”时,来自通过推力喷口1613驱使的流体的向后喷射力可以对喷射软管1595、造斜器构件1000或生产套管12造成无意损坏的威胁。
之后,在生成套管出口“W”加上如近似50英尺的微型支渠长度后,泵压力增加至9,000psi,表面泵送压力增加的1,000psi增量足以克服偏置机构1635的力,并反作用于衬套1631的突出部的截面区域,以致动喷口1613。因此,在离主钻井孔4有50英尺的微型支渠长度处,致动推力喷口1613,并产生通过喷口1613的高压向后推力流。
假设这些条件足以继续喷射微型支渠直至300英尺的横向长度。在300英尺处,抵靠微型支渠的底搁置的喷射软管的长度引起同量摩擦阻力,使得摩擦阻力与通过推力喷口1613生成的推力处于近似平衡。(仪表装置诸如张力计,例如,将指示这种近似平衡)。这时候,泵送速率增加至如10,000psi,保持致动向后推力喷口1613,但是是以更高的压差和流动速率进行致动的,因此在喷射软管1595上生成了更高的拉力。
图3F-3a和图3F-3c提供了在另一可替代实施方案中喷射喷嘴1602的纵向截面图。此处,再次使用多个向后推力喷口1613和单个向前喷射槽1640。再次使用轴环1633和弹簧1635来提供通过向后推力喷口1613的选定流体流。
图3F-3b和图3F-3d分别示出了图3F-3a和图3F-3c的喷射喷嘴1602的轴向截面图。这些图展示了由多个喷口1613创建的星形喷口图案。星中看见八个点,表示两组四个(可交替)示例性推力喷口1613。在图3F-3a和图3F-3b中,轴环1633处于其闭合位置,而在图3F-3c和图3F-3d中,轴环1633处于其打开位置,允许流体流过喷口1613。已克服了由弹簧1635提供的偏置力。
图3F-3a和图3F-3c的喷嘴1602与图3F-2a和图3F-2b的喷嘴1601类似;然而,在图3F-3a和图3F-3c的布置中,生成抵抗可滑动轴环1633的向下游的磁拉力的、足以克服偏置机构(弹簧)1635的偏置力的电磁力代替了抵抗图3F-2a和图3F-2b的喷射喷嘴1601中可滑动喉道套筒1631的液压力。
图3F-3a和图3F-3c的喷嘴1602呈现了旋转喷嘴1602的又一优选实施方案,还适用于形成套管出口并且持续挖掘穿过水泥护层和主岩石地层。在图3F-3a和图3F-3c(以及图3G-1中,在下文更详细地描述)中,由转子/定子系统生成的电磁力必须克服弹簧1635的力以打开至向后推力喷口1613(和1713)的液压入口。(注意在图3G-1中,描绘了同轴液压喷射轴环,在下文中会进行更全面地讨论,内部涡轮翅片1740到可滑动轴环1733的直接机械连接改变了对不同压力中一个的偏置标准,与图3F-2a中一样)。此处的关键是如下能力:在操作员开始打开至向后推力喷口1613(和1713)的流体入口之前(具体地通过增加泵送速率,使得通过喷嘴的压差和/或喷嘴旋转速度的与对可滑动轴环1633/1733的电磁拉力成比例增长打开到推力喷口1613/1713的流体入口的路径之前),使流体入口保持关闭。
还观察到在喷嘴1602中,向后推力喷口1613(虽然也围绕转子1610的圆周对称地放置)的数量已经从单组五个增加至两组四个。注意这两组中每组内四个喷口1613中的每个也围绕转子1610圆周对称地放置,相对于彼此正交;因此,该两组喷口1613必须重叠。另外,每个喷口的路径现在不仅行进通过喷嘴1602的向后(定子)部分1610,现在还通过喷嘴1602的向前(转子)段1620。然而要注意,如图3F-3b和图3F-3d中描绘的,存在通过喷嘴1602的向后(定子)部分1610的八个单独的喷射通道,而通过喷嘴1600的向前(转子)段1620仅存在四个。因此,喷嘴1602的向前(转子)段1620的旋转每次将仅会提供一组四个喷口1613的对准,以及随后的流体流动通过它们。实际上,对于单次旋转的大部分持续时间,转子1620的流动渠道不具有到定子1610的流动渠道的入口,从而被有效地密封。结果将会是通过向后推力喷口1613的振荡(或“脉冲式”)喷射流动。
经过喷嘴端口1640的喷射流体体积的同量减少也产生用于挖掘的同量脉冲式向前喷射流动。在用于挖掘系统的持续流动上和与其反向的脉冲流动的益处已经经过充分证明,此处将不再赘述。然而要注意,主题喷嘴设计不仅获得了旋转喷射的岩石挖掘的益处,还获得了脉冲喷射的益处。
图3G-1a和图3G-1b中提供了采用电磁力的推力轴环的另一实施方案。图3G-1a呈现了图3的内部系统1500的推力喷射轴环1700的基本主体的轴向截面图。该视图是沿图3G-1b的线D-D’截取的。此处,与喷射喷嘴1602一样,再次提供了两层向后推力喷口1713。
轴环1700具有后定子1710和内(旋转)转子1720。定子1710限定了具有在其中等距地间隔的一系列面朝内的肩状物1715的环形主体,而转子1720限定了具有在其周围等距地间隔的一系列面朝外的肩状物1725的主体。在图3G.1.a的布置中,定子主体1710具有六个面朝内的肩状物1715,而转子主体1720具有四个面朝外的肩状物1725。
沿每个肩状物1715布置有用多个包裹物包裹定子1710的面朝内的肩状物(或“定子极”)1715的小直径的导电线1716。因此根据DC转子/定子系统,通过电线1716的电流的移动会创建电磁力。从图3A的电池1551提供到电线的电力。
图3G-1b是喷嘴1700的纵向截面图。图3G-1c是沿图3G-1b的线d-d’截取推力喷口1713的轴向截面图。
图3G-1a至图3G-1c示出了旋转喷嘴1600、1601和1602的类似理念的实施方案,但其中具有使设备适于用作同轴推力喷射轴环1700的修改。这些喷射轴环1700中的一个或多个可以沿喷射软管的主体策略地“同轴”放置,从而在需要时提供补充拖曳力。特别注意保留了提供轴环喉道1750以及与定子1715和轴承1730耦接的流通转子1725。然而,穿进定子1710的用于向后推力喷口1713的固定流动渠道以两组四个错裂开。对于每次完整旋转,穿进转子1725的单组四个正交喷口中的每个与穿进定子1710的喷口“匹配”四次,每次匹配提供围绕轴环1700的外圆周等距间隔的四支瞬时脉冲流。与旋转喷嘴1602类似,可滑动轴环1733被电磁地移动抵靠偏置机构(弹簧)1735,以致动穿过向后推力喷口1713的流动。
图3G-1c是示出了向后推力喷口1713的星形图案的另一截面图。看见八个点。
存在一独特的机会将轴环1733构造成净电力消耗者或净电力提供者。前者依靠电池组提供的电力,正如喷射喷嘴1600一样,用以启动定子,旋转转子并生成所需的电磁场。后者通过将内部略微有角度的涡轮翅片1740并入转子1720的I.D.内来完成,因此在喷射流体被泵送通过轴环1700时利用喷射流体的液压力。这种力将仅取决于泵送速率和涡轮翅片1740的构造。
一方面,内部涡轮翅片1740围绕轴环喉道1750等距地放置,使得液压力被利用来旋转转子1720并且提供待馈送回内部系统的电路的净剩余电流。这可以通过将过剩电流送回电线1590来实现。将转子/定子构造并入向后推力喷口轴环的构造中能够使全开I.D.等于喷射软管的I.D.。可以获得更多的充足的液力发电功率,以生成操作可滑动端口轴环1733所需的电磁场,一旦内部系统1500从系泊站325脱离,则发生可用的剩余液力发电功率馈送到现在“关闭”的电力系统。因此,这种由轴环1700生成的剩余液力发电功率可以有利地用于维持电池组1550中电池1551的电荷。
可以观察到,上文讨论的各种喷嘴设计1600、1601和1602被设计成不仅喷射穿过岩石基质,还穿过钢质套管和钻井孔4c周围的水泥护层,以便到达岩石。喷嘴设计结合了在与RTJ 1613接合之前先处理通过向前喷嘴喷射端口1640的相对较大粒度的磨蚀剂的能力。可以理解,尽管可以使用其他喷嘴设计完成形成微型支渠的目的,但这种设计并未坚固得能切穿钢。
在上文讨论的各种喷嘴设计1600、1601和1602中,在半球形喷嘴中使用单个向前端口。向前端口1640由角度θMAX(其中,当喷口的最外面的边沿到达相当于喷嘴尖端的向前的点时,喷口的宽度等于喷嘴的宽度)和θSLOT(实际的槽角度)限定。注意θSLOT≤θMAX。此处为了描述目的,θSLOT=θMAX,使得在喷射时即使旋转喷嘴的尖端抵靠主岩石面,该尖端仍然挖掘等于外(最大)喷嘴直径的岩石隧道直径。正是这种单平面旋转槽构造将会提供最大宽度,以便为可能并入喷射流体的任何磨蚀剂提供充足的通过容量。
优选的向后孔口喷射定向为离纵向轴线30°至60°。向后推力喷口1613/1713被设计成围绕喷嘴的/轴环的定子主体1610/1710的圆周对称。这维持了喷射喷嘴1600、1601和1602沿着纵向轴线完全向前的定向。相应地,应该存在围绕圆周等距地间隔的至少三个喷口1613/1713,优选地至少五个等距的喷口1613/1713。
如上所述,在其任一实施方案中的喷嘴均可以部署为引导或地质导向系统的一部分。在该情况下,喷嘴将包括至少一个地理空间芯片,并且将采用至少三条致动器线。该致动器线围绕喷嘴等距地间隔,并从已经设置在喷射软管1595中的电线1590处接收电流或激励。
图3F-1c是在修改实施方案中的图3F-1b的喷射喷嘴1600的纵向截面图。此处,喷射喷嘴1600示出为连接至喷射软管1595。该连接可以是螺纹连接;可替代地,该连接可以通过焊接进行。在图3F-1c中,以1660示出了示意性焊接连接。
在图3F-1c的布置中,喷射喷嘴1600包括地理空间芯片1670。地理空间芯片1670位于IC芯片端口密封件1675内。地理空间芯片1670可以包括两轴或三轴加速计、双轴或三轴陀螺仪、磁强计或它们的组合。本发明不受所使用的地理空间芯片的类型的限制,除非是在权利要求中清楚说明。优选地,芯片1670将会与位于喷嘴主体(诸如结合上文描述的喷嘴实施方案(1600、1601、1602)中所示和所描述的)之上或附近的微机电系统相关联。
图3F-1d是沿线c-c’截取的图3F-1c的喷射软管1590的轴向截面图。在该图中能够看见的是电线1590和致动器线1590A。还能够看见的是可选的光纤数据缆线1591。电线1590、1590A、1591可以用于将地理位置数据从芯片1670传输至电池组段1550中的微处理器,然后无线地传输至位于系泊站(图4D-1b中以325最佳地示出)中的接收器,其中,该接收器与系泊站325中的微处理器通信。优选地,系泊站325中的微处理器对地理位置数据进行处理,并对致动器线1590A中的电流进行调整(使用一个或多个电流调节器),以便确保喷嘴定向成沿预编程的方向液压地钻探横向钻孔。
电池组中的微发射器优选地容置在电池组的下游端盖1530中,同时系泊站325优选地贴附至喷射软管承载件系统400的内部(下文结合图3A、图3B-1和图4D-1进行描述)。容置在系泊站325中的接收器可以与地面1处的微处理器电连接或光连接。例如,光纤光缆107可以沿连续油管运送系统100延伸至地面1,其中,地理位置数据被处理为控制系统的一部分。
通过连续油管运送媒介100内的光纤光缆107和外部系统2000进行的地面仪器到容置在系泊站325内的特定末端接收器(未示出)的硬接线(再次,优选地为光纤)连接同样促进反向(地面至井下的仪器)通信。然后系泊站325内的邻接无线发射器将操作员期望的命令传输至容置在内部系统1500的端盖1530内的无线接收器。该通信系统允许操作员执行设置喷射喷嘴1600的转速和/或轨迹的命令。
当喷嘴1600离开套管时,操作员知道喷嘴1600的位置和定向。通过监测被移动出喷射软管承载件的喷射软管1590的长度,结合定向的任何变化,操作员知道喷嘴1600在储层中的地理位置。
在一种选项中,期望的地理轨迹首先作为地质导向命令从地面1发出,下至连续油管100,然后到达与系泊站325相关联的微处理器。在从地面1(诸如从操作员或地面控制系统处)接收地质导向命令时,微处理器会将信号无线地推送至与电池组段1550相关联的对应的微接收器。该信号又将使一个或多个电流调节器改变顺着直接连接至喷射喷嘴1600的至少三条电线1590中的一条、两条或全部三条向下传导的电流。注意,这些电线连接的至少部分,优选的最靠近喷射喷嘴1600的片段,由致动器线1590A(诸如由Dynalloy,Inc制造的致动器线)构成。这些小直径镍钛电线在被电激励时会收缩。这种折曲或缩短的能力是某些合金的在某些温度下会动态改变其内部结构的特征。致动器线的收缩与普通热膨胀相反,会成百倍的变大,并且为了其小尺寸要施加巨大的力。假设在恒定应力下严密控制温度,可以得到精确的位置控制,即,以微米或更小进行控制。相应地,假设(至少)三条单独的致动器线1590A等距或近似等距地定位在喷射软管的周界周围和主体内(朝向其端部,靠近喷射喷嘴1600),在任何给定电线中电流的少量增加均会使其收缩得比另外两条厉害,从而沿期望的轨迹操纵喷射喷嘴1600。经由喷嘴1600中的地理空间芯片1675给出初始深度和方位,可以预编程并自动执行用于横向钻孔15的确定路径。
相关地,致动器线1590A具有沿腔或护层定位的远端片段,或甚至交织在喷射软管1595的远端片段的基质中。此外,致动器线1590A的远端可以继续部分地进入喷嘴主体,包裹定子极1615以连接至或者甚至形成电磁线圈1616。在图3F-1c中也展示了这一点。这样,从电池组段1550提供了电力来引发转子主体和定子主体之间的相对旋转移动。
从上述讨论可以看出,提供了用于软管喷射组件50的内部系统1500。系统1500使强劲的液压喷嘴(1600、1601、1602)能够以受控(或可操纵)方式喷射地下岩石,从而形成可能延伸到地层中数英尺的微型横向钻孔。与外部系统2000的压力调节阀610和封隔段600(下文讨论)结合的内部系统1500的喷射流体接收漏斗1570、上密封件1580U、喷射软管1595的独特组合提供了一种系统,通过该系统,无论钻井孔4的定向如何,都可以完全由液压装置完成喷射软管1595的前进和缩回。可替代地,通过使用内部牵引机系统700可以添加机械装置,下文进行更全面的描述。
控制上文所列部件不仅可以确定喷射软管1595推进(如,前进或缩回)的方向,还可以控制推进的速率。内部系统1500的前进或缩回速率可以分别直接与流体泄放和/或泵入的速率(和压力)成比例。具体地,“将软管1595泵送至井下”将具有如下顺序:
(1)通过泵送液压流体经过主控制阀310然后经过压力调节阀610来填充喷射软管1595与喷射软管承载件的内导管420之间的微环隙1595.420;然后
(2)使用地面控制器电子地切换主控制阀310,以开始将喷射流体引向内部系统1500;这
(3)引发了相对于内部系统1500指引喷射流体通过引入漏斗1570进入喷射软管1595并且到“井下”的液压力;这种力被下述抵抗
(4)压缩微环隙1595.420中的液压流体;该液压流体
(5)根据期望,从压力调节阀610的地面控制器中进行泄放,从而调节将内部系统1500降入“井下”的速率。
类似地,可以通过下述方式将内部系统1500泵送回“井上”,即,通过指引泵送液压流体(首先)通过主控制阀310,(然后)通过压力调节阀610,从而迫使不断增加(膨胀)的液压流体体积进入喷射软管1595和喷射软管导管420之间的微环隙1595.420,这向上推动喷射软管密封组件1580的底部密封件1580L,从而将内部系统1500驱动回“井上”。通过液压装置进行的内部系统1500的推进的方向和速率可以被经由内部牵引机系统700的机械装置进行的内部系统1500的推进来增加或替换,如下文所描述的。
有利地,一旦喷射软管组件50部署于具有任何倾斜度(包括水平或近似水平)的主钻井孔4内的套管出口“W”的期望点附近的井下位置,就可以不借助重力部署和取回喷射软管1595的整个长度。这是因为用于部署和取回喷射软管1595以及在此过程中维持其适当对准的推进力是液压的或机械的,如下文更全面描述的。还要注意,对于克服来自由任何非竖向对准引起的内部系统1500(包括,具体地,喷射软管1595)在外部系统2000(包括,具体地,喷射软管承载件420)内移动的任何摩擦力,以及使软管1595在外部系统2000内沿软管长度维持在基本教示的状态方面,这些推进液压和机械力的可用量非常充足。因此,这些液压和机械推进力完全克服了“无法推动绳”的限制。
在喷射流体被泵送的任何时候都将会观察到用以使喷射软管1595前进到外部系统2000内和随后退出外部系统的液压力;具体地,在与喷射软管1595的纵向轴线平行的平面中沿上游到下游方向的力,因为液压力相对于电池组1520的上游端盖、流体引入漏斗1570、喷射喷嘴1600的内面(如任何内部系统1500表面)被施加,该表面:(a)暴露于喷射流体的流;以及(b)具有与主钻井孔的纵向轴线不平行的定向分量。由于这些表面刚性地附接至喷射软管1595自身,因此无论何时喷射流体从地面1沿着连续油管运送媒介100(图2中所看到的)向下并且通过主控制阀300内的喷射流体通道345(下文结合图4C-1进行描述)被泵送,这种从上游至下游的力都被直接传送至喷射软管1595。注意,该系统中唯一的另一个阀,即,刚好位于封隔段600的封装密封组件650的上游的压力调节阀610(如结合图4E-1和图4E-2所看到和所描述的)的功能就是以与操作员期望降下内部系统1500的速率相当的速率简单地释放来自喷射软管1595/喷射软管导管420环隙1595.420(图3D-1a和图4D-2中看到的)内的压缩液压流体的压力。
相反地,不论何时从地面1沿着连续油管运送媒介100向下泵送液压流体并通过主控制阀300内的液压流体通道345,在沿着下游到上游方向推进内部系统1500时,液压力都是可操作的。在这种构造中,压力调节阀610允许操作员以与操作员期望上升内部系统1500的速率相当的方式将注射流体引入喷射软管1595/喷射软管导管420环隙1595.420。因此,液压力可用于帮助运送和取回喷射软管1595。
类似地,由内部牵引机系统700施加的机械力帮助运送、取回喷射软管1595并保持喷射软管的对准。喷射软管1595的O.D.和喷射软管承载系统400的喷射软管导管420的I.D.之间的紧公差(因此限定了环隙1595.420)用于提供限制的轴向力,该限制的轴向力帮助维持软管1595的对准,使得软管1595的位于喷射软管承载系统400内的部分永远不会经历显著的弯曲力。用于喷射软管1595的部署和取回的直接机械(张)力通过内部牵引机系统700的专门设计的夹具组件750的夹具756与喷射软管1595的直接摩擦附接来施加,下文结合图4F-1和图4F-2讨论。
如上所述,源自喷射喷嘴1601、1602自身的向后推力喷口1613的液压力也帮助运送喷射软管,并且,如果包括任何附加的喷射轴环1700的话,源自喷射轴环的向后推力喷口1713的液压力也帮助运送喷射软管。这些在最下游的液压力用于在形成UDP15(图1B)的同时将喷射软管1595向前推入产区3,维持向前瞄准的喷射流体最接近挖掘中的岩石面。将液压能量部署成向前靠近喷嘴(用于挖掘新的孔)与部署成向后(用于推进)之间的平衡需要平衡。如果向后推进太多,则没有足够的剩余液压马力集中于向前挖掘新的孔。如果向前推进太多,那么剩余的用于沿着微型支渠拖曳喷射软管的马力就不足。因此,如此处描述的原位重新指引向后或向前集中的液压马力通过喷嘴的能力是重要的改善。
出于描述目的,此处包括向后推力喷口1613/1713的两种构造:一种构造使流发生脉动,其中八个向后推力喷口(每个从纵向轴线倾斜30°并且围绕圆周等距离间隔)被分组成两组四个,两组之间具有向后流动的交替(或“脉动”);一种构造用于连续流动,其中示出了单组五个喷口,每个从纵向轴线倾斜30°并且围绕圆周等距离间隔。然而,可以采用其他喷口数量和角度。
图3的一系列图和讨论那些附图的前述段落针对的是用于液压喷射组件50的内部系统1500。所述内部系统1500提供一种新颖系统,该新颖系统用于在单次起下钻中将喷射软管1595运送入和运送出主钻井孔4,便于随后可操纵地形成多个微型横向钻井孔15。喷射软管1595可以短至10英尺,或长至300英尺或甚至500英尺,这取决于地层的厚度、压缩强度或者微型横向钻井孔的期望的地理轨迹。
如所述,液压喷射组件50还提供外部系统2000,该外部系统经过独特的设计,用于运送、部署和取回之前所述的内部系统1500。外部系统2000能够在常规连续油管100上运送;但是更优选地,外部系统部署在“捆扎”连续油管产品(图3D-1a、图4A-1和图4A-1a)上,提供实时功率和数据传输。
与本文引用的相关和共有专利文件一致,外部系统2000包括喷射软管造斜器构件1000,该喷射软管造斜器构件包括具有曲面1050.1的造斜器1050,该曲面优选地形成喷射软管1595跨过生产套管12的整个I.D.的弯曲半径。外部系统2000还可以包括由促进完井的泥浆电动机1300、(外部)连续油管牵引机1350、测井工具1400和/或封隔器或桥塞(优选地,可取回式)构成的常规工具组件。此外,外部系统2000自始至终提供功率和数据传输,使得可以对井下组件50进行实时控制。
图4是图2的井下液压喷射组件50的外部系统2000在一个实施方案中的纵向截面视图。外部系统2000示出位于生产套管12柱内。为了清晰起见,图4将外部系统2000呈现成“空的”;即,没有容纳关于图3系列附图所描述的内部系统1500的部件。例如,没有示出喷射软管1595。然而,要理解在钻孔作业开始之前,在伸入和拉出期间,喷射软管1595大部分包含在外部系统中。
在呈现外部系统2000的部件时,假设将系统2000伸入具有标准4.50”O.D.以及大约4.0”I.D.的生产套管12中。在一个实施方案中,外部系统2000具有2.655”最大外径限制,并且优选的2.500”的最大外径。该O.D.限制提供等于或大于7.0309in2的向流开放的环形(即,系统2000的O.D.和周围的生产套管12的I.D.之间)区域,这相当于9.2#、3.5”的压裂(油管)柱。
外部系统2000被构造成允许操作员沿着连续油管运送媒介100(附接有设备)和周围的生产套管12之间的环隙可选地向下“压裂”。在外部系统2000的O.D.和生产套管12的I.D.之间保留基本上环形的区域,允许操作员在喷射出期望数量的横向钻孔之后立即沿着主题环隙向下泵送压裂(或其他处理)流体,而不需要将附接有设备2000的连续油管100起出主钻井孔4。因此,可以仅在组件50出入主钻井孔4的一次起下钻中进行多次增产处理。当然,操作员可以为每次压裂作业选择钻井孔停机,在这种情况下操作员将会利用标准(机械)桥塞、压裂塞和/或活动套筒。然而,这将对时间的要求显著更高(伴随同量的花费),并造成基于连续油管的运送媒介100的更大磨蚀和疲劳。
实际上,严格遵守(O.D.)限制可能仅对于可能占系统50的长度的超过90%的连续油管运送媒介100是基本的。在外部系统2000的其他部件的相对微小长度上略微违反O.D.限制应该不会造成导致被禁止的显著环形液压压力下降。如果可以满足这些外径限制,同时保持足够的内径以适应每个部件(特别是外部系统2000的部件)的设计功能,并且对于在更小的4.5”O.D的标准油田生产套管4中运行的系统50可以实现这一点,那么使系统50适应于到任何较大标准油田生产套管尺寸(5.5”、7.0”等)应该不存在明显障碍。
下文呈现的外部系统2000的主要部件中的每个均将沿着上游到下游的方向。注意图4中外部系统2000的主要部件的划分,其中此处对应的图:
a.连续油管运送媒介100,图4A-1和图4A-2中示出;
b.第一交叉连接件(连续油管过渡件)200,图4B-1中示出;
c.主控制阀300,图4C.1中示出;
d.喷射软管承载系统400及其系泊站325,图4D-1和图4D-2中示出;
e.第二交叉连接件500(将外主体从圆形过渡为星形)和喷射软管封隔段600,图4E-1和图4E-2中示出;
f.外部牵引机系统700和第三交叉连接件800,图4F-1和图4F-2中示出;
g.第三交叉连接件800和上转环900,图4G-1示出;
h.造斜器构件1000,图4H-1示出;
i.下转环1100,图4I-1中示出;以及最后
j.连接至连续油管泥浆电动机1300和常规连续油管牵引机1350、耦接至常规测井探头1400的过渡连接件1200,图4J中示出。
图4A-1是“捆扎”连续油管运送媒介100的纵向截面图。运送媒介100用作图2的井下液压喷射组件50的运送系统。运送媒介100示出为位于主钻井孔4的生产套管12内,并且延伸穿过柱脚跟部4b并进入水平支柱4c。
图4A-1a是图4A-1的连续油管运送媒介100的轴向截面图。可以看到运送媒介100包括芯105。在一方面,连续油管芯105由具有116,700lbm的最小场强度和19,000psi的内部最小屈服压力的标准2.000”O.D.(105.2)和1.620”I.D.(105.1),3.68 1bm/ft.HSt110连续油管柱构成。该标准大小的连续油管提供向流开放的2.06in2的内截面区域。如所示,该“捆扎”产品100包括直径最高达0.20”的三个电线端口106,其可以容纳AWG#5规格的标准线和直径最高达0.10”的2个数据缆线端口107。
连续油管运送媒介100还具有最外面的或“包裹”层110。在一方面,外层110具有2.500”的外径,以及2.000”的内径,该内径与核心连续油管柱105的O.D.105.2接合并恰好与之相等。
图4A-1和图4A-1a中呈现的轴向和纵向截面均假设同中心地捆扎产品100,而在实际中,偏心捆扎可能是优选的。偏心捆扎对电线106和数据缆线107提供更多的包裹层保护。图4A-2包括偏心捆扎的连续油管运送媒介101的这种描绘。幸运地,偏心捆扎在设定为用于润滑进出主钻井孔的封装橡胶或井口装置注射部件的大小方面没有实际分歧,因为偏心运送媒介101的外包裹层110的O.D.105.2和环状保持不受影响。
运送媒介101可以具有例如2.0612in2的内部流动区域,0.190in2的芯壁105厚度,以及0.25in2平均外壁厚度。外壁110可以具有0.10in2的最小厚度。
注意,不论同心100还是偏心101地捆扎,运送媒介的主要设计标准都是当在钻井孔4中部署、操作和取回设备50时向位于地面1的操作员提供实时电力(经由电线106)和数据(经由数据缆线107)传输能力。例如,在标准的电线圈系统中,部件106和107将伸入连续油管核心105内,从而将它们暴露于经由芯105的I.D.105.1泵送的任何流体。考虑到主题方法提供泵送高压喷射流体内的磨蚀剂(特别地,同时从生产套管12内侵蚀出套管出口“W”),优选的是替代地使部件106和107位于芯105的O.D.105.2处。
类似地,主题方法提供沿着连续油管运送媒介100(或101)与生产套管12之间的环隙向下泵送高压液力压裂流体内的支撑剂。因此,保护性连续油管包裹层110优选地具有足够的厚度、强度、防侵蚀性,以在压裂操作期间隔离和保护部件106和107。
本运送媒介100(或101)还维持芯壁105的足够大内径105.1,以避免在泵送喷射和/或液压流体时的明显摩擦损失(与内部系统1500和外部系统2000引起的损失相比)。同时,系统维持足够小的外径110.2,以避免在沿着连续油管运送媒介100(或101)与生产套管12之间的环隙向下泵送液力压裂流体时过大的压力损失。此外,系统50维持外包裹层110足够的壁厚,不论其是围绕内连续油管核心105同心还是偏心包裹的,以便为电传输线105和数据传输线107提供充分的绝缘保护和间隔。要理解其他尺寸和其他管状主体可以用作外部系统2000的运送媒介。
沿着外部系统2000向下进一步移动,图4B-1呈现了第一交叉连接件即连续油管交叉连接件200的纵向截面图,图4B-1a示出了连续油管交叉连接件200的一部分的立体图。具体地,示出了线E-E’和线F-F’之间的过渡。在这种布置中,外轮廓从圆形过渡为椭圆形以绕开主控制阀300。
该交叉连接件200的主要功能如下:
(1)将连续油管运送媒介100(或101)连接至喷射组件50,并且具体地,连接至主控制阀300。在图4B-1中,该连接通过在连接点210处连接至主控制阀的外壁290的钢质连续油管芯105描绘。
(2)将电线106和数据缆线107从连续油管运送媒介100(或101)的芯105的外部过渡到主控制阀300的内部。这通过促使电线/数据缆线106/107在外壁290中的过渡的接线端口220完成。
(3)提供轻松访问的点,诸如螺纹和成对的轴环235和250,用于电线106和数据缆线107的拼接/连接。
以及
(4)通过压力和流体保护导管即配线腔室230提供电线106和数据缆线107的单独无交叉且无干扰的路径。
外部系统2000中的下一个部件是主控制阀300。图4C-1提供了主控制阀300的纵向截面图。图4C-1a提供了沿图4C-1的线G-G’截取的主控制阀300的轴向截面图。将结合图4C-1和图4C-1a一起讨论主控制阀300。
主控制阀300的功能是接收从连续油管100内泵送的高压流体,并且选择性地将它们指引到内部系统1500或外部系统2000。操作员通过电线106和/或数据缆线端口107将控制信号发送至主控制阀300。
主控制阀300包括两个流体通道。这些通道包括液压流体通道340和喷射流体通道345。图4C-1、图4C-1a和图4C-1b(分别为纵向截面图、轴向截面图和立体图)中可以看见密封通道盖320。密封通道盖320装配成形成针对液压流体通道340和喷射流体通道345两者的引入口的液密密封件。相关地,图4C-1b呈现了通道盖320的三维描绘。该视图示出了如何将盖320的成形为有助于最小化摩擦和侵蚀效应。
主控制阀300还包括盖枢轴350。通道盖320随着通道盖枢轴350的旋转而旋转。盖枢轴350由通道盖枢轴电动机360驱动。密封通道盖320被通道盖枢轴350定位(如,被通道盖枢轴电动机360驱动)成:(1)密封液压流体通道340,从而将所有的流体流从连续油管100引入喷射流体通道345,或者(2)密封喷射流体通道345,从而将所有的流体流从连续油管100引入液压流体通道340中。
主控制阀300还包括配线导管310。配线导管310携载电线106和数据缆线107。配线导管310的形状可选地在连续油管过渡连接件200的接收点处设置成椭圆形,并且逐渐过渡成在将电线106和数据缆线107放入喷射软管承载系统400的点处的弯曲矩形形状。有益地,该弯曲矩形形状用于将喷射软管导管420放置在喷射软管承载系统400的整个长度上。
外部系统2000的下一个部件是喷射软管承载系统400。图4D-1是喷射软管承载系统400的纵向截面图。喷射软管承载系统400附接在主控制阀300的下游。喷射软管承载系统400是大致长形的管状体,容置系泊站325、内部系统的电池组段1550、喷射流体接收漏斗1570、密封组件1580和连接的喷射软管1595。在图4D-1的视图中,仅能看到系泊站325,使得更加清晰地看到喷射软管承载系统400自身的轮廓。
图4D-1a是沿图4D-1的线H-H’截取的图4D.1的喷射软管承载系统400的轴向截面图。图4D-1b是图4D-1的喷射软管承载系统400的一部分的放大视图。此处,能够看到系泊站325。将参照图4D-1、图4D-1a和图4D-1b中的每个一起讨论喷射软管承载系统400。
喷射软管承载系统400限定一对管状主体。第一管状主体是喷射软管导管420。喷射软管导管420容置、保护并稳定内部系统1500(并特别地,喷射软管1595)。如之前在内部系统1500的讨论中呈现的,是该液密和压力密封的导管420的大小(具体地,I.D.)、强度和刚度提供了通道且特别地为微环隙(图3D-1a、图4D-2和图4D-2a中以1595.420示出),以供内部系统1500的喷射软管1595在生产套管12内运行时沿外部系统2000的纵向轴线“向下泵送”以及反向地“向上泵送”。
喷射软管承载段400还具有外导管490。外导管490沿内导管420布置并外接内导管。在一方面,外导管490和喷射软管导管420分别就是同心的2.500”O.D.和1.500”O.D.HSt100连续油管柱。内导管或喷射软管导管420被密封至主控制阀300的喷射流体通道345,并且与该喷射流体通道相接。当阀300将高压喷射流体引入喷射流体通道345时,流体直接且仅流入喷射软管导管420,然后流入喷射软管1595。
内(喷射软管)导管420和周围的外导管490之间存在环形区域440。环形区域440也是液密的,直接密封至控制阀300的液压流体通道340,并且与该液压流体通道相接。当主控制阀300将高压喷射流体引入液力流体通道340时,流体直接流入导管承载环隙440。
喷射软管承载段400还包括配线腔室430。配线腔室430具有向上弯曲的矩形形状的轴向截面,并且从主控制阀300的线导管310处接收电线106和数据缆线107。液密腔室430不仅在喷射软管承载段400的整个长度上分隔、绝缘、容置和保护电线106和数据缆线107,而且其托架形状用于支撑和稳定喷射软管导管420。注意,喷射软管承载段400配线腔室430和内(喷射软管)导管420可以附接至或不附接至彼此和/或至外导管490。
除了容置和保护电线106和数据传输缆线107,喷射软管承载系统400内的配线导管430还在略高于将外导管490分成两部分的水平轴线的位置处支撑喷射软管导管420的水平轴线。考虑到其设计限制的严格性显著小于基于CT的运送媒介的外层的那些限制,特别是在耐化学性和防磨蚀方面,因此可以在其构造中使用不同类型的材料,因为配线导管430的外部将仅暴露于液压流体——从不暴露于喷射或压裂流体。
如果期望将配线导管430刚性地附接至喷射软管导管420或者外导管490或者其二者,则可以对配线导管提出额外的设计标准。在一方面,配线导管430具有大约1.34”的宽度,并且提供用于电线的三个0.20”直径的圆形渠道,以及用于数据传输缆线的两个0.10”直径的圆形渠道。要理解的是,取决于设计目的,配线导管430的其他直径和构造可以变化,只要保留向液压流体的流动开放的环形区域440。
还能在图4D-1中看到系泊站325。系泊站325就位于主控制阀300和喷射软管承载系统400之间的连接件的下游。系泊站325刚性地附接在喷射软管导管420的内部中。系泊站325通过对角支撑件被支撑在喷射软管导管420中。对角支撑件是中空的,其内部用作将电线106和数据缆线107引入系泊站325的通信/控制/电子系统的液密和压力密闭的导管。这类似于内部系统1500的电池组支撑导管1560的功能。不论是连接至伺服设备、发射器、接收器还是连接至容置在系泊站325内的其他设备,这些设备都因此经由电线106和数据缆线107“硬接线”至地面1处的操作员的控制系统(未示出)。
图4D-2提供外部系统2000的喷射软管承载系统400的一部分的放大纵向截面图,描绘了其操作性地容纳喷射软管1595的同量长度。图4D-2a提供沿线H-H’截取的图4D-2的喷射软管承载系统400的轴向截面图。注意,除了图4D-1a中的导管420是“空的”以表示未示出喷射软管1595以外,图4D-2a的截面图与图4D-1a的截面图相似。
喷射软管导管420的长度是相当长的,并且应该大约等于喷射软管1595的期望长度,从而限定与钻井孔4正交的喷射喷嘴1600的最大可达距离,以及微型支渠15的对应长度。内径规格限定喷射软管1595和周围的喷射软管导管420之间的微环隙1595.420的大小。其I.D.应该足够接近于喷射软管1595的O.D.,以阻止喷射软管1595变得弯曲或扭结,但又必须足够大,以便为坚固的密封件1580L组提供充足的环形区域,通过该环形区域,可以将液压流体泵入密封的微环隙1595.420,以帮助控制部署喷射软管1595的速率,或者帮助取回软管。
密封微环隙1595.420内的液压力使喷射软管的(位于内部牵引机系统700上方的)片段保持笔直并且略微绷紧。同样地,喷射软管导管420的I.D.不能太过于接近喷射软管1595的O.D.,以防止两者之间不必要的高摩擦力。喷射软管导管420的O.D.(加上外导管490的I.D.,减去喷射软管承载件的配线腔室430的外部尺寸)限定环形区域440,液压流体被泵送通过该环形区域。当然,如果喷射软管承载系统的内导管420O.D.太大,其因此在泵送液压流体时引起过度的摩擦损失。然而,如果不够大,那么内导管420将不具有足够的壁厚来支撑所需的内或外操作压力。注意,对于被设计成部署在4.5”钻井套管中的主题设备,内柱包括1.5”O.D.和1.25”I.D.(即,0.125”壁厚)的连续油管。例如如果其是1.84#/ft,HSt110,那么其将提供16,700psi的内部最小屈服压力等级。类似地,外导管490可以由标准连续油管构造。在一方面,外导管490包括2.50”O.D.和2.10”I.D.,从而提供0.20”的壁厚。
再次从井上行进到井下,外部系统2000接连包括第二交叉连接件500,过渡至喷射软管封隔段600。图4E-1提供了交叉连接件(或过渡件)500和喷射软管封隔段600的长形截面图。图4E-1a是突出从圆形过渡成星形的过渡件500的外主体形状的放大立体图。轴向截面线I-I’和J-J’示出了过渡件500的轮廓,在其开始处适合地匹配喷射软管承载系统400的外壁490的尺寸并且在其端部适合地匹配封隔段600的外壁690的尺寸。
图4E-2示出了图4E-1的喷射软管封隔段600且特别是密封组件650的放大部分。将参照这些视图中的每个一起讨论过渡件500和喷射软管封隔段600。
顾名思义,喷射软管封隔段600的主要功能是“封装”或者密封喷射软管1595和周围内导管620之间的环形空间。喷射软管封隔段600是外部系统2000的固定部件。通过过渡件500并且部分地通过封隔段600的是微环隙1595.420的直接延伸部。该延伸部抵靠构成封装密封组件650的密封杯的内面终止在喷射软管1595的压力/流体密封件处。就在该终点之前的是压力调节阀的位置,压力调节阀在图4E-1和图4E-2中以部件610示意性地示出。用于使环隙1595.420连通或将该环隙与流经整个外部系统2000的液压流体隔离的是该阀610。液压流体从连续油管运送媒介100的内径中(具体地,从连续油管芯105的I.D.105.1中)流出,并且前进通过连续的液压流体通道240、340、440、540、640、740、840、940、1040和1140,然后通过过渡连接件1200到达连续油管泥浆电动机1300,最终终止在牵引机1350处。(或者,终止在一些其他常规的井下应用的操作处诸如液压设置的可取回桥塞或封隔器处)。
值得注意的是从喷射软管承载系统400到封隔段600的交叉连接件500,若干原因如下:
第一,在过渡件500内,来自喷射软管承载段400的导管承载环隙440的液压流体的自由流动将会在星形外导管690的上(三角形)四分之一内被重新定向并且重新划分。压力调节阀610朝向内导管620的上游端部。压力调节阀610在喷射软管1595和周围的喷射软管导管420之间的微环隙1595.420中提供增加或减少的液压流体(以及同量地,液压压力)。该阀610的操作提供内部系统1500(并且具体地,喷射软管1595)沿生产套管12的纵向轴线“向下泵送”然后反向地“向上泵送”。
沿着喷射软管承载件主体400的长度分隔、绝缘、容置和保护电线106和数据缆线107的向上弯曲的矩形液密腔430经由配线腔室530过渡进入封隔段600的星形外主体690的下(三角形)四分之一630。这保持在喷射软管封隔段600中分隔、绝缘、容置和保护电线106和数据缆线107。星形外主体690在自身和周围的生产套管12的I.D.之间形成环隙。
考虑到四尖头星形外导管690的尖头尖端到相对尖头尖端的距离仅略微小于生产套管12的I.D.,封隔段600也用于使喷射软管1595近似居中位于主钻井孔生产套管12中。如之后将会解释的,这种近似居中将平移通过内牵引机系统700,以有益地使造斜器构件1000的上游端居中。
回想喷射软管1595的上游端的外径通过形成单个密封组件1580的喷射软管上密封件1580U和下密封件1580L相对于喷射软管承载系统400的内导管420的内径液压地密封。在形状上贴附至喷射软管1595的密封件1580U和1580L沿着内导管420上下行进。类似地,喷射软管1595的下游端的外径通过封隔段600的密封组件650相对于封隔段600的内导管620的内径液压地密封。因此,当内部系统1500被“插接”时(即,当上游电池组端盖1520与外部系统的系泊站325接触)时,那么两个密封组件1580、620之间的距离近似为喷射软管1595的全长。相反地,当喷射软管1595和喷射喷嘴1600已经完全延伸进入通过喷射组件50可达到的最大长度横向钻孔(或UDP)15时,那么这两个密封组件1580、620之间的距离可以忽略不计。这是因为,虽然内部系统的喷射软管密封组件1580基本上经过了外部系统2000的喷射软管承载系统400的整个长度,但是(外部系统2000中封隔段600的)密封组件650相对固定,因为包括密封组件650的密封杯必须位于相对的密封杯止动件615之间。
还要注意包括密封组件650的两组相对密封杯(如,面向上游的上游组与面向下游的下游组背对背地放置)的对准如何提供针对来自上游方向或下游方向的压差的压力/流体密封件。在图4E-2的放大视图中,这些包括密封组件650的相对的密封杯组示出为具有同心地经过它们的喷射软管1595的纵向截面。
如所述,由压力调节阀610在微环隙1595.420中维持的压力提供“沿着孔向下泵送软管”或者反向地“沿着孔向上泵送软管”的液压动作。这些环形液压力还用于减轻可能施加在喷射软管1595上的其他可能有害的力,诸如当向下游推动软管1595时的弯曲力,或者在喷射时的内部爆发力。因此,与上软管密封组件1580和喷射软管导管420组合,喷射软管封隔段600用于将喷射软管1595维持在基本拉紧的状态。因此,可以利用的软管1595的直径将仅受到由钻井孔的生产套管12的I.D.施加的弯曲半径限制和软管1595的同量压力等级的限制。同时,可以利用的软管1595的长度当然最好是达到数百英尺。
注意,软管1595长度最可能的限制不会是外部系统2000施加的任何事物,而是能够分配至向后推力喷口1613/1713的液压马力,使得足够的马力可以保持向前集中以用于挖掘岩石。正如人们所预料的,可以喷射出的微型支渠的长度(和同量体积)最后与地下地层中的岩石强度相关。该长度限制与美国专利号6,915,853(Bakke等人)中所提出的尝试将设备自身内的整个喷射软管以连续状态运送到井下的系统很不一样。即,在Bakke等人的专利中,软管以水平堆叠、容装在装置的内部内的360°卷绕件存储和运输。在这种情况下,弯曲半径/压力软管限制不是由(除了其他限制以外)套管的I.D.施加的,而是由装置自身的I.D.施加的。这导致显著较小的软管I.D./O.D.,并因此造成在几何结构上可向Bakke的喷射喷嘴输送的马力较少。
在操作中,在已经形成UDP15并且将主控制阀300置为关闭液压喷射流体到内部系统1500的流动并然后提供液压流体到外部系统2000的流动之后,压力调节阀610可以沿相反的方向将流馈送入微环隙1595.420。这种下游到上游的力将组件“泵送”回入钻井孔4中和“井上”,因为密封组件1580的底部面向下的杯1580L将流(和压力)抑制在杯的下方。
外部系统2000内的下一个部件(再次,从井上前进到井下)是可选的内部牵引机系统700。图4F-1提供了在喷射软管封隔段600的下游的牵引机系统700的长形截面图。图4F-2示出了图4F-1的牵引机系统700的放大部分。图4F-2a是沿图4F-1和图4F-2的线K-K’截取的内部牵引机系统700的轴向截面图。最后,图4F-2b是图4F-2a的内部牵引机系统700的一部分的放大半视图。将参照这四个幅图中的每个一起讨论内部牵引机系统700。
首先可以看出已知有两种类型的牵引机系统。它们是轮式牵引机系统和所谓的蠕动式牵引机系统。这些牵引机系统全部都是“外部”系统,即,它们具有被设计成接合周围套管的内壁(或者,如果在裸井中,接合钻井孔壁)的夹具。牵引机系统在油气行业中主要用于沿着水平(或大斜度)钻井孔向井上或井下使测井电缆或连续油管柱(和所连接的井下工具)前进。
在本组件50中,已经开发了采用“内部”夹具的独特的牵引机系统。这意味着夹具组件750是向内对准的,以便于使喷射软管1595相对于外部系统2000前进或缩回。这种反转的结果是连续油管柱100和所附接的外部系统2000现在可以是固定的,而有些柔性的软管1595在钻井孔4c中平移。常规(“外部”)牵引机的向外对准的电力驱动轮被指向内的凹形夹具756代替。结果是指向内的凹形夹具756摩擦地附接至喷射软管1595,其中夹具756的随后旋转沿与旋转的方向对应的方向推进喷射软管1595。
具体地注意这种反转的下述结果:在常规系统中,发生的相对移动是刚性夹具附接主体(即,连续油管)相对于固定的摩擦附接的主体(即,钻井孔壁)的相对移动。相反地,主题内部牵引机系统刚性地附接至固定主体(即,外部系统2000)并且夹具756旋转以移动喷射软管1595。因此,当内部牵引机系统700被致动时,造斜器构件1000将已经处于其设置和操作位置中;如,造斜器构件1000的滑动件将与套管12的内壁接合。因此,当外部系统2000自身固定并且在生产套管12内静止时,会发生牵引机系统700进行的喷射软管1595所有的前进/缩回。
其次可以看出,内部牵引机系统700优选地维持喷射软管封装系统600的星型轮廓。内部牵引机系统700的星形轮廓及其四个点帮助使牵引机系统700在生产套管12内居中。这是有益的,因为当操作牵引机系统700时,将会接合造斜器构件1000(定位成相对靠近牵引机系统700,因为它们之间第三交叉连接件(或过渡件)800和上转环900的长度短,下文讨论)的滑动件,意味着牵引机系统700的居中用于对准喷射软管1595的路径,并且阻止在与喷射软管造斜装置1000的连接处的任何不当扭矩。在图4F-1和图4F-2a中可以看出,喷射软管1595的位置大致在牵引机系统700并因此在生产套管12二者内居中。这将软管1595放置在馈送入喷射软管造斜装置1000或者从喷射软管造斜装置中缩回的最佳位置。
除了使软管1595居中,牵引机系统700的星形轮廓提供的另一功能是其提供内部空间以用于放置两组相对的夹具组件750。具体地,夹具组件750位于两个侧腔室的“干”工作室内,同时提供用于电线106和数据缆线107(在下腔730中示出)以及液压流体(上腔740中)的单独腔室。同时,在牵引机系统700与生产套管12的I.D.之间在它们相应的环形区域700.12内保留了足够的截面流动区域,用于传导压裂流体。
如示出的,在4.5”生产套管12内,向流开放的环形面积700.12大约为10.74in2,等于3.69in的同等管直径(I.D.)。回想设计目的是将环形流动面积保持为大于或等于典型3.5”O.D.(2.922”I.D.,10.2#/ft.)压裂柱的内部面积,即6.706in2。然后注意,如果“星”的相对尖头的尖端到尖端尺寸是例如3.95in,并且(为了在牵引机系统700的四个腔室内获得额外的内部体积)星形被变成完美正方形,那么正方形的外部面积将是7.801in2,并且4.00”I.D.生产套管中的剩余环形面积(向压裂流体的流开放)将是4.765in2,相当于2.463”的管I.D.。因此,虽然星形内每个三角形腔的基部可以在一定程度上延伸,以提供额外的内部体积或壁厚,但外周缘可以不是完全方形的并且仍然满足优选的3.5”压裂柱标准。然而注意,没有理由使每个腔室的三角形尺寸必须保持对称;如,尺寸可以单独变化,以适应每个腔室的内部体积要求,只要仍然优选地满足3.5”压裂柱要求。
夹具组件750中的每个均包括微型电动机754和将电动机754固定至外壁790的电动机座架755。此外,夹具组件750中的每个均包括一对轴。这些表示夹具轴751和夹具电动机轴753。最后,夹具组件750中的每个均包括夹具齿轮752。
牵引机系统700还包括轴承系统760。沿着内壁720的长度放置轴承系统760。轴系统760隔离在夹具756的接触点处作用于喷射软管1595的摩擦力,并且消除作用于内壁720的不需要的摩擦力。
夹具756的向后旋转用以使软管1595前进,而夹具756的向前旋转用于取回软管1595。由夹具756提供的推进力通过将喷射软管1595拉动穿过喷射软管承载系统400、过渡件500和封隔段600来帮助喷射软管前进,并且通过将喷射软管1595推入横向钻孔15自身中来帮助喷射软管前进。
图4F-1的示图仅描绘了两组相对的夹具组件750。然而,取决于压缩、扭转和马力限制,可以增加夹具组件750以容纳几乎任何长度和构造的喷射软管1595。附加的夹具组件750应该增加牵引力,对于延长长度的横向钻孔15来说这可能是期望的。虽然推测当成对的夹具组件750被放置成在同一平面中彼此轴向相对(如图4F-2.a中所示)时,将会获得最大夹持力,即,最大化对喷射软管1595的“夹紧”力,但是夹具系统750的其他布置/放置也在发明的本方面的范围内。
可选地,内部牵引机系统700还包括张力计。该张力计用于提供对软管1595的上游段的拉紧张力和软管1595的下游段上的推动压缩力的实时测量。类似地,可以包括下述机构,该机构使每组夹具756的压缩力单独施加在喷射软管1595上,以便补偿夹具756的不均匀磨损。
再次进行外部系统2000的从上游到下游的主部件的描述,图4G-1示出了内部牵引机到上转环的(或第三)交叉连接件800和上转环900自身的纵向截面图。图4G-1a描绘了交叉连接件800在分别由线L-L’和M-M’表示的其上游端和下游端之间的立体图。图4G-1b呈现了沿着线N-N’的上转环900内的轴向截面图。结合图4G-1和图4G-1a一起讨论第三过渡件800和上转环900。
过渡件800的功能类似于本文讨论的外部系统2000的之前的过渡段(200,500)。例如,过渡件800包括内壁820和周围的外壁890,并且在内壁和外壁之间限定液压流体通道840。一言以蔽之,过渡件800的主要功能就是将星形内部牵引机系统700的轴向轮廓转换回用于转环900的同心圆形轮廓,并且在满足3.5”压裂柱测试的I.D.限制内进行这种转换。
上转环900同时完成三个重要功能:
(1)第一,其允许转位机构(indexing mechanism,分度机构)在不扭转系统50的任何上游部件的情况下使所连接的造斜器构件1000旋转。
(2)第二,其提供造斜器1000的旋转,同时又维持电线106和数据缆线107通过过渡件800和造斜器构件1000之间的配线腔室930的直线路径;同时还提供
(3)第三,其提供适应造斜器构件1000的旋转同时又维持过渡件800和造斜器构件1000之间连续的液压流动路径的马蹄形液压流体腔室940。
同时满足上述设计标准需要的是两组轴承960(内轴承)和965(外轴承)。在一方面,上转环900具有2.6in的O.D.。
上转环900的外壁990维持由过渡件800的外壁890实现的圆形轮廓。类似地,在上转环900的中间主体950和内壁920中获得同心圆形轮廓。这三个连续且同心的较小圆柱体(990,950和920)提供内组圆周轴承960(内壁920和中间主体950之间)和外组圆周轴承965(中间主体950和外壁990之间)。中间主体950的较大截面面积允许其容纳马蹄形液压流体腔室940,和弓形配线腔室930的放置。轴承960、965促进三个连续且同心的较小圆柱主体990、950和920的相对旋转。轴承960、965还提供造斜器构件1000在处于其设置和操作位置时在上转环900(还在图4G-1中示出)下方的可旋转移动。这又提供改变从主钻井孔4中给定设置深度喷射出的后续横向钻孔的定向。换言之,上转环900允许转位机构(在相关的美国专利号8,991,522中描述,并且其全部内容并入本文)在不扭转外部系统2000的任何上游部件的情况下旋转造斜器构件1000。
还可以观察到上转环900提供造斜器构件1000的旋转,同时又维持电线106和数据缆线107的直线路径。上转环900还准许马蹄形液压流体腔室940提供造斜器构件1000的旋转,同时又维持下至造斜器构件1000且更远的连续液压流动路径。
返回至图4,如上所述,外部系统2000包括造斜器构件1000。喷射软管造斜器构件1000是完全重新定向、可重设置且可取回的造斜器装置,与之前的著作2010年2月25日提交的美国临时专利申请号61/308,060、2011年2月23日提交的美国专利号8,752,651以及2011年8月5日提交的美国专利号8,991,522所描述的造斜器装置类似。因这些申请对造斜器设置、致动和转位的讨论再次引用这些专利并将其并入到本文中。因此,此处不再赘述喷射软管造斜设备1000的详细讨论。
图4H.1提供图2的钻井孔4的一部分的纵向截面图。具体地,可以看见喷射软管造斜器构件1000。喷射软管造斜器构件1000处于其设置位置,其中,造斜器1050的上曲面1050.1接收喷射软管1595。喷射软管1595弯曲跨过限定面1050.1的半球形渠道。面1050.1与生产套管12的内壁结合形成唯一可能的路径,在该路径内可以推动喷射软管1595通过套管出口“W”和横向钻孔15,并且随后从套管出口“W”和横向钻孔中缩回。
在图4H.1中还示出了喷嘴1600。喷嘴1600设置在喷射软管1595的端部。喷射流体被分散通过喷嘴1600,以开始形成穿入地层中的微型横向钻孔。喷射软管1595从喷射软管造斜器构件1000的内壁1020向下延伸,以便将喷嘴1600输送到造斜器构件1050。
如美国专利号8,991,522中讨论的,利用液压控制的操纵设置喷射软管造斜器构件1000。在一方面,液压脉冲技术用于进行液压控制。通过工具上的拉紧张力实现滑动件的释放。这些操纵被设计在造斜器构件1000中以符合运送媒介(常规连续油管)100的一般限制,运送媒介可以仅液压地(如,通过操纵地面液压压力并因此操纵井下液压压力)和机械地(即,通过拉动连续油管的张力,或者通过利用连续油管自身的下降重量的压缩力)运送力。
本文中喷射软管造斜器构件1000被设计成适应电线106和数据缆线107进一步向井下输送。为此,设置了配线腔室1030(传导电线106和数据缆线107)。从外部系统2000向与回转仪工具配合的常规测井设施1400诸如伽马射线-套管接箍定位器测井工具提供电力和数据。这将直接附接在常规泥浆电动机1300和连续油管牵引机1350的下方。因此,对于本实施方案,需要通过造斜器1000的液压传导来操作紧接下方的常规(“外部”)液压-电力连续油管牵引机1350,并且需要电(优选地,光纤)传导来操作连续油管牵引机1350下方的测井探头1400。图4H-1a和图4H-1b示出了配线腔室1030分别沿图4H-1的线O-O’和P-P’的截面图。
注意,该牵引机1350放置在喷射喷嘴1600的操作点下方,并因此从来不需要传导喷射软管1595或高压喷射流体来形成套管出口“W”或后续横向钻孔。因此,除了钻井孔自身,对该(底部)连续油管牵引机1350没有I.D.限制。连续油管牵引机1350可以是常规轮(“外部辊轴”)式的或者夹具(“蠕动”)式的。
沿着喷射软管造斜器构件1000还设置有液压流体腔室1040。在配线腔室1030和流体腔1040从半圆形轮廓(大致匹配它们与上转环900相应的配对物930和940)过渡为其中每个腔占用圆角矩形的单独端段(跨立于造斜器构件1050)的轮廓时,配线腔室和流体腔室变得分叉。一旦位于造斜器构件1050的足够下游时,腔室可以再组合成它们最初的圆形图案,准备在下转环1100中镜像重复它们各自的尺寸和对准。这使得能够将电力、数据和高压液压流体运输通过造斜器构件1000(经由它们各自的配线腔室1030和液压流体腔室1040)向下到泥浆电动机1300。
在造斜器构件1000和喷嘴1600下方但是在牵引机1350上方是可选的下转环1100。图4I-1是下转环1100位于喷射软管造斜器构件1000与交叉连接件1200之间并且在生产套管12内的纵向截面图。滑动件1080示出为设置在套管12内。图4I-1a是下转环1100沿图4I.1的线Q-Q’截取的轴向截面图。将参照图4I-1和图4I-1a一起讨论下转环1100。
下转环1100基本上是上转环900的镜像。与上转环900一样,下转环1100包括内壁1120、中间主体1150和外壁1190。在优选的实施方案中,外导管具有2.60”或者略小的O.D.。对外导管1190的O.D.限制是自己强加的3.5”压裂柱等同测试。
中间体1150还容置配线腔室1130和液压流体腔室1140。流体腔室1140将液压流体运输到交叉连接件1200处并且最终到泥浆电动机1300处。
下转环1100还包括容置电线106和数据缆线107的配线腔室1130。当需要实时传输测井数据(例如伽马射线和套管轴环定位器“CCL”数据)或定向数据(例如回转仪数据)时,可能需要进行连续的电和/或光纤传导。另外,连续的电和/或光纤传导能力使得能够响应于接收到的实时数据从地面1处直接指导井下组件的操纵。
注意,上转环900的内导管920限定尺寸足以接收和传导喷射软管1595的中空芯,而下转环1100没有这种要求。这是因为在组件50的设计及其使用方法中,喷射软管1595并不旨在向下游行进到超过造斜器构件1050的点处。因此,下转环1100的最内直径实际上可以由实体芯构成,如图4I-1a中描绘的,从而增加额外的强度质量。
下转环1100位于喷射软管造斜器构件1000和任何必要的交叉连接件1200以及井下工具诸如泥浆电动机1300和连续油管牵引机1350之间。还可以设置测井工具1400、封隔器或桥塞(优选地为可取回的,未示出)。注意,取决于钻井孔4的水平部分4c的长度、运送媒介100和生产套管12各自的大小,以及因此将遇到的摩擦力,可能需要不止一个泥浆电动机1300和/或CT牵引机1350。
在图4J中呈现了最后的附图。图4J描绘了最终过渡部件1200、常规泥浆电动机1300和(外部)连续油管牵引机1350。除了上文列出的工具,操作员还可以选择使用由伽马射线-套管接箍定位器和回转仪测井工具构成的测井探头1400。回转仪测井工具提供实时数据,该实时数据不仅描述前面的喷射软管造斜器构件1000的造斜器面1050.1的精确井下位置,还描述其初始对准。该数据用于确定:
(1)为了沿着其优选方位指引初始横向钻孔,需要经由造斜器面1050.1对准再对准多少度;以及
(2)在喷射出第一横向钻孔之后,沿着它们各自的优选方位指引后续横向钻孔需要再对准多少度。
预期在水平主钻井孔4c中准备进行后续液力压裂处理时,将在与主钻井孔4c的同一水平面处或附近基本上垂直地喷射出初始钻孔15,并且将在从第一钻孔旋转180°的方位处(再次,在与主钻井孔4c的同一水平面处或附近垂直地)喷射出第二横向钻孔。然而,在较厚的地层中,特别是考虑到沿期望的方向使喷射喷嘴1600转向的能力,可能需要较复杂的横向钻孔。类似地,在设计成接收单个液力压裂处理的给定“射孔群”中,可能需要多个横向钻孔(从通常靠在一起的多个设置点处)。每个横向钻孔的设计的复杂性通常都是产区3的主储层岩石的液力压裂特征的反映。例如,操作员可以在给定的“群”内设计单独设置轮廓的横向钻孔来帮助将液力压裂处理主要保持在“层”中。
可以看出本文提供了改进的井下液压喷射组件50。组件50包括内部系统1500,内部系统由可引导喷射软管和旋转喷射喷嘴构成,该旋转喷射喷嘴可以在单个步骤中喷射出套管出口和后续横向钻孔。组件50还包括外部系统2000,除了其他部件以外,外部系统包括承载设备,该承载设备可以容置、运输、部署和缩回内部系统,以在进出主钻井孔4(不论其倾斜度如何的单次起下钻期间重复地构造所需的横向钻孔。外部系统2000提供环形压裂处理(即,沿着连续油管部署柱和生产套管12之间的环隙向下泵送压裂流体)来处理新喷射出的横向钻孔。当与封隔器提供的阶段封隔结合和/或定位临时或可取回塞因此提供重复顺序的塞-UDP-裂缝时,整个水平段4c的完成可以在单次起下钻中完成。
在一方面,在形成喷射软管1595的弯曲半径1599时,组件50能够利用生产套管12的全I.D.,从而允许操作员使用具有最大直径的喷射软管1595。这又允许操作员以较高泵送速率泵送喷射流体,从而在喷射喷嘴1600处以给定泵送压力产生较高的液压马力。这将大幅增加喷射喷嘴处的电力输出,这将实现:
(1)可选地,在目标地层中喷射出直径较大的横向钻孔;
(2)可选地,达到较长的横向长度;
(3)可选地,达到较大的侵蚀穿进速率;以及
(4)实现以较高强度和阈值压力(δM和PTh)侵蚀穿进现有液压喷射技术认为无法穿进的油/气产区。
还重要的是,内部系统1500允许不受机械井下运送媒介的影响推进喷射软管1595和所连接的喷射喷嘴1600。喷射软管1595没有附接至“推动”软管和连接的喷嘴1600的刚性工作柱,而是使用允许软管和喷嘴在外部系统2000内纵向行进(在向上游和向下游两个方向上)的液压系统。使主题系统1500能够克服迄今为止所有其他液压喷射系统固有的“无法推动绳”的限制的是这种转变。此外,因为主题系统不依靠重力推进或对准喷射软管/喷嘴,所以系统部署和液压喷射可以以任何角度并且在组件50可以被“牵引”到其中的主钻井孔4内的任何点处发生。
井下液压喷射组件允许从单个主钻井孔中形成长度延长且方向受控的多个微型支渠或钻孔。每个微型支渠可以从主钻井孔中延伸10英尺至500英尺或更长。在应用于水平钻井孔完井准备在某些地质地层中进行后续液力压裂(“压裂(frac)”)处理时,这些小的横向钻井孔可以产生优化和增强裂缝(或裂缝网络)几何结构和后续生烃率和储量开采的显著益处。通过实现:(1)更好地延伸支撑的裂缝长度;(2)更好地限制产区内的裂缝高度;(3)更好地在产区内放置支撑剂;以及(4)在交叉阶段突破之前进一步延伸裂缝网络,横向钻孔可以显著减少之前获得期望的裂缝几何结构(如果可以实现)所需的必要压裂流体、流体添加剂、支撑剂、液压马力以及因此相关的压裂成本。此外,对于压裂流体、添加剂、支撑剂和马力的固定输入,在压裂之前在产区中形成横向钻孔可以形成显著较大的增产储层体积,达到可以增加给定油田内的井间隔的程度。换言之,给定油田内可能需要较少的井,显著节约成本。此外,在常规储层中,从横向钻孔自身获得的排放增强可能完全足以排除对于后续液力压裂的需要。
作为附加的益处,本文的井下液压喷射组件50和方法准许操作员在不“破坏”主钻井孔的情况下应用径向液压喷射技术。此外,操作员可以从水平主钻井孔中喷射出径向横向钻孔,作为新完井的一部分。此外,喷射软管可以利用生产套管的整个I.D.。此外,储层工程师或油田操作员可以分析目标储层的地质机械性质,然后设计从定向钻探的横向钻孔的定制化构造中发源的裂缝网络。
可以进行横向钻孔的液压喷射以在完井期间增强压裂和酸化作业。如所述的,在压裂作业中,以足以分离或分裂岩石基质的压力将流体注入地层。相比之下,在酸化处理中,以比破裂或压裂给定产区所需的压力小的底孔压力泵送酸性溶液。(然而在酸压裂中,泵送压力有意地超过地层分裂压力)。其中横向钻孔的预增产喷射可能有益的示例包括:
(a)在液压压裂之前(或在酸压裂之前),为了帮助限制产区内裂缝(或裂缝网)传播并在任何边界层破裂之前或在可能出现任何交叉级压裂之前距主钻井孔很大距离处形成裂缝(网)长度;以及
(b)在可以“消耗”酸之前,并在泵送压力达到地层分裂压力之前,使用横向钻孔对远超过钻井孔附近区域的基质酸处理进行增产。
本文的井下液压喷射组件50和方法还准许操作员预先确定横向钻孔的喷射路径。可以在长度、方向或者甚至形状方面控制这种钻孔。例如,弯曲钻孔或每个弯曲钻孔“群”可以有意地形成为进一步提高地层3对于钻井孔4c的SRV暴露。
本文的井下液压喷射组件50和方法还准许操作员重新进入在非常规地层中已完井的现有钻井孔,并通过使用液压喷射技术形成一个或多个横向钻孔来“重新压裂”钻井孔。液压喷射工艺可以使用本发明任何实施方案中的液压喷射组件50。不需要修井机、坠球机/接球机、可钻探底座或滑动套筒组件。

Claims (31)

1.一种用于井下液压喷射喷嘴的导向系统,所述液压喷射喷嘴被构造成挖掘岩石,以形成长形钻孔,并且所述导向系统包括:
至少三条纵向定向且导电的致动器线,其中,所述致动器线中的每一条均固定至柔性管状主体的远端,并且所述致动器线中的每一条均被构造成响应于接收电流而进行收缩;以及
液压喷射喷嘴,所述液压喷射喷嘴固定至所述柔性管状主体的所述远端;
并且其中,所述致动器线中的每一条均被构造成与所接收的电流的量成比例地进行收缩,使得被指引通过所述致动器线中的一条或多条的不同量的电流将因此对所述液压喷射喷嘴引起弯曲力矩,所述弯曲力矩足以重新定向所述液压喷射喷嘴的主体,从而相对于所述管状主体改变所述液压喷射喷嘴的轨迹。
2.根据权利要求1所述的导向系统,其中:
所述管状主体为柔性喷射软管;
所述至少三条致动器线围绕所述喷射软管的所述远端的圆周等距间隔;以及
所述液压喷射喷嘴是具有向前排放端口的液压喷嘴。
3.根据权利要求2所述的导向系统,其中:
所述液压喷嘴的主体包括管状定子主体和管状转子主体,所述管状转子主体位于所述定子主体的钻孔内,并且沿所述喷嘴的纵向轴线形成钻孔;并且
所述液压喷嘴还包括:
一个或多个轴承,所述一个或多个轴承位于所述定子主体和所述转子主体之间,以适应所述转子主体和所述定子主体之间的相对旋转移动;
电磁线圈,所述电磁线圈被设计成响应于电流引发所述转子主体和所述定子主体之间的相对旋转移动;以及
近端,所述近端被构造成密封地连接至所述喷射软管的所述远端并且接收喷射流体;
并且其中,所述排放端口被构造成输送高压喷射流体以侵蚀井下岩石基质。
4.根据权利要求3所述的导向系统,还包括:
与所述至少三条致动器线中的每一条相关联的电力线,其中,每条电力线向与其相关联的致动器线输送电流,其中,所述电力线中的每一条均沿所述喷射软管内的腔或护层定位;
用于在井下生成电流的电池组;
微处理器,所述微处理器用于根据用于所述钻孔的确定的地理轨迹分布所述电流;以及
设置在所述液压喷射喷嘴的所述主体上的至少一个地理空间芯片,所述至少一个地理空间芯片被配置成沿所述喷射软管将地理位置数据信号传输回去。
5.根据权利要求4所述的导向系统,其中:
所述喷射软管的长度为至少25英尺。
6.根据权利要求5所述的导向系统,其中:
所述喷射软管和液压喷嘴是用于在地下地层内从主钻井孔中形成横向钻孔的液压喷射组件的一部分,所述喷射软管和所述液压喷嘴形成用于所述液压喷射组件的内部系统;
所述液压喷射组件还包括外部系统,所述外部系统包括:
第一长形管状主体,所述第一长形管状主体限定外导管,所述外导管具有上端、下端以及在上端和下端之间的内部钻孔,所述上端被构造成可操作地附接至用于将所述组件伸入所述钻井孔中的油管运送媒介;
第二长形管状主体,位于所述外导管的所述钻孔内并限定喷射软管承载件,所述喷射软管承载件的尺寸被设置成可滑动地接收所述喷射软管并且在所述喷射软管和周围的所述喷射软承载件之间形成微环隙,所述微环隙的大小被设置成在所述组件的操作期间当所述喷射软管在所述喷射软管承载件内滑动时防止所述喷射软管弯曲;
上密封组件,所述上密封组件在上端处连接至所述喷射软管并且密封所述微环隙;以及
设置在所述外导管的所述下端下方的造斜器构件,所述造斜器构件具有拱形造斜器面;
其中,所述组件被构造成(i)通过转移力将所述喷射软管转移出所述喷射软管承载件并抵靠所述造斜器面,到达钻井孔出口的期望点,(ii)在到达钻井孔出口的所述期望点时,指引喷射流体通过所述喷射软管和连接的所述喷射喷嘴,直到形成出口,(iii)继续喷射,形成穿进所述产区内的岩石基质中的横向钻孔,然后(iv)在形成横向钻孔后,将所述喷射软管拉回入所述喷射软管承载件中。
7.一种可操纵钻孔挖掘设备,包括:
管状主体,所述管状主体的尺寸被设置成沿钻孔传输喷射流体,所述主体具有近端和远端;
液压喷射喷嘴,所述液压喷射喷嘴设置在所述管状主体的所述远端,且被构造成响应于所述喷射流体的传输挖掘地层中的岩石基质,作为钻孔;
位于所述管状主体的所述远端附近的一个或多个地理空间IC芯片,所述地理空间IC芯片提供表示所述液压喷射喷嘴的位置、方位、定向或它们的组合的地理位置数据;
一组数据线,该组数据线被构造成沿所述管状主体将所述地理位置数据从所述地理空间IC芯片传输至(i)地面的操作员,(ii)沿钻井孔的微处理器或(iii)这二者;
一组电力线,该组电力线沿所述管状主体的至少一部分延伸;以及
一组致动器线,每条致动器线位于对应电力线的远端处,其中,每条致动器线均被构造成响应于通过所述电力线的电流的不均衡分布进行与通过所述对应电力线输送的电流成比例地收缩,向所述液压喷射喷嘴的所述主体施加弯曲力矩。
8.根据权利要求7所述的可操纵钻孔挖掘设备,其中,所述液压喷射喷嘴是钻头或喷射喷嘴。
9.根据权利要求8所述的钻孔挖掘设备,其中:
所述致动器线包括至少三条电线,所述至少三条电线围绕所述喷射软管的所述远端等距间隔并由包括镍和钛的材料制造;并且
所述设备还包括电流调节器,所述电流调节器被配置成调节通过所述电力线中的每条到达所述致动器线的电流。
10.根据权利要求9所述的钻孔挖掘设备,其中,所述电力线中的每条均包括电线。
11.根据权利要求10所述的钻孔挖掘设备,其中:
所述管状主体是柔性喷射软管;并且
所述液压喷射喷嘴是液压喷嘴,所述液压喷嘴包括:
管状定子主体;
管状转子,所述管状转子位于所述定子主体的所述钻孔内并且还沿所述喷嘴的所述纵向轴线形成钻孔;
一个或多个轴承,所述一个或多个轴承位于所述定子主体和所述转子主体之间用以适应所述转子主体和所述定子主体之间的相对旋转移动;
电磁线圈,所述电磁线圈响应于电流在所述转子主体和所述定子主体之间引起相对旋转移动;
近端,所述近端被构造成密封地连接至所述喷射软管的远端并且接收喷射流体;以及
位于所述转子主体的远端的排放槽,所述排放槽被构造成以规定喷射角度输送高压喷射流体以侵蚀挖掘岩石基质。
12.根据权利要求11所述的钻孔挖掘设备,其中,所述IC芯片位于所述定子主体上。
13.根据权利要求12所述的钻孔挖掘设备,其中
所述喷射软管的长度为至少25英尺;
所述喷射软管位于长形管状喷射软管承载件内,所述喷射软管承载件的尺寸被设置成可滑动地接收所述喷射软管,并且在所述喷射软管和周围的所述喷射软管承载件之间形成微环隙,所述微环隙的大小被设置成在所述钻孔挖掘设备的操作期间在所述喷射软管在所述喷射软管承载件内滑动时防止所述喷射软管弯曲。
14.根据权利要求13所述的钻孔挖掘设备,还包括:
上密封组件,所述上密封组件在上端处连接至所述喷射软管并且密封所述微环隙;
喷射软管封隔段,所述喷射软管封隔段连接至所述喷射软管承载件的内径并且在所述喷射软管承载件的下端附近密封所述微环隙,并可滑动地接收所述喷射软管;以及
能够在第一位置和第二位置之间移动的主控制阀,其中,在所述第一位置中,所述主控制阀将泵入所述钻井孔的喷射流体引入所述喷射软管,并且在所述第二位置中,所述主控制阀将泵入所述钻井孔的液压流体引入形成在所述喷射软管承载件和周围的长形外导管之间的环形区域。
15.根据权利要求14所述的钻孔挖掘设备,还包括:
压力调节阀,所述压力调节阀沿所述微环隙放置,控制所述微环隙内的流体压力;
其中,所述设备被构造成使得:
所述主控制阀在其第一位置的放置允许操作员将喷射流体泵送通过所述主控制阀,并抵靠所述微环隙中的所述上密封组件,从而活塞地推动展开状态下的所述喷射软管和连接的井下喷嘴,同时指引喷射流体通过所述喷嘴,并使液压流体从所述微环隙离开并通过所述压力调节阀;并且
所述主控制阀在其第二位置的放置允许操作员将液压流体泵送通过所述主控制阀,进入所述喷射软管承载件和周围的所述外导管之间的环形区域,通过所述压力调节阀并进入所述微环隙,
从而将所述喷射软管在其展开状态下向上拉回到所述内导管中。
16.根据权利要求15所述的钻孔挖掘设备,其中:
所述微环隙限定形成在所述可移动上密封组件和所述固定喷射软管封隔段之间的长形压力腔;
所述主控制阀位于所述外导管的上端附近;并且
所述喷射软管承载件的尺寸被设置成当所述组件处于伸入位置时支撑从所述上密封组件向下靠近所述喷射嘴的所述喷射软管。
17.根据权利要求16所述的钻孔挖掘设备,其中:
所述喷射软管的长度为至少50英尺;并且
所述压力调节阀被构造成使得:
(i)当流体被注射通过处于其第一位置的所述主控制阀时,
当所述上密封组件在仍然密封的时候滑下所述喷射软管承载件的内钻孔时压力从所述微环隙释放,从而在所述喷射软管没有弯曲的情况下向前推动所述喷射软管通过所述喷射软管承载件;以及(ii)当将流体被注射通过处于其第二位置的所述主控制阀时,所述流体流回所述微环隙中,增加了抵靠所述上密封组件的流体压力并引起所述喷射软管向上滑动回所述喷射软管承载件。
18.根据权利要求17所述的钻孔挖掘设备,还包括:
电池组,所述电池组具有位于长形流体密壳体中的一系列电池,所述长形液密壳体位于所述喷射软管的上游端;
位于所述电池组的相对端中的每个处的端盖,其中,所述端盖的形状设置成在所述组件的操作期间使喷射流体转向;以及
位于所述外导管的上游端的插接站,所述插接站容置微处理器、微发射器、微接收器、电流调节器或它们的组合;并且
其中,所述插接站被构造成:(1)将电力传递至所述电池组,以及(2)所述一个或多个地理空间IC芯片与地面的操作员之间将数据传递至所述插接站中的所述微发射器和微接收器并从所述微发射器和微接收器传递数据。
19.根据权利要求12所述的钻孔挖掘设备,其中:
所述转子主体被构造成在所述定子主体内旋转,同时所述定子主体固定且密封地连接至所述喷射软管;并且
所述设备还包括围绕所述定子主体等距离径向定位的第一组向后推力喷口,所述第一组向后推力喷口被构造成在作业期间接收喷射流体,并且以与所述定子主体的所述近端偏离的角度指引所述喷射流体,从而提供向前推进力。
20.根据权利要求19所述的钻孔挖掘设备,还包括:
围绕所述转子主体等距离径向定位的第二组向后推力喷口,所述第二组向后推力喷口也被构造成接收喷射流体,并且以与所述定子主体的所述近端偏离的角度指引所述喷射流体,从而在作业期间提供额外的向前推进力。
21.根据权利要求20所述的钻孔挖掘设备,其中,所述第二组向后推力喷口被定位成使得当所述转子主体的旋转将所述第二组推力喷口短暂地与所述第一组向后推力喷口对准时,建立连续的推力喷口通道,用于从所述定子主体的所述钻孔内传导出喷射流体,并且从所述定子主体的外部排放,从而形成所述推进力。
22.根据权利要求21所述的钻孔挖掘设备,其中,所述第一组向后推力喷口和所述第二组向后推力喷口被构造成当用喷射流体启动时沿岩石基质在横向钻孔中形成星形轮廓。
23.根据权利要求22所述的钻孔挖掘设备,还包括:
加固套筒,所述加固套筒沿所述转子主体的所述钻孔定位并且被构造成在作业期间抵抗所述转子主体的侵蚀。
24.根据权利要求23所述的钻孔挖掘设备,其中,所述套筒由多晶金刚石材料制造。
25.根据权利要求23所述的钻孔挖掘设备,其中:
所述套筒被构造成在第一位置和第二位置之间沿所述转子主体的所述钻孔滑动,在所述第一位置中,所述第一组向后推力喷口关闭,在所述第二位置中,所述第一组向后推力喷口打开;并且
所述设备还包括偏置机构,所述偏置机构用于将所述套筒偏置到其关闭位置。
26.根据权利要求21所述的钻孔挖掘设备,还包括:
沿所述转子主体的所述钻孔定位的轴环,所述轴环被构造成随所述套筒滑动;并且
其中,所述偏置机构包括弹簧、磁体、电磁力或它们的组合。
27.根据权利要求26所述的钻孔挖掘设备,其中:
所述偏置机构包括弹簧,所述弹簧在作业期间使可滑动套筒偏置到关闭位置,以相对于液压喷射流体的流动密封所述向后推力喷口,从而迫使喷射流体流全部离开所述排放槽;
在所述设备中提供磁场,用于产生所述转子主体的旋转,所述磁场由所述电磁线圈的预磁化产生;并且
通过向所述套筒上的肩状物施加液压压力克服所述弹簧的偏置力,使所述可滑动套筒向前移位,这导致打开了用于喷射流体流动的通向所述向后推力喷口的入口,从而利用所述喷射流体的一部分向所述轴环提供向后推力,并且允许所述转子主体在所述定子主体内的自由旋转;此时,预磁化线圈内固有的磁极性引发磁力,因此在所述转子主体上产生旋转扭矩,造成所述转子主体的旋转。
28.根据权利要求26所述的钻孔挖掘设备,还包括:
沿所述轴环的所述钻孔定位的涡轮翅片,所述涡轮翅片被构造成响应于喷射流体的流动生成所述轴环的旋转,其中,这种旋转用于产生电力。
29.根据权利要求19所述的钻孔挖掘设备,还包括:
沿所述喷射软管的所述主体同轴放置的一个或多个喷射轴环,其中,所述一个或多个喷射轴环中的每个均包括:
向后推力喷口,被构造成生成向前推进力;
在第一位置和第二位置中偏置的可滑动套筒,在所述第一位置中,所述向后推力喷口针对流体流动关闭,在所述第二位置,所述向后推力喷口针对流体流动打开,以生成所述推进力;以及
偏置机构,用于将所述轴环偏置到其关闭位置,其中,所述偏置机构包括弹簧、磁体、电磁力或它们的组合。
30.根据权利要求29所述的钻孔挖掘设备,其中:
所述偏置机构在所述一个或多个喷射轴环中的每个中包括弹簧;并且
通过向所述套筒上的肩状物施加液压压力克服所述弹簧的偏置力,使所述可滑动套筒向前移位,这导致打开了用于喷射流体流动通过所述推力轴环的所述向后推力喷口的入口,从而利用所述喷射流体的一部分向所述喷射软管提供向后推力。
31.根据权利要求19所述的钻孔挖掘设备,还包括:
沿所述转子主体的所述钻孔定位的涡轮翅片,所述涡轮翅片被构造成响应于所述转子主体的旋转生成电力。
CN201910044675.9A 2015-02-24 2016-01-29 用于井下液压喷射喷嘴的导向系统和可操纵钻孔挖掘设备 Active CN109915011B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201562120212P 2015-02-24 2015-02-24
US62/120,212 2015-02-24
US201562198575P 2015-07-29 2015-07-29
US62/198,575 2015-07-29
US15/010,650 2016-01-28
US15/010,650 US10227825B2 (en) 2011-08-05 2016-01-29 Steerable hydraulic jetting nozzle, and guidance system for downhole boring device
CN201680018738.8A CN107429542B (zh) 2015-02-24 2016-01-29 用于井下钻探装置的可操纵液压喷射喷嘴和导向系统

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680018738.8A Division CN107429542B (zh) 2015-02-24 2016-01-29 用于井下钻探装置的可操纵液压喷射喷嘴和导向系统

Publications (2)

Publication Number Publication Date
CN109915011A true CN109915011A (zh) 2019-06-21
CN109915011B CN109915011B (zh) 2020-11-06

Family

ID=56741233

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910044675.9A Active CN109915011B (zh) 2015-02-24 2016-01-29 用于井下液压喷射喷嘴的导向系统和可操纵钻孔挖掘设备
CN201680018738.8A Active CN107429542B (zh) 2015-02-24 2016-01-29 用于井下钻探装置的可操纵液压喷射喷嘴和导向系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201680018738.8A Active CN107429542B (zh) 2015-02-24 2016-01-29 用于井下钻探装置的可操纵液压喷射喷嘴和导向系统

Country Status (7)

Country Link
US (3) US10227825B2 (zh)
CN (2) CN109915011B (zh)
AU (3) AU2016223214B2 (zh)
CA (2) CA3031820C (zh)
GB (1) GB2550797B (zh)
NO (1) NO20171415A1 (zh)
WO (1) WO2016137667A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110344756A (zh) * 2019-06-28 2019-10-18 中国石油集团长城钻探工程有限公司 电动井下深穿透钻孔器
CN111482308A (zh) * 2020-04-20 2020-08-04 台州弘锐精密机械有限公司 一种汽车空调冷凝器蛇形冷凝管制造加工工艺
CN112152341A (zh) * 2019-06-28 2020-12-29 日本电产株式会社 驱动装置
CN114562233A (zh) * 2022-03-11 2022-05-31 重庆大学 一种过热液体闪沸多孔喷射羽流相互作用的煤层气开采钻进方法
CN115059398A (zh) * 2022-06-27 2022-09-16 中煤科工集团西安研究院有限公司 射流破岩旋转喷头、成孔钻具、连续钻孔系统及工控方法
CN116696329A (zh) * 2023-08-03 2023-09-05 东营垣发石油科技有限公司 一种水平井定向验证装置及验证方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702680B2 (en) 2013-07-18 2017-07-11 Dynaenergetics Gmbh & Co. Kg Perforation gun components and system
US20160153250A1 (en) * 2013-07-23 2016-06-02 Halliburton Energy Services, Inc. Managing strain on a downhole cable
US10724302B2 (en) * 2014-06-17 2020-07-28 Petrojet Canada Inc. Hydraulic drilling systems and methods
WO2016137667A1 (en) * 2015-02-24 2016-09-01 Coiled Tubing Specialties, Llc Steerable hydraulic jetting nozzle, and guidance system for downhole boring device
US10683740B2 (en) 2015-02-24 2020-06-16 Coiled Tubing Specialties, Llc Method of avoiding frac hits during formation stimulation
US10954769B2 (en) 2016-01-28 2021-03-23 Coiled Tubing Specialties, Llc Ported casing collar for downhole operations, and method for accessing a formation
WO2018157144A1 (en) 2017-02-27 2018-08-30 Robertson Intellectual Properties, LLC Apparatus and methods for overcoming an obstruction in a wellbore
US20190120035A1 (en) * 2017-10-23 2019-04-25 Baker Hughes, A Ge Company, Llc Dual Tunneling and Fracturing Stimulation System
US10519737B2 (en) * 2017-11-29 2019-12-31 Baker Hughes, A Ge Company, Llc Place-n-perf
AU2017444240B2 (en) * 2017-12-21 2024-04-04 Halliburton Energy Services, Inc. Multi-zone actuation system using wellbore darts
CN108166940B (zh) * 2017-12-25 2018-11-06 中国石油大学(华东) 一种具有大排量分流作用的螺杆钻具旁通阀及其使用方法
CN110118077B (zh) * 2018-02-06 2021-06-04 中国石油化工股份有限公司 一种完井作业用射孔装置
US11808093B2 (en) 2018-07-17 2023-11-07 DynaEnergetics Europe GmbH Oriented perforating system
US11156071B2 (en) * 2018-07-18 2021-10-26 Saudi Arabian Oil Company Method of subterranean fracturing
US11156066B2 (en) 2019-04-01 2021-10-26 XConnect, LLC Perforating gun orienting system, and method of aligning shots in a perforating gun
US11828117B2 (en) 2019-05-06 2023-11-28 Schlumberger Technology Corporation High-pressure drilling assembly
US11105165B2 (en) * 2019-11-01 2021-08-31 Baker Hughes Oilfield Operations Llc Downhole device including a fluid propulsion system
CZ2022303A3 (cs) 2019-12-10 2022-08-24 DynaEnergetics Europe GmbH Hlava rozněcovadla
CN110863788B (zh) * 2019-12-10 2023-11-28 贵州高峰石油机械股份有限公司 一种液压可弯笔尖装置
CN111206909B (zh) * 2020-01-15 2021-01-26 大庆市永晨石油科技有限公司 一种水力喷射分段压裂工具
US11408229B1 (en) 2020-03-27 2022-08-09 Coiled Tubing Specialties, Llc Extendible whipstock, and method for increasing the bend radius of a hydraulic jetting hose downhole
CN111677451B (zh) * 2020-05-12 2022-05-10 中煤科工集团西安研究院有限公司 煤矿井下定向钻进随钻水力造穴装置、钻进系统及方法
CN112240221B (zh) * 2020-10-15 2023-01-24 西安乔木科技技术有限公司 一种基于定向长钻孔的瓦斯抽采方法
CN112878897B (zh) * 2021-02-02 2023-01-24 王茂龙 一种铁路工程施工用钻孔机
WO2022167297A1 (en) * 2021-02-04 2022-08-11 DynaEnergetics Europe GmbH Perforating gun assembly with performance optimized shaped charge load
US11499401B2 (en) * 2021-02-04 2022-11-15 DynaEnergetics Europe GmbH Perforating gun assembly with performance optimized shaped charge load
CN113236214B (zh) * 2021-06-05 2022-02-25 西南石油大学 一种自激型脉冲式涡流井下排采工具
CN113123744A (zh) * 2021-06-07 2021-07-16 贵州正业工程技术投资有限公司 一种气水混合洗井装置及洗井方法
CN113356812B (zh) * 2021-07-09 2022-08-26 中国石油化工股份有限公司 同轴驱动分步调节式双层可调堵塞器
CN114991736B (zh) * 2022-06-30 2024-04-16 中煤科工集团西安研究院有限公司 一种定向割槽装置及煤层气直井煤储层改造方法
US20240052735A1 (en) * 2022-08-10 2024-02-15 Saudi Arabian Oil Company Method of increasing hydrocarbon recovery from a wellbore penetrating a tight hydrocarbon formation by a hydro-jetting tool that jets a thermally controlled fluid

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090101414A1 (en) * 2007-10-22 2009-04-23 Charles Brunet Apparatus and Method for Conveyance and Control of a High Pressure Hose in Jet Drilling Operations
CA2701725A1 (en) * 2007-10-22 2009-04-30 Radjet Llc Apparatus and method for milling casing in jet drilling applications for hydrocarbon production
GB2463423A (en) * 2007-06-12 2010-03-17 Baker Hughes Inc Mechanical and fluid jet drilling method and apparatus
US7690444B1 (en) * 2008-11-24 2010-04-06 ACT Operating Company Horizontal waterjet drilling method
CN101824966A (zh) * 2010-05-11 2010-09-08 上海宏睿油气田径向井技术服务有限公司 一种高压水力喷射超短半径水平井眼的装置
US20110155469A1 (en) * 2008-02-01 2011-06-30 Rudy Sanfelice Apparatus and Method for Positioning Extended Lateral Channel Well Stimulation Equipment
CN202596579U (zh) * 2012-04-13 2012-12-12 中国石油天然气集团公司 降低井底环空围压提高径向水平井破岩效率的装置
US20130327573A1 (en) * 2001-11-07 2013-12-12 Alice Belew Method and System for Laterally Drilling Through a Subterranean Formation
US20140096966A1 (en) * 2012-10-08 2014-04-10 Mr. Gary Freitag Method and Apparatus for Completion of Heavy Oil Unconsolidated Sand Reservoirs

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2604063A1 (de) 1976-02-03 1977-08-04 Miguel Kling Selbstfahrende und selbstarretierende vorrichtung zum befahren von kanaelen bzw. von langgestreckten gebilden
US4256179A (en) 1979-10-15 1981-03-17 International Oil Tools, Inc. Indexing tool for use in earth borehole drilling and testing
US4431069A (en) * 1980-07-17 1984-02-14 Dickinson Iii Ben W O Method and apparatus for forming and using a bore hole
US4753223A (en) * 1986-11-07 1988-06-28 Bremer Paul W System for controlling shape and direction of a catheter, cannula, electrode, endoscope or similar article
US5419405A (en) 1989-12-22 1995-05-30 Patton Consulting System for controlled drilling of boreholes along planned profile
US5325845A (en) * 1992-06-08 1994-07-05 Adair Edwin Lloyd Steerable sheath for use with selected removable optical catheter
US5291975A (en) 1992-10-27 1994-03-08 Satcon Technology Corporation System and method for damping narrow band axial vibrations of a rotating device
US5413184A (en) 1993-10-01 1995-05-09 Landers; Carl Method of and apparatus for horizontal well drilling
US5853056A (en) 1993-10-01 1998-12-29 Landers; Carl W. Method of and apparatus for horizontal well drilling
US6125949A (en) 1993-10-01 2000-10-03 Landers; Carl Method of and apparatus for horizontal well drilling
GB9810321D0 (en) * 1998-05-15 1998-07-15 Head Philip Method of downhole drilling and apparatus therefore
US6263984B1 (en) 1999-02-18 2001-07-24 William G. Buckman, Sr. Method and apparatus for jet drilling drainholes from wells
US6283230B1 (en) 1999-03-01 2001-09-04 Jasper N. Peters Method and apparatus for lateral well drilling utilizing a rotating nozzle
WO2001061141A1 (en) 2000-02-16 2001-08-23 Performance Research & Drilling, Llc Horizontal directional drilling in wells
US6530439B2 (en) 2000-04-06 2003-03-11 Henry B. Mazorow Flexible hose with thrusters for horizontal well drilling
BR0111751A (pt) 2000-06-20 2003-05-27 Shell Int Research Sistema para criar no mìnimo um conduto em um furo de sondagem formado em uma formaçao de terra
NO312255B1 (no) 2000-06-28 2002-04-15 Pgs Reservoir Consultants As Verktöy for gjennomhulling av et langsgående veggparti av et fôringsrör
US6378629B1 (en) 2000-08-21 2002-04-30 Saturn Machine & Welding Co., Inc. Boring apparatus
US6412578B1 (en) 2000-08-21 2002-07-02 Dhdt, Inc. Boring apparatus
US20020062993A1 (en) 2000-09-18 2002-05-30 Robert Billingsley Method apparatus for horizontal drilling and oil recovery
US6419020B1 (en) 2001-04-24 2002-07-16 Ben Spingath Hydraulic drilling method and system for forming radial drain holes in underground oil and gas bearing formations
GB0111124D0 (en) * 2001-05-05 2001-06-27 Spring Gregson W M Torque-generating apparatus
US6708763B2 (en) 2002-03-13 2004-03-23 Weatherford/Lamb, Inc. Method and apparatus for injecting steam into a geological formation
US6668948B2 (en) 2002-04-10 2003-12-30 Buckman Jet Drilling, Inc. Nozzle for jet drilling and associated method
NO20022668A (no) 2002-06-06 2003-05-12 Norse Cutting & Abandonment As Anordning ved et hydraulisk kutteverktøy
US6763899B1 (en) * 2003-02-21 2004-07-20 Schlumberger Technology Corporation Deformable blades for downhole applications in a wellbore
US7011158B2 (en) 2003-09-05 2006-03-14 Jerry Wayne Noles, Jr., legal representative Method and apparatus for well bore cleaning
WO2005078231A1 (en) * 2004-02-04 2005-08-25 David Scott Chrisman Tool and method for drilling, reaming and cutting
US7357182B2 (en) 2004-05-06 2008-04-15 Horizontal Expansion Tech, Llc Method and apparatus for completing lateral channels from an existing oil or gas well
US7837615B2 (en) * 2004-05-10 2010-11-23 Usgi Medical, Inc. Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US9500058B2 (en) 2004-05-28 2016-11-22 Schlumberger Technology Corporation Coiled tubing tractor assembly
US7347262B2 (en) 2004-06-18 2008-03-25 Schlumberger Technology Corporation Downhole sampling tool and method for using same
US7168491B2 (en) 2004-10-08 2007-01-30 Buckman Jet Drilling, Inc. Perforation alignment tool for jet drilling, perforating and cleaning
CA2605659C (en) 2005-04-22 2011-03-22 Robert C. Schick Apparatus and method for improving multilateral well formation and reentry
US7422059B2 (en) 2005-11-12 2008-09-09 Jelsma Henk H Fluid injection stimulated heavy oil or mineral production system
US7669672B2 (en) 2005-12-06 2010-03-02 Charles Brunet Apparatus, system and method for installing boreholes from a main wellbore
US7584794B2 (en) 2005-12-30 2009-09-08 Baker Hughes Incorporated Mechanical and fluid jet horizontal drilling method and apparatus
CZ299270B6 (cs) * 2006-01-04 2008-06-04 Zentiva, A. S. Zpusob výroby hydrochloridu (S)-N-methyl-3-(1-naftyloxy)-3-(2-thienyl)propylaminu
US7441595B2 (en) 2006-02-07 2008-10-28 Jelsma Henk H Method and apparatus for single-run formation of multiple lateral passages from a wellbore
US7631707B2 (en) * 2006-03-29 2009-12-15 Cyrus Solutions Corporation Shape memory alloy actuated steerable drilling tool
US7540327B2 (en) 2006-04-28 2009-06-02 Schlumberger Technology Corporation Abrasive jet cutting system and method for cutting wellbore tubulars
EP1852571A1 (en) * 2006-05-03 2007-11-07 Services Pétroliers Schlumberger Borehole cleaning using downhole pumps
US20120118562A1 (en) 2006-11-13 2012-05-17 Mcafee Wesley Mark System, apparatus and method for abrasive jet fluid cutting
WO2008061071A2 (en) 2006-11-13 2008-05-22 Alberta Energy Partners System, apparatus and method for abrasive jet fluid cutting
EP1959092B1 (en) * 2006-12-27 2009-07-29 Services Pétroliers Schlumberger Downhole injector system for CT and wireline drilling
US7886834B2 (en) 2007-09-18 2011-02-15 Schlumberger Technology Corporation Anchoring system for use in a wellbore
US7679242B2 (en) 2007-10-03 2010-03-16 Baker Hughes Incorporated Shrink tube encapsulated magnet wire for electrical submersible motors
US7971658B2 (en) 2007-10-31 2011-07-05 Buckman Sr William G Chemically Enhanced Stimulation of oil/gas formations
WO2009148921A1 (en) 2008-05-29 2009-12-10 Dreco Energy Services Ltd. Mechanism for providing controllable angular orientation while transmitting torsional load
CN201276969Y (zh) * 2008-06-23 2009-07-22 任俊 一种涡轮动力钻具转子定子
US7909117B2 (en) * 2008-08-06 2011-03-22 Scientific Drilling International Inc. Downhole adjustable bent-angle mechanism for use with a motor for directional drilling
US8074744B2 (en) 2008-11-24 2011-12-13 ACT Operating Company Horizontal waterjet drilling method
US8196680B2 (en) 2009-02-04 2012-06-12 Buckman Jet Drilling Perforating and jet drilling method and apparatus
CA2671096C (en) 2009-03-26 2012-01-10 Petro-Surge Well Technologies Llc System and method for longitudinal and lateral jetting in a wellbore
US8327746B2 (en) 2009-04-22 2012-12-11 Schlumberger Technology Corporation Wellbore perforating devices
US8424620B2 (en) * 2009-04-24 2013-04-23 Kenny P. Perry, JR. Apparatus and method for lateral well drilling
WO2011035266A2 (en) 2009-09-19 2011-03-24 Nikola Lakic Apparatus for drilling faster, deeper and wider well bore
US9145738B2 (en) * 2009-11-20 2015-09-29 Kevin Mazarac Method and apparatus for forming a borehole
EP2516788A1 (en) * 2009-12-23 2012-10-31 Shell Internationale Research Maatschappij B.V. Method of drilling and jet drilling system
US8991522B2 (en) 2010-02-25 2015-03-31 Coiled Tubing Specialties, Llc Downhole hydraulic jetting assembly, and method for stimulating a production wellbore
US8752651B2 (en) 2010-02-25 2014-06-17 Bruce L. Randall Downhole hydraulic jetting assembly, and method for stimulating a production wellbore
MX2013013915A (es) 2011-05-31 2014-03-27 Welltec As Herramienta de penetracion de formaciones.
US10309205B2 (en) * 2011-08-05 2019-06-04 Coiled Tubing Specialties, Llc Method of forming lateral boreholes from a parent wellbore
US10260299B2 (en) * 2011-08-05 2019-04-16 Coiled Tubing Specialties, Llc Internal tractor system for downhole tubular body
US20140054092A1 (en) * 2012-08-24 2014-02-27 Buckman Jet Drilling, Inc. Rotary jet bit for jet drilling and cleaning
AU2012397235B2 (en) * 2012-12-21 2016-05-19 Halliburton Energy Services, Inc. Directional drilling control using a bendable driveshaft
US8974482B2 (en) * 2012-12-21 2015-03-10 Edgar Louis Shriver Device to steer into subintimal false lumen and parallel park in true lumen
US9278192B2 (en) * 2013-02-12 2016-03-08 Invatec S.P.A. Re-entry catheters and related methods
US10683740B2 (en) * 2015-02-24 2020-06-16 Coiled Tubing Specialties, Llc Method of avoiding frac hits during formation stimulation
WO2016137667A1 (en) * 2015-02-24 2016-09-01 Coiled Tubing Specialties, Llc Steerable hydraulic jetting nozzle, and guidance system for downhole boring device
US9834992B2 (en) * 2015-03-05 2017-12-05 Halliburton Energy Services, Inc. Adjustment mechanisms for adjustable bent housings
WO2016140687A1 (en) * 2015-03-05 2016-09-09 Halliburton Energy Services, Inc. Adjustable bent housings with sacrificial support members
WO2016140685A1 (en) * 2015-03-05 2016-09-09 Halliburton Energy Services, Inc. Directional drilling with adjustable bent housings
US9267338B1 (en) 2015-03-31 2016-02-23 Coiled Tubing Rental Tools, Inc. In-well disconnect tool

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130327573A1 (en) * 2001-11-07 2013-12-12 Alice Belew Method and System for Laterally Drilling Through a Subterranean Formation
GB2463423A (en) * 2007-06-12 2010-03-17 Baker Hughes Inc Mechanical and fluid jet drilling method and apparatus
US20090101414A1 (en) * 2007-10-22 2009-04-23 Charles Brunet Apparatus and Method for Conveyance and Control of a High Pressure Hose in Jet Drilling Operations
CA2701725A1 (en) * 2007-10-22 2009-04-30 Radjet Llc Apparatus and method for milling casing in jet drilling applications for hydrocarbon production
US20110155469A1 (en) * 2008-02-01 2011-06-30 Rudy Sanfelice Apparatus and Method for Positioning Extended Lateral Channel Well Stimulation Equipment
US7690444B1 (en) * 2008-11-24 2010-04-06 ACT Operating Company Horizontal waterjet drilling method
CN101824966A (zh) * 2010-05-11 2010-09-08 上海宏睿油气田径向井技术服务有限公司 一种高压水力喷射超短半径水平井眼的装置
CN202596579U (zh) * 2012-04-13 2012-12-12 中国石油天然气集团公司 降低井底环空围压提高径向水平井破岩效率的装置
US20140096966A1 (en) * 2012-10-08 2014-04-10 Mr. Gary Freitag Method and Apparatus for Completion of Heavy Oil Unconsolidated Sand Reservoirs

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110344756A (zh) * 2019-06-28 2019-10-18 中国石油集团长城钻探工程有限公司 电动井下深穿透钻孔器
CN112152341A (zh) * 2019-06-28 2020-12-29 日本电产株式会社 驱动装置
CN112152341B (zh) * 2019-06-28 2023-08-22 日本电产株式会社 驱动装置
CN111482308A (zh) * 2020-04-20 2020-08-04 台州弘锐精密机械有限公司 一种汽车空调冷凝器蛇形冷凝管制造加工工艺
CN114562233A (zh) * 2022-03-11 2022-05-31 重庆大学 一种过热液体闪沸多孔喷射羽流相互作用的煤层气开采钻进方法
CN114562233B (zh) * 2022-03-11 2023-12-12 重庆大学 一种过热液体闪沸多孔喷射羽流相互作用的煤层气开采钻进方法
CN115059398A (zh) * 2022-06-27 2022-09-16 中煤科工集团西安研究院有限公司 射流破岩旋转喷头、成孔钻具、连续钻孔系统及工控方法
CN115059398B (zh) * 2022-06-27 2023-06-13 中煤科工集团西安研究院有限公司 射流破岩旋转喷头、成孔钻具、连续钻孔系统及工控方法
CN116696329A (zh) * 2023-08-03 2023-09-05 东营垣发石油科技有限公司 一种水平井定向验证装置及验证方法
CN116696329B (zh) * 2023-08-03 2023-10-31 东营垣发石油科技有限公司 一种水平井定向验证装置及验证方法

Also Published As

Publication number Publication date
CN109915011B (zh) 2020-11-06
CA2919674C (en) 2019-07-16
GB2550797A8 (en) 2018-02-14
GB201713596D0 (en) 2017-10-11
AU2019200875B2 (en) 2020-04-16
US20160160568A1 (en) 2016-06-09
AU2019200875A1 (en) 2019-02-28
GB2550797A (en) 2017-11-29
WO2016137667A1 (en) 2016-09-01
CA2919674A1 (en) 2016-08-24
AU2016223214A1 (en) 2017-08-03
CA3031820A1 (en) 2016-08-24
US10227825B2 (en) 2019-03-12
US10597944B2 (en) 2020-03-24
AU2019200877A1 (en) 2019-02-28
CA3031820C (en) 2021-07-20
NO20171415A1 (zh) 2017-08-31
CN107429542A (zh) 2017-12-01
US10858890B2 (en) 2020-12-08
US20190032405A1 (en) 2019-01-31
GB2550797B (en) 2021-06-30
AU2016223214B2 (en) 2019-01-31
CN107429542B (zh) 2019-07-05
AU2019200877B2 (en) 2021-03-11
US20190032406A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
CN107429542B (zh) 用于井下钻探装置的可操纵液压喷射喷嘴和导向系统
CN107407129B (zh) 井下液压喷射组件
CN107429552A (zh) 从主钻井孔中形成横向钻孔的方法
CN107407141B (zh) 用于钻井管状主体的内部牵引机系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant