CN109910881B - Method and system for detecting and processing visual blind spot information of turning road - Google Patents
Method and system for detecting and processing visual blind spot information of turning road Download PDFInfo
- Publication number
- CN109910881B CN109910881B CN201910280781.7A CN201910280781A CN109910881B CN 109910881 B CN109910881 B CN 109910881B CN 201910280781 A CN201910280781 A CN 201910280781A CN 109910881 B CN109910881 B CN 109910881B
- Authority
- CN
- China
- Prior art keywords
- data
- microcontroller
- feature vector
- sensor
- turning road
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000012545 processing Methods 0.000 title claims abstract description 39
- 230000000007 visual effect Effects 0.000 title claims abstract description 29
- 239000013598 vector Substances 0.000 claims abstract description 48
- 238000001514 detection method Methods 0.000 claims abstract description 34
- 238000007621 cluster analysis Methods 0.000 claims abstract description 11
- 230000004927 fusion Effects 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000003672 processing method Methods 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 5
- 206010039203 Road traffic accident Diseases 0.000 abstract description 5
- 239000000523 sample Substances 0.000 description 28
- 238000004891 communication Methods 0.000 description 10
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Traffic Control Systems (AREA)
Abstract
本发明公开了一种转弯道路视觉盲区信息的检测处理方法及系统,所述方法首先对转弯道路上行驶物体进行检测,进行杂波去除处理,进行障碍物检测,微控制器将接收到的地磁传感器数据和微波传感器数据进行数据融合;将融合后的数据与十六进制特征向量样本进行比对,微控制器将检测数据发送给LED显示屏进行显示并启动警示灯进行警示,同时微控制器将检测数据和位置信息发送至后台服务器分类储存,后台服务器对积累的数据进行模糊聚类分析,得到更加精准的特征向量区间,并且定期将该特征向量区间作为更新后的特征向量样本集发送给所述微控制器。本发明能够及时将转弯道路视觉盲区信息提前告知驾驶员,减少了交通事故发生率。
The invention discloses a method and system for detecting and processing visual blind area information on a turning road. The method firstly detects the objects traveling on the turning road, performs clutter removal processing, and performs obstacle detection. The sensor data and the microwave sensor data are fused; the fused data is compared with the hexadecimal feature vector samples, and the microcontroller sends the detection data to the LED display for display and activates the warning light for warning. The detector sends the detection data and location information to the background server for classification and storage, and the background server performs fuzzy cluster analysis on the accumulated data to obtain a more accurate feature vector interval, and periodically sends the feature vector interval as the updated feature vector sample set to the microcontroller. The present invention can timely inform the driver of the visual blind spot information of the turning road in advance, thereby reducing the occurrence rate of traffic accidents.
Description
技术领域technical field
本发明涉及一种转弯道路视觉盲区信息的检测处理方法及系统, 属于道路交通信息检测技术领域。The invention relates to a method and system for detecting and processing visual blind area information of a turning road, belonging to the technical field of road traffic information detection.
背景技术Background technique
现实生活中,转弯道路内侧常有障碍物遮挡视线,形成了视野盲 区,因此道路转角处是交通事故频发地带。In real life, there are often obstacles on the inside of the turning road to block the line of sight, forming a blind spot of vision. Therefore, the corner of the road is a frequent traffic accident area.
目前道路交通检测的方法众多,且日益成熟,但绝大多数是针对 城市常规道路的车流及事故监测。而针对于转弯道路,目前除了使用 较为广泛的道路广角镜,和静态转弯警示牌以外,几乎没有一种高效 的智能检测处理方法,是对转弯道路交通信息做精准处理,并精准识 别道路上移动物体类别,如:行人、车辆的类别。At present, there are many methods of road traffic detection, and they are becoming more and more mature, but most of them are for traffic flow and accident monitoring on urban conventional roads. For turning roads, currently, apart from widely used road wide-angle mirrors and static turn warning signs, there is almost no efficient intelligent detection and processing method, which is to accurately process the traffic information of turning roads and accurately identify moving objects on the road. Category, such as: pedestrian, vehicle category.
为了将信息提前告知驾驶员,减少交通事故发生率,因此,研究 一种转弯道路视觉盲区的信息检测处理方法具有重要的现实意义。In order to inform the driver of the information in advance and reduce the incidence of traffic accidents, it is of great practical significance to study an information detection and processing method for the visual blind spot of the turning road.
发明内容SUMMARY OF THE INVENTION
针对以上方法存在的不足,本发明提出了一种转弯道路视觉盲区 信息的检测处理方法及系统,能够及时将转弯道路视觉盲区信息提前 告知驾驶员,减少交通事故发生率。In view of the shortcomings of the above methods, the present invention proposes a method and system for detecting and processing visual blind spot information on a turning road, which can timely inform the driver of the visual blind spot information on a turning road and reduce the incidence of traffic accidents.
本发明解决其技术问题采取的技术方案是:The technical scheme adopted by the present invention to solve its technical problems is:
本发明提供的一种转弯道路视觉盲区信息的检测处理方法,包括 以下步骤:A method for detecting and processing visual blind spot information of a turning road provided by the present invention includes the following steps:
步骤1,利用地磁传感器对转弯道路上行驶物体进行检测,如果 检测到车辆则将地磁传感器的Z轴方向的磁场数据发送给微控制器, 否则转入步骤3;
步骤2,微控制器对地磁传感器的Z轴方向的磁场数据进行杂波 去除处理,并将有效的地磁传感器数据信息进行存储;
步骤3,利用微波传感器进行障碍物检测,并将接收到的障碍物 反射的微波信号发送给微控制器;
步骤4,微控制器将接收到的微波传感器数据信息进行存储,并 将接收到的地磁传感器数据和微波传感器数据进行数据融合;
步骤5,微控制器将融合后的数据与十六进制特征向量样本进行 比对,若匹配成功则进行步骤6的测量和显示,否则返回步骤1;
步骤6,雷达传感器将检测的数据发送至微控制器,微控制器将 检测数据发送给LED显示屏进行显示并启动警示灯进行警示,同时微 控制器将检测数据和位置信息发送至后台服务器;
步骤7,后台服务器将接收到的数据分类储存,并对积累的数据 进行模糊聚类分析,得到更加精准的特征向量区间,并且定期将该特 征向量区间作为更新后的特征向量样本集发送给所述微控制器。Step 7: The background server classifies and stores the received data, and performs fuzzy cluster analysis on the accumulated data to obtain a more accurate feature vector interval, and periodically sends the feature vector interval as an updated feature vector sample set to all the data. described microcontroller.
作为本实施例一种可能的实现方式,在步骤2中,对地磁传感器 的Z轴方向的磁场数据进行杂波去除处理的过程为:读取地磁传感器 的Z轴方向的磁场数据,将前一时刻传入的数据作为参考,采用卡尔 曼滤波算法与现时刻传入的数据进行比较,推测出现时刻数据中错误 的数据,将由于无关因素而导致的错误数据去除,提取有用的数据信 息。As a possible implementation of this embodiment, in
作为本实施例一种可能的实现方式,在步骤4中,进行数据融合 的具体过程为:将地磁传感器传入的数据存放在单片机预先创建的一 个八位二进制数中的前七位,将微波传感器的数据放入第八位,之后 将八位二进制数据转换成十六进制数据。As a possible implementation manner of this embodiment, in
作为本实施例一种可能的实现方式,在步骤5中,将融合后的数 据与十六进制特征向量样本进行比对的具体过程为:融合后的数据与 十六进制特征向量样本进行循环检测,检测融合后的数据与每一个特 征向量样本进行匹配,如果匹配成功则返回该特征向量样本所对应的 信息。As a possible implementation of this embodiment, in
作为本实施例一种可能的实现方式,在步骤6中,微控制器将检 测数据发送给LED显示屏进行显示并启动警示灯进行警示的具体过 程为:微控制器通过解析雷达传感器传入的数据,根据传入的数据计 算出移动物体的速度和移动物体距转角处的距离信息,并根据移动物 体的对应类型,调用不同的数据发送给LED显示屏进行显示并启动警 示灯进行警示。As a possible implementation of this embodiment, in
作为本实施例一种可能的实现方式,在步骤7中,后台服务器对 积累的数据进行模糊聚类分析的具体过程为:As a possible implementation mode of the present embodiment, in
步骤71,后台服务器从数据库中取出最近的n组融合后的地磁 数据和微波数据作为一组初始样本论域,设每组数据为X1,X2,…,Xm, 每个数据有m个指标表示其特征,则初始样本论域第i个分类对象的 特征属性数据为Xi1’,Xi2’,…,Xim’;Step 71, the background server takes the latest n sets of fused geomagnetic data and microwave data from the database as a set of initial sample universe, and set each set of data as X 1 , X 2 ,...,X m , and each data has m Each index represents its characteristics, then the characteristic attribute data of the i-th classification object in the initial sample universe is X i1 ',X i2 ',...,X im ';
步骤72,利用下式将特征属性数据标准化:Step 72, using the following formula to standardize the feature attribute data:
其中, in,
步骤73,建立模糊相似关系矩阵,借用普遍聚类分析中确定相 似矩阵R=(rij)n×n,rij为Xi和Xj间的相似系数,其中 取适当的M值,使rij在[0,1]中 分散开;Step 73: Establish a fuzzy similarity relationship matrix, and determine the similarity matrix R=(r ij ) n×n by common cluster analysis, where r ij is the similarity coefficient between X i and X j , where Take an appropriate value of M to make r ij spread out in [0,1];
步骤74,对相似矩阵R进行传递闭包运算,得到t(R)=Rn,并 在此基础上令置信水平λ取不同的值,得到不同的聚类结果。Step 74: Perform a transitive closure operation on the similarity matrix R to obtain t(R)=R n , and on this basis, set the confidence level λ to take different values to obtain different clustering results.
本发明提供的一种转弯道路视觉盲区信息的检测处理系统,包括 设置在转弯道路现场的地磁传感器、微波传感器、雷达传感器、微控 制器、通信模块、LED显示屏和警示灯,以及通过通信模块与微控制 器远程通信的后台服务器,所述的地磁传感器、微波传感器、雷达传 感器、通信模块、LED显示屏和警示灯分别微控制器连接,所述的地 磁传感器和微波传感器设置转弯道路转角处前方的直行车道上,且地 磁传感器和微波传感器在直行车道行驶方向上前后设置,所述雷达传 感器设置在转弯道路转角处且雷达传感器的探头对向转弯道路转角 处前方的直行车道,所述的微控制器、通信模块、LED显示屏和警示 灯设置在转弯道路转角处,且LED显示屏面向转弯道路转角处前方的 直行车道设置。The invention provides a detection and processing system for visual blind area information of a turning road, which includes a geomagnetic sensor, a microwave sensor, a radar sensor, a microcontroller, a communication module, an LED display screen and a warning light, which are arranged at the scene of the turning road. A background server for remote communication with a microcontroller, the geomagnetic sensor, microwave sensor, radar sensor, communication module, LED display screen and warning light are respectively connected to the microcontroller, and the geomagnetic sensor and the microwave sensor are set at the corner of the turning road On the forward straight lane, and the geomagnetic sensor and the microwave sensor are arranged in front and behind in the driving direction of the straight lane, the radar sensor is arranged at the corner of the turning road, and the probe of the radar sensor faces the straight lane in front of the corner of the turning road. The microcontroller, the communication module, the LED display and the warning light are arranged at the corner of the turning road, and the LED display faces the straight lane ahead of the corner of the turning road.
作为本实施例一种可能的实现方式,所述地磁传感器采用 HMC5883L三轴地磁传感器,用于通过检测移动物体的金属含量来输 出检测的移动物体数据;所述微波传感器采用型号为RCWL-0516的微 波传感器,用于是否存在移动物体;所述雷达传感器采用TF03激光 雷达传感器,用于检测移动物体的速度和到转角的距离信息。As a possible implementation of this embodiment, the geomagnetic sensor adopts the HMC5883L three-axis geomagnetic sensor, which is used to output the detected moving object data by detecting the metal content of the moving object; the microwave sensor adopts the model RCWL-0516 The microwave sensor is used for whether there is a moving object; the radar sensor adopts the TF03 lidar sensor, which is used to detect the speed of the moving object and the distance information to the turning angle.
作为本实施例一种可能的实现方式,所述通信模块采用SIM868 GSM/GPRS/GPS模块。As a possible implementation manner of this embodiment, the communication module adopts a SIM868 GSM/GPRS/GPS module.
作为本实施例一种可能的实现方式,所述的检测处理系统应用在 单向车道道路和/或双向车道道路。As a possible implementation of this embodiment, the detection and processing system is applied to a one-way lane road and/or a two-way lane road.
本发明实施例的技术方案可以具有的有益效果如下:The beneficial effects that the technical solutions of the embodiments of the present invention can have are as follows:
本发明实施例的一种转弯道路视觉盲区信息的检测处理方法,对 转弯道路上行驶物体进行检测,进行杂波去除处理,进行障碍物检测, 微控制器将接收到的地磁传感器数据和微波传感器数据进行数据融 合;将融合后的数据与十六进制特征向量样本进行比对,微控制器将 检测数据发送给LED显示屏进行显示并启动警示灯进行警示,同时微 控制器将检测数据和位置信息发送至后台服务器分类储存,后台服务 器对积累的数据进行模糊聚类分析,得到更加精准的特征向量区间, 并且定期将该特征向量区间作为更新后的特征向量样本集发送给所 述微控制器。本发明实施例的技术方案能够及时将转弯道路视觉盲区 信息提前告知驾驶员,减少交通事故发生率。A method for detecting and processing visual blind spot information on a turning road according to an embodiment of the present invention detects objects traveling on the turning road, performs clutter removal processing, and performs obstacle detection. The data is fused; the fused data is compared with the hexadecimal feature vector samples, the microcontroller sends the detection data to the LED display for display and starts the warning light for warning, and the microcontroller compares the detection data with the hexadecimal feature vector samples. The location information is sent to the background server for classification and storage, and the background server performs fuzzy cluster analysis on the accumulated data to obtain a more accurate feature vector interval, and periodically sends the feature vector interval as an updated feature vector sample set to the micro-controller device. The technical solution of the embodiment of the present invention can timely inform the driver of the information of the visual blind spot of the turning road in advance, thereby reducing the occurrence rate of traffic accidents.
本发明实施例的技术方案使用两个传感器进行数据的输出,实现 了输出信息的电子化,较传统广角镜由人眼来目测对向道路信息的方 式更为精准;同时使用卡尔曼滤波算法,将道路上传出的异常数据进 行有效滤除;采取融合算法,将多个传感器传出的数据进行融合处理, 方便数据进行传输,及仅进行一次数据的传输就可以将所有数据发送 出去,提高传输效率,减轻系统负担;与传统的阈值检测法不同,采 用模糊聚类分析法更加精准高效的识别行驶物体类型信息,如:行人、 骑行者、不同型号的车辆,精准挖掘有用数据。此检测方法可用在城 市弯路、山区弯路、居民小区、地下停车场等多种场地,应用范围广泛。The technical solution of the embodiment of the present invention uses two sensors to output data, realizes the electronization of output information, and is more accurate than the traditional wide-angle lens in which the opposite road information is visually detected by the human eye; at the same time, the Kalman filter algorithm is used to The abnormal data on the road is effectively filtered out; the fusion algorithm is adopted to fuse the data from multiple sensors, which is convenient for data transmission, and only one data transmission can send all the data to improve the transmission efficiency. Different from the traditional threshold detection method, the fuzzy clustering analysis method is used to more accurately and efficiently identify the type information of moving objects, such as pedestrians, cyclists, and different types of vehicles, and accurately mine useful data. This detection method can be used in various places such as urban detours, mountain detours, residential quarters, underground parking lots, etc., and has a wide range of applications.
本发明实施例的一种转弯道路视觉盲区信息的检测处理系统,能 够实现本发明实施例的一种转弯道路视觉盲区信息的检测处理方法 的相同有益效果。The system for detecting and processing visual blind spot information on a turning road according to the embodiment of the present invention can achieve the same beneficial effects as the method for detecting and processing visual blind spot information on a turning road according to the embodiment of the present invention.
附图说明:Description of drawings:
图1是根据一示例性实施例示出的一种转弯道路视觉盲区信息 的检测处理方法的流程图;Fig. 1 is a flow chart of a method for detecting and processing visual blind spot information of a turning road shown according to an exemplary embodiment;
图2是根据一示例性实施例示出的一种转弯道路视觉盲区信息 的检测处理系统的原理框图;Fig. 2 is a schematic block diagram of a system for detecting and processing visual blind spot information of a turning road according to an exemplary embodiment;
图3是本发明检测处理系统具体实施中转角偏道路A侧和转角 偏道路B侧的立柱组合正视图,图中,1-立柱,2-LED屏,3-警示灯, 4-电源,5-密封盒包括:微控制器、SIM868GSM/GPRS/GPS模块;Fig. 3 is the front view of the combination of uprights on the side A side of the turning angle deviating road and the side B side of the turning angle deviating road in the specific implementation of the detection and processing system of the present invention, in the figure, 1-upright column, 2-LED screen, 3-warning light, 4-power supply, 5- -The sealed box includes: microcontroller, SIM868GSM/GPRS/GPS module;
图4是本发明检测处理系统具体实施中的转角处立柱组合正视 图,图中,6-雷达传感器,7-太阳能电池板;Fig. 4 is the front view of the column combination at the corner in the specific implementation of the detection processing system of the present invention, in the figure, 6-radar sensor, 7-solar panel;
图5是本发明检测处理系统硬件位置布局的俯视图,图中,8- 地磁传感器A,9-微波传感器A,10-转角偏道路A侧立柱及微控制器、 显示屏、警示灯组合(具体如图3所示),11-转角偏道路B侧立柱、 太阳能板、雷达传感器,12-立柱、微控制器、显示屏、警示灯组合(具 体如图3所示),13-地磁传感器B,14-微波传感器B;5 is a top view of the hardware location layout of the detection and processing system of the present invention, in the figure, 8- geomagnetic sensor A, 9- microwave sensor A, 10- corner deviating road A side column and microcontroller, display screen, warning light combination (specifically As shown in Figure 3), 11- Corner deviation road B side column, solar panel, radar sensor, 12- column, microcontroller, display screen, warning light combination (specifically shown in Figure 3), 13- Geomagnetic sensor B , 14-Microwave sensor B;
图6是本发明对转弯道路视觉盲区信息进行检测处理的一具体 流程图。Fig. 6 is a specific flow chart of the present invention for detecting and processing the visual blind spot information of the turning road.
具体实施方式Detailed ways
下面结合附图与实施例对本发明做进一步说明:Below in conjunction with accompanying drawing and embodiment, the present invention will be further described:
为能清楚说明本方案的技术特点,下面通过具体实施方式,并 结合其附图,对本发明进行详细阐述。下文的公开提供了许多不同的 实施例或例子用来实现本发明的不同结构。为了简化本发明的公开, 下文中对特定例子的部件和设置进行描述。此外,本发明可以在不同 例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的, 其本身不指示所讨论各种实施例和/或设置之间的关系。应当注意, 在附图中所图示的部件不一定按比例绘制。本发明省略了对公知组件 和处理技术及工艺的描述以避免不必要地限制本发明。In order to clearly illustrate the technical features of this solution, the present invention will be described in detail below through specific embodiments and in conjunction with the accompanying drawings. The following disclosure provides many different embodiments or examples for implementing different structures of the invention. In order to simplify the disclosure of the present invention, the components and arrangements of specific examples are described below. Furthermore, the present invention may repeat reference numerals and/or letters in different instances. This repetition is for the purpose of simplicity and clarity and does not in itself indicate a relationship between the various embodiments and/or arrangements discussed. It should be noted that the components illustrated in the figures are not necessarily drawn to scale. Descriptions of well-known components and processing techniques and processes are omitted from the present invention to avoid unnecessarily limiting the present invention.
为了能清楚直观说明本发明所达到的效果,下面以北京市主城区 为例,通过具体实施方式,并结合附图对本发明进行详细阐述。In order to clearly and intuitively illustrate the effect achieved by the present invention, the present invention will be described in detail below by taking the main urban area of Beijing as an example, through specific embodiments and in conjunction with the accompanying drawings.
图1是根据一示例性实施例示出的一种转弯道路视觉盲区信息 的检测处理方法的流程图。如图1所述,本发明实施例提供的一种转 弯道路视觉盲区信息的检测处理方法,包括以下步骤:Fig. 1 is a flowchart of a method for detecting and processing visual blind spot information of a turning road according to an exemplary embodiment. As shown in Figure 1, a method for detecting and processing visual blind spot information of a turning road provided by an embodiment of the present invention includes the following steps:
步骤1,利用地磁传感器对转弯道路上行驶物体进行检测,如果 检测到车辆则将地磁传感器的Z轴方向的磁场数据发送给微控制器, 否则转入步骤3;
步骤2,微控制器对地磁传感器的Z轴方向的磁场数据进行杂波 去除处理,并将有效的地磁传感器数据信息进行存储;
步骤3,利用微波传感器进行障碍物检测,并将接收到的障碍物 反射的微波信号发送给微控制器;
步骤4,微控制器将接收到的微波传感器数据信息进行存储,并 将接收到的地磁传感器数据和微波传感器数据进行数据融合;
步骤5,微控制器将融合后的数据与十六进制特征向量样本进行 比对,若匹配成功则进行步骤6的测量和显示,否则返回步骤1;
步骤6,雷达传感器将检测的数据发送至微控制器,微控制器将 检测数据发送给LED显示屏进行显示并启动警示灯进行警示,同时微 控制器将检测数据和位置信息发送至后台服务器;
步骤7,后台服务器将接收到的数据分类储存,并对积累的数据 进行模糊聚类分析,得到更加精准的特征向量区间,并且定期将该特 征向量区间作为更新后的特征向量样本集发送给所述微控制器。微控 制器依据此特征向量样本集来进行判断,使判断更加准确。Step 7: The background server classifies and stores the received data, and performs fuzzy cluster analysis on the accumulated data to obtain a more accurate feature vector interval, and periodically sends the feature vector interval as an updated feature vector sample set to all the data. described microcontroller. The microcontroller makes judgments based on this feature vector sample set to make judgments more accurate.
在本实施例一种可能的实现方式中,在步骤2中,对地磁传感器 的Z轴方向的磁场数据进行杂波去除处理的过程为:读取地磁传感器 的Z轴方向的磁场数据,将前一时刻传入的数据作为参考,采用卡尔 曼滤波算法与现时刻传入的数据进行比较,推测出现时刻数据中错误 的数据,将由于无关因素而导致的错误数据去除,提取有用的数据信 息。In a possible implementation manner of this embodiment, in
在本实施例一种可能的实现方式中,在步骤4中,进行数据融合 的具体过程为:将地磁传感器传入的数据存放在单片机预先创建的一 个八位二进制数中的前七位,将微波传感器的数据放入第八位,之后 将八位二进制数据转换成十六进制数据。In a possible implementation manner of this embodiment, in
假设可识别行驶物体类型分别是小轿车、中型越野车、大型货车, 将数据分为三个范围,通过数据处理,将地磁传感器输出数据约束在 0000-007F区间内,其中小型轿车数据设定在001E左右、中型越野 车设定在003C左右,大型货车设定在0064左右,则数据将最大不超 过007F。因此地磁传感器以十六进制输出数据时相对应的二进制数 据第八位闲置,可以用来表示微波传感器输出的数据,本发明用十六 进制码确定期望输出,根据识别类型有以下表示方式:Assuming that the types of identifiable driving objects are cars, medium-sized off-road vehicles, and large trucks, the data are divided into three ranges, and through data processing, the output data of the geomagnetic sensor is constrained within the range of 0000-007F, in which the data of small cars is set at 001E or so, medium off-road vehicles are set at around 003C, and large trucks are set at around 0064, the data will not exceed 007F at most. Therefore, when the geomagnetic sensor outputs data in hexadecimal, the eighth bit of the corresponding binary data is idle, which can be used to represent the data output by the microwave sensor. The present invention uses hexadecimal code to determine the expected output, which is expressed as follows according to the identification type :
无行驶物体时,发送二进制数00000000,十六进制数表示为0x00;When there is no moving object, the binary number 00000000 is sent, and the hexadecimal number is represented as 0x00;
行驶物体只是行人无车辆时,二进制表示为10000000—10010000, 十六进制表示为0x80—0x90;When the moving object is only a pedestrian without a vehicle, the binary representation is 10000000—10010000, and the hexadecimal representation is 0x80—0x90;
行驶物体包括车辆时,第八位为1,且第一到第七位表示车辆信 息,也就是车辆数据+0x80即可。When the moving object includes a vehicle, the eighth bit is 1, and the first to seventh bits represent vehicle information, that is, vehicle data + 0x80.
在本实施例一种可能的实现方式中,在步骤5中,将融合后的数 据与十六进制特征向量样本进行比对的具体过程为:融合后的数据与 十六进制特征向量样本进行循环检测,检测融合后的数据与每一个特 征向量样本进行匹配,如果匹配成功则返回该特征向量样本所对应的 信息。In a possible implementation manner of this embodiment, in
在本实施例一种可能的实现方式中,在步骤6中,微控制器将检 测数据发送给LED显示屏进行显示并启动警示灯进行警示的具体过 程为:微控制器通过解析雷达传感器传入的数据,根据传入的数据计 算出移动物体的速度和移动物体距转角处的距离信息,并根据移动物 体的对应类型,调用不同的数据发送给LED显示屏进行显示并启动警 示灯进行警示。In a possible implementation manner of this embodiment, in
在本实施例一种可能的实现方式中,在步骤7中,后台服务器对 积累的数据进行模糊聚类分析的具体过程为:In a possible implementation of the present embodiment, in
步骤71,后台服务器从数据库中取出最近的n组融合后的地磁 数据和微波数据作为一组初始样本论域,设每组数据为X1,X2,…,Xm, 每个数据有m个指标表示其特征,则初始样本论域第i个分类对象的 特征属性数据为Xi1’,Xi2’,…,Xim’;Step 71, the background server takes the latest n sets of fused geomagnetic data and microwave data from the database as a set of initial sample universe, and set each set of data as X 1 , X 2 ,...,X m , and each data has m Each index represents its characteristics, then the characteristic attribute data of the i-th classification object in the initial sample universe is X i1 ',X i2 ',...,X im ';
步骤72,利用下式将特征属性数据标准化:Step 72, using the following formula to standardize the feature attribute data:
其中, in,
步骤73,建立模糊相似关系矩阵,借用普遍聚类分析中确定相 似矩阵R=(rij)n×n,rij为Xi和Xj间的相似系数,其中 取适当的M值,使rij在[0,1]中 分散开;Step 73: Establish a fuzzy similarity relationship matrix, and determine the similarity matrix R=(r ij ) n×n by common cluster analysis, where r ij is the similarity coefficient between X i and X j , where Take an appropriate value of M to make r ij spread out in [0,1];
步骤74,对相似矩阵R进行传递闭包运算,得到t(R)=Rn,并 在此基础上令置信水平λ取不同的值,得到不同的聚类结果。Step 74: Perform a transitive closure operation on the similarity matrix R to obtain t(R)=R n , and on this basis, set the confidence level λ to take different values to obtain different clustering results.
图2是根据一示例性实施例示出的一种转弯道路视觉盲区信息 的检测处理系统的原理框图。如图2所述,本发明实施例提供的一种 转弯道路视觉盲区信息的检测处理系统,包括设置在转弯道路现场的 地磁传感器、微波传感器、雷达传感器、微控制器、通信模块、LED 显示屏和警示灯,以及通过通信模块与微控制器远程通信的后台服务 器,所述的地磁传感器、微波传感器、雷达传感器、通信模块、LED 显示屏和警示灯分别微控制器连接,所述的地磁传感器和微波传感器 设置转弯道路转角处前方的直行车道上,且地磁传感器和微波传感器 在直行车道行驶方向上前后设置,所述雷达传感器设置在转弯道路转 角处且雷达传感器的探头对向转弯道路转角处前方的直行车道,所述 的微控制器、通信模块、LED显示屏和警示灯设置在转弯道路转角处, 且LED显示屏面向转弯道路转角处前方的直行车道设置。Fig. 2 is a schematic block diagram of a system for detecting and processing visual blind spot information of a turning road according to an exemplary embodiment. As shown in FIG. 2 , an embodiment of the present invention provides a system for detecting and processing visual blind spot information on a turning road, including a geomagnetic sensor, a microwave sensor, a radar sensor, a microcontroller, a communication module, and an LED display set on the turning road site. and warning lights, as well as the background server that communicates with the microcontroller remotely through the communication module, the geomagnetic sensor, microwave sensor, radar sensor, communication module, LED display screen and warning light are respectively connected to the microcontroller, the geomagnetic sensor The radar sensor is arranged at the corner of the turning road, and the radar sensor is arranged at the corner of the turning road and the probe of the radar sensor faces the corner of the turning road In the straight lane ahead, the microcontroller, the communication module, the LED display screen and the warning light are set at the corner of the turning road, and the LED display screen is set facing the straight lane in front of the corner of the turning road.
在本实施例一种可能的实现方式中,所述地磁传感器采用 HMC5883L三轴地磁传感器,用于通过检测移动物体的金属含量来输 出检测的移动物体数据;所述微波传感器采用型号为RCWL-0516的微 波传感器,用于是否存在移动物体;所述雷达传感器采用TF03激光 雷达传感器,用于检测移动物体的速度和到转角的距离信息。In a possible implementation manner of this embodiment, the geomagnetic sensor adopts the HMC5883L three-axis geomagnetic sensor, which is used to output the detected moving object data by detecting the metal content of the moving object; the microwave sensor adopts the model RCWL-0516 The microwave sensor is used for whether there is a moving object; the radar sensor adopts the TF03 lidar sensor, which is used to detect the speed of the moving object and the distance information to the turning angle.
在本实施例一种可能的实现方式中,所述通信模块采用SIM868 GSM/GPRS/GPS模块。In a possible implementation manner of this embodiment, the communication module adopts a SIM868 GSM/GPRS/GPS module.
在本实施例一种可能的实现方式中,所述的检测处理系统应用在 单向车道道路和/或双向车道道路。In a possible implementation manner of this embodiment, the detection and processing system is applied to a one-way lane road and/or a two-way lane road.
如图3至图5所示,完成本发明转弯道路视觉盲区信息的检测处 理方法所需要的硬件位置布局为,假设双向车道道路的转角两侧道路 分别为道路A、道路B,道路转角附近设置3个立柱,其中一个立柱 设置在转角处,该立柱上设置2个雷达传感器和1个太阳能板,其中 雷达传感器放在立柱上方,雷达传感器探头对向相应车道,太阳能板 放置在立柱顶部。转角偏道路A侧和转角偏道路B侧分别设置一个立 柱,其中立柱上设置微控制器、SIM868GSM/GPRS/GPS模块、显示屏、 圆形警示灯,其中每个部件的具体位置为,微控制器与SIM868 GSM/GPRS/GPS模块一同放在密封盒内,密封盒设置在立柱顶端,圆 型警示灯设置在立柱上部,显示屏设置在圆形警示灯下方。道路A上 有地磁传感器、微波传感器,地磁传感器放置在较微波传感器距转角 较远处,微波传感器放置在距转角距离较近处,道路B同理。为了便 于安装和后期维护,将雷达传感器设置在立柱上,并设置雷达传感器 的立柱上安装太阳能电池板,利用太阳能进行供电;则在转角偏道路 A侧和转角偏道路B侧的立柱分别显示屏、警示灯和微控制器等。As shown in FIG. 3 to FIG. 5 , the hardware location layout required to complete the method for detecting and processing the visual blind spot information of the turning road according to the present invention is as follows. It is assumed that the roads on both sides of the corner of the two-way lane road are Road A and Road B, respectively. There are 3 columns, one of which is set at the corner, 2 radar sensors and 1 solar panel are set on the column, where the radar sensor is placed above the column, the radar sensor probe is facing the corresponding lane, and the solar panel is placed on the top of the column. A column is set on the A side of the corner road and the B side of the corner road. The column is equipped with a microcontroller, SIM868GSM/GPRS/GPS module, a display screen, and a circular warning light. The specific position of each component is, the micro-controller The device is placed in a sealed box together with the SIM868 GSM/GPRS/GPS module. The sealed box is set at the top of the column, the circular warning light is set on the upper part of the column, and the display screen is set below the circular warning light. There are geomagnetic sensors and microwave sensors on road A. The geomagnetic sensor is placed farther from the corner than the microwave sensor, and the microwave sensor is placed closer to the corner. The same is true for road B. In order to facilitate installation and later maintenance, the radar sensor is set on the column, and the solar panel is installed on the column where the radar sensor is set, and the solar energy is used for power supply; , warning lights and microcontrollers, etc.
道路A上传感器检测处理后的数据由道路B显示屏和警示灯组合 显示,同理道路B上传感器检测处理后的数据由道路A显示屏和警示 灯组合显示。The data detected and processed by the sensors on road A is displayed by the display screen and warning light of road B. Similarly, the data detected and processed by the sensors on road B is displayed by the display screen and warning light of road A.
以行驶物体是车辆为例,利用本发明检测处理系统进行转弯道路 视觉盲区信息的检测流程主要有以下步骤:Taking the traveling object as a vehicle as an example, the detection process of the visual blind spot information of the turning road using the detection processing system of the present invention mainly includes the following steps:
步骤1、车辆先由地磁传感器检测,读取地磁传感器的Z轴方向 的磁场数据,使用卡尔曼滤波算法将杂波去除,提取有用的数据信息; 利用前一时刻传入的数据作为参考,与现时刻传入的数据进行比较, 推测出现时刻数据中错误的数据,尽可能将由于无关因素而导致的错 误数据去除。
步骤2、地磁传感器将获取的滤波之后的有效磁场数据存入微控 制器ROM中,等待数据融合,方便下一步数据处理。Step 2: The geomagnetic sensor stores the acquired effective magnetic field data after filtering in the microcontroller ROM, and waits for data fusion to facilitate the next data processing.
步骤3、移动物体后由微波传感器检测,微波传感器使用微波振 荡器发出微波,微波传感器的接收头接收由障碍物反射的微波。
步骤4、微波传感器输出信号到微控制器ROM中,进行数据融合。
步骤5、微控制器将融合完毕的数据与十六进制特征向量样本进 行比对,若匹配成功则开启雷达传感器等设备,进行下一步的测量和 显示,反之则放弃此次数据,系统重新恢复到初始状态。
步骤6、雷达传感器发送相关信息至微控制器,微控制器进行数 据处理,将处理后的有关数据发送至警示灯和LED显示屏,同时开启 SIM868GSM/GPRS/GPS模块的GPS功能获取GPS信息,然后使用SIM868 GSM/GPRS/GPS模块的GPRS功能将数据统一打包发送至后台服务器。
步骤7、服务器将接收到的数据分类储存,积累一定数据后进行 模糊聚类分析,得到更加精准的特征向量区间,并且定期将该特征向 量区间发送给微控制器,作为更新后的特征向量样本集,微控制器依 据此向量样本集来进行判断,使判断更加准确。
以行驶物体只是行人为例,利用本发明检测处理系统进行转弯 道路视觉盲区信息的检测流程主要有以下步骤:Taking the traveling object as an example, the detection process of the visual blind spot information of the turning road using the detection processing system of the present invention mainly includes the following steps:
步骤1、行人先经过由地磁传感器检测,读取地磁传感器的Z轴 方向的磁场数据,提取有效的数据信息,人体对地磁信号干扰较小或 无干扰;利用前一时刻传入的数据作为参考,与现时刻传入的数据进 行比较,推测出现时刻数据中错误的数据,尽可能将由于无关因素而 导致的错误数据去除。
步骤2’、微控制器接收地磁传感器信号,将不会获取有效信号, 则进入步骤3’。Step 2', the microcontroller receives the geomagnetic sensor signal, and will not obtain a valid signal, then go to step 3'.
步骤3’、行人后经过微波传感器,微波传感器使用微波振荡器 发出微波,微波传感器的接收头接收由障碍物反射的微波。Step 3', the pedestrian passes through the microwave sensor, the microwave sensor uses a microwave oscillator to send out microwaves, and the receiving head of the microwave sensor receives the microwaves reflected by the obstacle.
步骤4’、微波传感器输出信号到微控制器ROM中,进行数据融 合。Step 4', the microwave sensor output signal is in the microcontroller ROM, carries out data fusion.
步骤5、微控制器将融合完毕的数据与十六进制特征向量样本进 行比对,若匹配成功则开启雷达传感器等设备,进行下一步的测量和 显示,反之则放弃此次数据,系统重新恢复到初始状态。
步骤6、雷达传感器发送相关信息至微控制器,微控制器进行数 据处理,将处理后的有关数据发送至警示灯和LED显示屏,同时开启 SIM868GSM/GPRS/GPS模块的GPS功能获取GPS信息,然后使用SIM868 GS/GPRS/GPS模块的GPRS功能将数据统一打包发送至后台服务器。
步骤7、服务器将接收到的数据分类储存,积累一定数据后进行 模糊聚类分析,得到更加精准的特征向量区间,并且定期将该特征向 量区间发送给微控制器,作为更新后的特征向量样本集,微控制器依 据此样本集来进行判断,使判断更加准确。
数据融合具体方法是:假设可识别行驶物体类型分别是小轿车、 中型越野车、大型货车,将数据分为三个范围,通过数据处理,将地 磁传感器输出数据约束在0x00-007F区间内,其中小型轿车数据设定 在0x1E左右、中型越野车设定在0x3C左右,大型货车设定在0x64 左右,则数据将最大不超过0x7F。The specific method of data fusion is: Assuming that the types of identifiable driving objects are cars, medium-sized off-road vehicles, and large trucks, the data is divided into three ranges, and through data processing, the output data of the geomagnetic sensor is constrained within the range of 0x00-007F, where The data of the small car is set at about 0x1E, the medium off-road vehicle is set at about 0x3C, and the large truck is set at about 0x64, then the data will not exceed 0x7F.
下述数据为地磁传感器传出的数据:The following data is the data transmitted by the geomagnetic sensor:
小型轿车:car:
0x26,0x20,0x23,0x1C,0x1A,0x18,0x1E,0x21,0x29,0x1D,0x1D, 0x25,0x22,0x21,0x19,0x1A,0x1B,0x1F,0x28,0x23,0x24,0x16, 0x19,0x21,0x26,0x1D,0x18,0x1E,0x1A,0x18,0x24,0x18,0x1F。0x26,0x20,0x23,0x1C,0x1A,0x18,0x1E,0x21,0x29,0x1D,0x1D, 0x25,0x22,0x21,0x19,0x1A,0x1B,0x1F,0x28,0x23,0x24,0x16,0x19,0x21,0x2 0x1D, 0x18, 0x1E, 0x1A, 0x18, 0x24, 0x18, 0x1F.
中型越野车:Medium SUV:
0x42,0x3B,0x3D,0x41,0x45,0x38,0x43,0x40,0x35,0x3B,0x33, 0x3F,0x39,0x3C,0x42,0x33,0x45,0x36,0x34,0x40,0x3E,0x38, x35,0x44,0x3D,0x36,0x34,0x3A,0x3D,0x40,0x45,0x3B,0x3D。0x42,0x3B,0x3D,0x41,0x45,0x38,0x43,0x40,0x35,0x3B,0x33,0x3F,0x39,0x3C,0x42,0x33,0x45,0x36,0x34,0x40,0x3E,0x38,x35,0x44,0x3D, 0x36, 0x34, 0x3A, 0x3D, 0x40, 0x45, 0x3B, 0x3D.
大型货车:Large truck:
0x6E,0x69,0x6D,0x62,0x61,0x66,0x5D,0x64,0x5F,0x5E,0x65, 0x5C,0x5E,0x6A,0x64,0x5D,0x6F,0x5F,0x6B,0x60,0x5C,0x67, 0x60,0x5B,0x68,0x6A,0x69,0x63,0x5C,0x5D,0x66,0x71,0x61。0x6E, 0x69, 0x6D, 0x62, 0x61, 0x66, 0x5D, 0x64, 0x5F, 0x5E, 0x65, 0x5C, 0x5E, 0x6A, 0x64, 0x5D, 0x6F, 0x5F, 0x6B, 0x60, 0x5C, 0x67, 0x60, 0x5B, 0x68 0x6A, 0x69, 0x63, 0x5C, 0x5D, 0x66, 0x71, 0x61.
对地磁传感器传出的众多数据进行分析后发现不同型号的车辆 的数据分别集中于不同的范围,且数据最大不超过0x7F,因此地磁 传感器以十六进制输出数据时相对应的二进制数据第八位闲置,因此 第八位可以用来表示微波传感器输出的数据,根据行驶物体的不同, 融合后的对应十六进制期望输出数据的对应二进制数据如表1所示。After analyzing the data from the geomagnetic sensor, it is found that the data of different models of vehicles are concentrated in different ranges, and the maximum data does not exceed 0x7F. Therefore, when the geomagnetic sensor outputs data in hexadecimal, the corresponding binary data is eighth. The eighth bit can be used to represent the data output by the microwave sensor. According to different driving objects, the corresponding binary data corresponding to the hexadecimal expected output data after fusion is shown in Table 1.
表1:Table 1:
融合后的数据与样本集进行比对的具体过程为,融合后的数据与 十六进制特征向量样本进行循环检测,检测融合后的数据与哪一个特 征向量样本最为匹配,匹配成功则返回该特征向量样本所对应的信息 如果都不满足,则认为该次数据为一些无关因素产生的数据,系统不 对此做出反应。The specific process of comparing the fused data with the sample set is that the fused data and the hexadecimal feature vector samples are cyclically detected to detect which feature vector sample the fused data matches the most, and if the match is successful, it will return the If the information corresponding to the eigenvector samples is not satisfied, it is considered that the data is generated by some irrelevant factors, and the system does not respond to it.
微控制器通过解析雷达传感器传入的数据,根据传入的数据计算 出移动物体的速度和距转角处的距离信息,并根据物体的对应类型, 调用不同的数据传送至显示屏和圆形警示灯,用以显示不同的形状和 实时变化的速度距离信息。The microcontroller parses the incoming data from the radar sensor, calculates the speed of the moving object and the distance from the corner according to the incoming data, and transfers different data to the display screen and circular warning according to the corresponding type of the object The lights are used to display different shapes and real-time changing speed and distance information.
下面以小型轿车、中型越野车、大型货车三种车型为例,描述模 糊聚类分析过程。初期先从数据库中获取n组地磁传感器、微波传感 器融合后的数据作为一组初始样本论域,从每个数据中提取相似特征 作为特征向量。The following is a description of the fuzzy clustering analysis process by taking three models of small cars, medium-sized off-road vehicles and large trucks as examples. In the initial stage, the fusion data of n groups of geomagnetic sensors and microwave sensors are obtained from the database as a set of initial sample universe, and similar features are extracted from each data as feature vectors.
根据特征向量生成样本集,样本集作为模糊聚类分析的匹配依 据,模糊聚类分析原理如下:The sample set is generated according to the feature vector, and the sample set is used as the matching basis for fuzzy clustering analysis. The principle of fuzzy clustering analysis is as follows:
步骤71,后台服务器从数据库中取出最近的n组融合后的地磁 数据和微波数据作为一组初始样本论域,设每组数据为X1,X2,…,Xm, 每个数据有m个指标表示其特征,则初始样本论域第i个分类对象的 特征属性数据为Xi1’,Xi2’,…,Xim’;Step 71, the background server takes the latest n sets of fused geomagnetic data and microwave data from the database as a set of initial sample universe, and set each set of data as X 1 , X 2 ,...,X m , and each data has m Each index represents its characteristics, then the characteristic attribute data of the i-th classification object in the initial sample universe is X i1 ',X i2 ',...,X im ';
步骤72,利用下式将特征属性数据标准化:Step 72, using the following formula to standardize the feature attribute data:
其中, in,
步骤73,建立模糊相似关系矩阵,借用普遍聚类分析中确定相 似矩阵R=(rij)n×n,rij为Xi和Xj间的相似系数,其中 取适当的M值,使rij在[0,1]中 分散开;Step 73: Establish a fuzzy similarity relationship matrix, and determine the similarity matrix R=(r ij ) n×n by common cluster analysis, where r ij is the similarity coefficient between X i and X j , where Take an appropriate value of M to make r ij spread out in [0,1];
步骤74,对相似矩阵R进行传递闭包运算,t(R)是模糊相似矩阵R 的传递闭包,它是一个可以通过平方法得到的包含R的最小模糊等价 矩阵,对R进行n次平方,得到t(R)=Rn,并在此基础上令置信水 平λ取不同的值,得到不同的聚类结果。Step 74: Perform a transitive closure operation on the similarity matrix R, t(R) is the transitive closure of the fuzzy similarity matrix R, which is a minimum fuzzy equivalent matrix containing R that can be obtained by the square method, and perform n times on R. Square, get t(R)= Rn , and on this basis, set the confidence level λ to take different values to obtain different clustering results.
服务器将n组数据进行模糊聚类分析后的结果定期发送给微控制 器,作为更新后的特征向量区间;同时服务器储存该结果,并且继续 储存多组模糊聚类后的结果,将这些结果再次进行模糊聚类分析,以 此类推,不断分析。目的是统计出每次分析结果中,数据特征集中的 类别,去除相似且无用的类,经过反复分析得到更精准的特征向量区 间。The server periodically sends the results of fuzzy clustering analysis of n groups of data to the microcontroller as the updated eigenvector interval; at the same time, the server stores the results, and continues to store multiple sets of fuzzy clustering results, and stores these results again. Perform fuzzy clustering analysis, and so on, continue to analyze. The purpose is to count the categories in the data feature set in each analysis result, remove the similar and useless categories, and obtain a more accurate feature vector interval after repeated analysis.
本发明使用两个传感器进行数据的输出,实现了输出信息的电子 化,较传统广角镜由人眼来目测对向道路信息的方式更为精准;同时 使用卡尔曼滤波算法,将道路上传出的异常数据进行有效滤除;采取 融合算法,将多个传感器传出的数据进行融合处理,方便数据进行传 输,及仅进行一次数据的传输就可以将所有数据发送出去,提高传输 效率,减轻系统负担;与传统的阈值检测法不同,采用模糊聚类分析 法更加精准高效的识别行驶物体类型信息,如:行人、骑行者、不同 型号的车辆,精准挖掘有用数据。此检测方法可用在城市弯路、山区 弯路、居民小区、地下停车场等多种场地,应用范围广泛。The present invention uses two sensors to output data, realizes the electronization of output information, and is more accurate than the traditional wide-angle lens in which the opposite road information is visually detected by human eyes; The data is effectively filtered out; the fusion algorithm is adopted to fuse the data from multiple sensors, which is convenient for data transmission, and only one data transmission can send all the data, which improves the transmission efficiency and reduces the system burden; Different from the traditional threshold detection method, the fuzzy clustering analysis method is used to more accurately and efficiently identify the type information of driving objects, such as pedestrians, cyclists, and different types of vehicles, and accurately mine useful data. This detection method can be used in various places such as urban detours, mountain detours, residential quarters, underground parking lots, etc., and has a wide range of applications.
以上所述只是本发明的优选实施方式,对于本技术领域的普通技 术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和 润饰,这些改进和润饰也被视作为本发明的保护范围。The above are only the preferred embodiments of the present invention. For those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made, and these improvements and modifications are also regarded as the present invention. the scope of protection of the invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910280781.7A CN109910881B (en) | 2019-04-09 | 2019-04-09 | Method and system for detecting and processing visual blind spot information of turning road |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910280781.7A CN109910881B (en) | 2019-04-09 | 2019-04-09 | Method and system for detecting and processing visual blind spot information of turning road |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109910881A CN109910881A (en) | 2019-06-21 |
CN109910881B true CN109910881B (en) | 2020-08-25 |
Family
ID=66969111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910280781.7A Active CN109910881B (en) | 2019-04-09 | 2019-04-09 | Method and system for detecting and processing visual blind spot information of turning road |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109910881B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112133128A (en) * | 2019-06-25 | 2020-12-25 | 奥迪股份公司 | Curve anti-collision early warning method and device, computer equipment and storage medium |
CN110789534A (en) * | 2019-11-07 | 2020-02-14 | 淮阴工学院 | Lane departure early warning method and system based on road condition detection |
CN111063217A (en) * | 2019-11-26 | 2020-04-24 | 深圳市中陆科技有限公司 | Bend protection system and method |
CN111186438B (en) * | 2020-01-16 | 2021-06-25 | 北京中科怡驰科技有限公司 | Filtering method for curve obstacle vehicle |
CN111627252A (en) * | 2020-06-10 | 2020-09-04 | 上海商汤智能科技有限公司 | Vehicle early warning method and device, electronic equipment and storage medium |
CN112098969B (en) * | 2020-11-18 | 2021-02-02 | 长沙莫之比智能科技有限公司 | Target detection and early warning optimization method for millimeter wave large vehicle blind area radar |
CN113823107B (en) * | 2021-08-31 | 2023-10-20 | 武汉工程大学 | Traffic warning instrument for curved road corner |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3617185B2 (en) * | 1996-04-19 | 2005-02-02 | トヨタ自動車株式会社 | Vehicle control device |
CN202434069U (en) * | 2012-02-15 | 2012-09-12 | 交通运输部公路科学研究所 | Geomagnetic sensor-based car meeting early warning system for highway curves |
CN205594888U (en) * | 2016-04-19 | 2016-09-21 | 姜勇杰 | No signal crossroad and T -shaped road junction pedestrian and vehicle warning device |
CN107123275A (en) * | 2017-06-29 | 2017-09-01 | 深圳市迅朗科技有限公司 | Road side equipment based on geomagnetic wake-up radar ranging technology and application method thereof |
CN207737197U (en) * | 2018-01-17 | 2018-08-17 | 深圳市小飞达电子有限公司 | The blind area monitoring device of light-sensitive element based on microwave remote sensor |
CN109024340A (en) * | 2018-09-07 | 2018-12-18 | 山东交通学院 | Safety early warning device at a kind of corner |
-
2019
- 2019-04-09 CN CN201910280781.7A patent/CN109910881B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109910881A (en) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109910881B (en) | Method and system for detecting and processing visual blind spot information of turning road | |
TWI430212B (en) | Abnormal behavior detection system and method using automatic classification of multiple features | |
CN110738857B (en) | Vehicle violation evidence obtaining method, device and equipment | |
US6442474B1 (en) | Vision-based method and apparatus for monitoring vehicular traffic events | |
US20180233047A1 (en) | Systems and methods for detecting and avoiding an emergency vehicle in the proximity of a substantially autonomous vehicle | |
CN111599183B (en) | Automatic driving scene classification and identification system and method | |
CN104809887B (en) | A kind of retrograde detection method of vehicle on expressway and autoalarm | |
CN106128130B (en) | Construction area operating status control method based on earth magnetism wagon detector and system | |
CN102837658A (en) | Intelligent vehicle multi-laser-radar data integration system and method thereof | |
US12093045B2 (en) | Method and system for operating a mobile robot | |
CN110136462B (en) | A traffic intersection pass assistance system and control method thereof based on the Internet of Vehicles technology | |
CN106448267B (en) | Road traffic accident chain based on car networking blocks system | |
KR102505867B1 (en) | Multi-vehicle data analysis and traffic signal control method and system using LiDar sensor | |
CN110807917A (en) | Highway intelligent security system based on cloud calculates | |
CN114387785A (en) | Safety management and control method and system based on intelligent highway and storable medium | |
WO2022213542A1 (en) | Method and system for clearing information-controlled intersection on basis of lidar and trajectory prediction | |
CN114758519A (en) | Vehicle road cooperative automatic driving system based on 5G and V2X intelligent lamp posts | |
CN111524390A (en) | Active early warning system and method for secondary accidents on expressway based on video detection | |
CN104464312A (en) | Intelligent transport system | |
CN107564336B (en) | Signalized intersection left turn conflict early warning system and early warning method | |
CN115071747A (en) | Driving assistance apparatus, system, and method for vehicle | |
CN103177248B (en) | A kind of rapid pedestrian detection method of view-based access control model | |
CN114550448A (en) | Lane-level traffic risk management and control system based on millimeter wave radar | |
CN204348074U (en) | A kind of intelligent transportation complex control system | |
Prarthana et al. | A Comparative Study of Artificial Intelligence Based Vehicle Classification Algorithms Used to Provide Smart Mobility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |