CN109909281B - medicament and method for synchronously fixing and reducing trichloroethylene in soil and/or underground water - Google Patents
medicament and method for synchronously fixing and reducing trichloroethylene in soil and/or underground water Download PDFInfo
- Publication number
- CN109909281B CN109909281B CN201910195313.XA CN201910195313A CN109909281B CN 109909281 B CN109909281 B CN 109909281B CN 201910195313 A CN201910195313 A CN 201910195313A CN 109909281 B CN109909281 B CN 109909281B
- Authority
- CN
- China
- Prior art keywords
- bentonite
- persulfate
- tce
- dnapl
- sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 title claims abstract description 182
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 239000003814 drug Substances 0.000 title claims abstract description 61
- 239000002689 soil Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 38
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 title claims description 119
- 229910000278 bentonite Inorganic materials 0.000 claims abstract description 132
- 239000000440 bentonite Substances 0.000 claims abstract description 132
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims abstract description 132
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 claims abstract description 83
- 239000011734 sodium Substances 0.000 claims abstract description 41
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 17
- 229940092782 bentonite Drugs 0.000 claims description 127
- 230000004888 barrier function Effects 0.000 claims description 48
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 claims description 17
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 claims description 17
- 230000035699 permeability Effects 0.000 claims description 15
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical group [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 230000005012 migration Effects 0.000 claims description 12
- 238000013508 migration Methods 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 12
- ONCZQWJXONKSMM-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical group O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4].[Si+4].[Si+4].[Si+4] ONCZQWJXONKSMM-UHFFFAOYSA-N 0.000 claims description 11
- 238000009792 diffusion process Methods 0.000 claims description 11
- 229940080314 sodium bentonite Drugs 0.000 claims description 11
- 229910000280 sodium bentonite Inorganic materials 0.000 claims description 11
- 238000009933 burial Methods 0.000 claims description 8
- 230000000903 blocking effect Effects 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- 239000002002 slurry Substances 0.000 claims 4
- 238000011109 contamination Methods 0.000 claims 1
- 230000000593 degrading effect Effects 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 32
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 28
- 229910052708 sodium Inorganic materials 0.000 abstract description 28
- 238000012360 testing method Methods 0.000 abstract description 10
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 abstract description 7
- -1 1,1‐dichloroethylene, 1,2‐dichloroethylene Chemical group 0.000 abstract description 6
- 238000006298 dechlorination reaction Methods 0.000 abstract description 6
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 231100000331 toxic Toxicity 0.000 abstract description 3
- 230000002588 toxic effect Effects 0.000 abstract description 3
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 239000003673 groundwater Substances 0.000 description 91
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000035484 reaction time Effects 0.000 description 8
- 239000003344 environmental pollutant Substances 0.000 description 7
- 231100000719 pollutant Toxicity 0.000 description 7
- 239000008346 aqueous phase Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000007774 longterm Effects 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000003895 groundwater pollution Methods 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000003100 immobilizing effect Effects 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052901 montmorillonite Inorganic materials 0.000 description 3
- 238000010525 oxidative degradation reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- CQBLUJRVOKGWCF-UHFFFAOYSA-N [O].[AlH3] Chemical compound [O].[AlH3] CQBLUJRVOKGWCF-UHFFFAOYSA-N 0.000 description 2
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- 239000010413 mother solution Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- UKDOTCFNLHHKOF-FGRDZWBJSA-N (z)-1-chloroprop-1-ene;(z)-1,2-dichloroethene Chemical group C\C=C/Cl.Cl\C=C/Cl UKDOTCFNLHHKOF-FGRDZWBJSA-N 0.000 description 1
- LGXVIGDEPROXKC-UHFFFAOYSA-N 1,1-dichloroethene Chemical group ClC(Cl)=C LGXVIGDEPROXKC-UHFFFAOYSA-N 0.000 description 1
- KYAYKZCMLUIIIW-UHFFFAOYSA-N ClC(CC(C(Cl)C=CCl)Cl)(Cl)Cl Chemical compound ClC(CC(C(Cl)C=CCl)Cl)(Cl)Cl KYAYKZCMLUIIIW-UHFFFAOYSA-N 0.000 description 1
- 229910002588 FeOOH Inorganic materials 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- KFUSEUYYWQURPO-UPHRSURJSA-N cis-1,2-dichloroethene Chemical group Cl\C=C/Cl KFUSEUYYWQURPO-UPHRSURJSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005108 dry cleaning Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 231100000243 mutagenic effect Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012954 risk control Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003900 soil pollution Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 231100000378 teratogenic Toxicity 0.000 description 1
- 230000003390 teratogenic effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
本发明公开了一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂及方法。该药剂采用膨润土、过硫酸盐和水三者在特定配比下配合,同时膨润土采用特定性能的钠基膨润土,利用该特定性能的钠基膨润土能有效激活过硫酸盐产生更多的强氧化性的SO4 ·‑和·OH,利用其彻底氧化三氯乙烯,不产生1,1‑二氯乙烯、1,2‑二氯乙烯或氯乙烯等毒性更强的脱氯产物,从而提高DNAPL污染源区中TCE去除率。同时,该特定性能的钠基膨润土在去除三氯乙烯过程中能维持反应体系pH稳定,故而在反应过程中不需额外添加碱试剂且不需调节pH值。经测试,TCE去除率在8天内达到51%~56%、64天内达到93%~100%。
The invention discloses a medicament and a method for synchronously fixing and reducing trichlorethylene in soil and/or underground water. The agent uses bentonite, persulfate and water in a specific ratio. At the same time, the bentonite uses sodium-based bentonite with specific properties. Using this specific performance of sodium-based bentonite can effectively activate persulfate to produce more strong oxidation. SO 4 ‑ and OH, using it to completely oxidize trichlorethylene, without producing more toxic dechlorination products such as 1,1‑dichloroethylene, 1,2‑dichloroethylene or vinyl chloride, thereby increasing DNAPL pollution sources TCE removal rate in the zone. At the same time, the sodium-based bentonite with this specific performance can maintain the pH stability of the reaction system during the process of removing trichlorethylene, so no additional addition of alkaline reagents and adjustment of the pH value are required during the reaction process. After testing, the removal rate of TCE reaches 51%-56% within 8 days and 93%-100% within 64 days.
Description
技术领域technical field
本发明属于土壤与地下水污染风险管控与治理修复技术领域,具体涉及一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂及方法,特别涉及一种膨润土耦合过硫酸盐同步固定削减土壤和/或地下水重质非水相液体(dense non aqueous phase liquid,DNAPL)污染源区中三氯乙烯的药剂及方法。The invention belongs to the technical field of soil and groundwater pollution risk management and control, treatment and restoration, and specifically relates to a medicament and method for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, and in particular to a bentonite-coupled persulfate synchronously fixing and reducing soil And/or groundwater heavy non-aqueous phase liquid (dense non-aqueous phase liquid, DNAPL) pollution sources and methods of trichlorethylene.
背景技术Background technique
三氯乙烯(trichloroethylene,TCE)是世界范围内土壤和地下水中普遍存在的挥发性氯代有机物之一,其污染已经成为世界性的环境和健康问题。据不完全统计,在中国、英国、日本、美国、比利时等国家的土壤和地下水中均检出高浓度TCE。土壤和地下水中TCE主要来源于有机溶剂、干洗剂及麻醉剂储存罐的泄露或未得到有效处理而排放的废液。Trichloroethylene (TCE) is one of the volatile chlorinated organic compounds ubiquitous in soil and groundwater all over the world, and its pollution has become a worldwide environmental and health problem. According to incomplete statistics, high concentrations of TCE have been detected in the soil and groundwater of China, the United Kingdom, Japan, the United States, Belgium and other countries. TCE in soil and groundwater mainly comes from the leakage of storage tanks of organic solvents, dry cleaning agents and anesthetics or the waste liquid discharged without effective treatment.
TCE早在1976年被美国列为“优先控制化合物”,也被我国列为中国环境优先监测和控制污染物,具有潜在的致癌、致畸、致突变特性。其是一种密度比水大的重质非水溶相液体(dense non aqueous phase liquid,DNAPL),在水中的溶解度很小(1100mg/L),比水密度大,粘滞性低。TCE在土壤和包气带中迁移速度快,以液滴形式滞留在介质空隙中,而进入地下水中部分则会滞留在含水层底部,形成DNAPL污染源区,并随着地下水运移逐渐溶解到水中,造成二次污染。DNAPL污染源区中TCE会成为连续、持久的地下水污染源。TCE was listed as a "priority control compound" by the United States as early as 1976, and it was also listed as a priority pollutant for environmental monitoring and control in China by my country. It has potential carcinogenic, teratogenic, and mutagenic properties. It is a heavy non-aqueous phase liquid (dense non-aqueous phase liquid, DNAPL) with a density higher than water, with a small solubility in water (1100mg/L), higher density than water, and low viscosity. TCE migrates quickly in the soil and vadose zone, and stays in the medium gap in the form of droplets, while the part entering the groundwater will stay at the bottom of the aquifer, forming a DNAPL pollution source area, and gradually dissolves into the water as the groundwater migrates , causing secondary pollution. TCE in the DNAPL pollution source area will become a continuous and persistent source of groundwater pollution.
目前,土壤和地下水DNAPL污染源区中TCE的原位风险管控与治理修复技术主要包括阻隔技术和化学还原技术等。其中,阻隔技术主要依靠黏土、膨润土、水泥、混粉煤灰等非渗透性材料建设阻隔墙阻断污染源向下游迁移扩散。阻隔技术仅能切断暴露途径,限制污染羽迁移,但不能降低污染物浓度且存在导致污染物渗漏风险。多数情况下,阻隔技术只是在地下水污染治理初期被用作一种临时性的控制方法。At present, the in-situ risk control and remediation technologies of TCE in soil and groundwater DNAPL pollution source areas mainly include barrier technology and chemical reduction technology. Among them, the barrier technology mainly relies on non-permeable materials such as clay, bentonite, cement, and fly ash to build a barrier wall to block the migration and diffusion of pollution sources to the downstream. Barrier technology can only cut off the exposure route and limit the migration of pollution plumes, but it cannot reduce the concentration of pollutants and there is a risk of pollutant leakage. In most cases, barrier technology is only used as a temporary control method in the initial stage of groundwater pollution control.
化学还原技术主要依靠零价铁作为电子供体提供电子、TCE作为电子受体接受电子的原理发生氢解或脱氯。粒状铁柱实验研究结果表明,在运行初期(≤20个孔隙体积),零价铁能够完全去除TCE,但运行至90个孔隙体积时零价铁发生钝化,TCE去除率降低至60%,伴随产生顺式-1,2-二氯乙烯、氯乙烯等氯代副产物。此外,粒状铁易被氧气氧化形成FeOOH或Fe(OH)3,阻碍污染物与其接触且堵塞其空隙,从而降低渗透性和电导率等。The chemical reduction technology mainly relies on the principle of zero-valent iron as an electron donor to provide electrons, and TCE as an electron acceptor to accept electrons to undergo hydrogenolysis or dechlorination. The experimental results of the granular iron column show that at the initial stage of operation (≤20 pore volumes), zero-valent iron can completely remove TCE, but when the operation reaches 90 pore volumes, the zero-valent iron is passivated, and the removal rate of TCE drops to 60%. Accompanied by cis-1,2-dichloroethylene, vinyl chloride and other chlorinated by-products. In addition, granular iron is easily oxidized by oxygen to form FeOOH or Fe(OH) 3 , which hinders the contact of pollutants and blocks its pores, thereby reducing permeability and electrical conductivity.
在实际应用中,上述技术在固定削减土壤和地下水重质非水相液体(dense nonaqueous phase liquid,DNAPL)污染源区中三氯乙烯过程中存在pH变化大,TCE去除率低以及易产生1,1-二氯乙烯、1,2-二氯乙烯或氯乙烯、阻隔墙渗透系数和服务年限技术要求高的缺陷。In practical application, the above-mentioned technology has large pH changes, low TCE removal rate and easy generation of 1,1 - Dichloroethylene, 1,2-dichloroethylene or vinyl chloride, defects with high technical requirements for barrier wall permeability coefficient and service life.
发明内容Contents of the invention
为此,本发明所要解决的是现有技术在固定削减土壤和地下水重质非水相液体污染源区中三氯乙烯过程中存在pH变化大,TCE去除率低以及易产生1,1-二氯乙烯、1,2-二氯乙烯或氯乙烯、阻隔墙渗透系数和服务年限技术要求高的缺陷,进而提供一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂及方法。For this reason, what the present invention is to solve is that there are large pH changes, low TCE removal rate and easy generation of 1,1-dichloride in the prior art in the process of fixing and reducing trichlorethylene in soil and groundwater heavy non-aqueous liquid pollution source areas. Ethylene, 1,2-dichloroethylene or vinyl chloride, barrier wall permeability coefficient and high service life technical requirements defects, and then provide a simultaneous fixation and reduction of trichlorethylene in soil and/or groundwater agent and method.
为解决上述技术问题,本发明采用的技术方案如下:In order to solve the problems of the technologies described above, the technical scheme adopted in the present invention is as follows:
本发明所提供的同步固定和削减土壤和/或地下水中三氯乙烯的药剂,包括膨润土、过硫酸盐和水,所述膨润土和过硫酸盐的质量比为3000~5000:300~500,所述膨润土与水的质量比为1~2:40~60;The medicament for synchronously fixing and reducing trichlorethylene in soil and/or groundwater provided by the present invention includes bentonite, persulfate and water, and the mass ratio of bentonite and persulfate is 3000~5000:300~500, so The mass ratio of bentonite to water is 1~2:40~60;
所述膨润土为钠基膨润土,所述钠基膨润土中Na+含量为2wt%~4wt%,总有机碳含量为10~15mg/L,pH为10.0~11.0,粒径为75~180μm。The bentonite is sodium-based bentonite, the Na + content in the sodium-based bentonite is 2wt%-4wt%, the total organic carbon content is 10-15mg/L, the pH is 10.0-11.0, and the particle size is 75-180μm.
进一步地,所述膨润土和过硫酸盐的质量比为3800~4200:350~400,所述膨润土与水的质量比为1~2:45~55;Further, the mass ratio of bentonite to persulfate is 3800-4200:350-400, and the mass ratio of bentonite to water is 1-2:45-55;
所述膨润土为钠基膨润土,所述钠基膨润土中Na+含量为2.5wt%~3wt%,总有机碳含量为13~14mg/L,pH为10.3~10.8,粒径为120~150μm。The bentonite is sodium-based bentonite, the Na + content in the sodium-based bentonite is 2.5wt%-3wt%, the total organic carbon content is 13-14mg/L, the pH is 10.3-10.8, and the particle size is 120-150μm.
进一步地,所述过硫酸盐为过硫酸钾和/或过硫酸钠,所述过硫酸盐的纯度≥98wt%。Further, the persulfate is potassium persulfate and/or sodium persulfate, and the purity of the persulfate is ≥98wt%.
进一步地,所述过硫酸盐为过硫酸钾和过硫酸钠,所述过硫酸钾和过硫酸钠的质量比为1:(4-5)。Further, the persulfate is potassium persulfate and sodium persulfate, and the mass ratio of potassium persulfate and sodium persulfate is 1:(4-5).
另外,需要说明的是,钠基膨润土的pH测试方法如下:向钠基膨润土中加入超纯水,并控制钠基膨润土与超纯水的质量比为1:50,搅拌器搅拌超24小时后,测定水的pH值,该pH值即为钠基膨润土的pH。In addition, it should be noted that the pH test method of sodium bentonite is as follows: add ultrapure water to sodium bentonite, and control the mass ratio of sodium bentonite to ultrapure water to 1:50, and stir it with a stirrer for over 24 hours , Determination of the pH value of the water, the pH value is the pH of the sodium bentonite.
上述药剂的制备方法为:将膨润土、过硫酸盐和水按质量比称取,并在室温下搅拌均匀,使得膨润土呈悬浮态,制得药剂。The preparation method of the above-mentioned medicament is as follows: weighing bentonite, persulfate and water according to the mass ratio, and stirring evenly at room temperature, so that the bentonite is in a suspended state, and the medicament is prepared.
此外,本发明还提供了采用上述药剂同步固定和削减土壤和/或地下水中三氯乙烯的方法,包括如下步骤:In addition, the present invention also provides a method for synchronously fixing and reducing trichlorethylene in soil and/or groundwater by using the above-mentioned medicament, comprising the following steps:
S1、将膨润土与水混合,制成泥浆;S1, mixing bentonite with water to make mud;
S2、采用围堰或高压喷射方式,将步骤S1中的泥浆灌注到DNAPL污染源区周围土壤和地下水介质中,形成垂直阻隔墙和/或水平阻隔墙,阻断DNAPL污染源的迁移扩散,固定三氯乙烯;S2. Use cofferdams or high-pressure injection methods to pour the mud in step S1 into the soil and groundwater medium around the DNAPL pollution source area to form a vertical barrier wall and/or a horizontal barrier wall to block the migration and diffusion of DNAPL pollution sources and fix trichloride. vinyl;
S3、将所述药剂注入DNAPL污染源区,降解其中的三氯乙烯。S3. Inject the medicament into the DNAPL pollution source area to degrade the trichlorethylene therein.
进一步地,步骤S1中,膨润土与水的质量比为1~2:40~60。Further, in step S1, the mass ratio of bentonite to water is 1-2:40-60.
进一步地,步骤S2中,所述垂直阻隔墙的渗透系数≤1×10-7cm/s,厚度9~19cm;Further, in step S2, the permeability coefficient of the vertical barrier wall is ≤1×10 -7 cm/s, and the thickness is 9-19 cm;
所述水平阻隔墙的渗透系数≤1×10-7cm/s,厚度9~19cm。The permeability coefficient of the horizontal barrier wall is ≤1×10 -7 cm/s, and the thickness is 9-19cm.
进一步地,步骤S3中,所述药剂中过硫酸盐与所述DNAPL污染源区中三氯乙烯的质量比为300~500:1~5。Further, in step S3, the mass ratio of persulfate in the medicament to trichlorethylene in the DNAPL pollution source area is 300-500:1-5.
进一步地,步骤S2中,当所述DNAPL污染源区埋深<10m,采用围堰的方式实施;或,Further, in step S2, when the burial depth of the DNAPL pollution source area is <10m, it is implemented in the form of a cofferdam; or,
步骤S2中,当所述DNAPL污染源区埋深为10~30m,采用高压喷射的方式。In step S2, when the burial depth of the DNAPL pollution source area is 10-30 m, a high-pressure injection method is used.
进一步地,将步骤S1中的泥浆灌注到DNAPL污染源区周围的包气带中,在包气带且在DNAPL污染源区的周围形成垂直阻隔墙和水平阻隔墙;或,Further, pouring the mud in step S1 into the vadose zone around the DNAPL pollution source area, forming a vertical barrier wall and a horizontal barrier wall in the vadose zone and around the DNAPL pollution source area; or,
将步骤S1中的泥浆灌注到DNAPL污染源区下游含水层中,形成垂直阻隔墙。The mud in step S1 is poured into the aquifer downstream of the DNAPL pollution source area to form a vertical barrier.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明所提供的同步固定和削减土壤和/或地下水中三氯乙烯的药剂,采用膨润土、过硫酸盐和水三者在特定配比下配合,同时膨润土采用特定性能的钠基膨润土,利用该特定性能的钠基膨润土能有效激活过硫酸盐产生更多的强氧化性的SO4 ·-和·OH,利用SO4 ·-和·OH彻底氧化三氯乙烯,不产生1,1-二氯乙烯、1,2-二氯乙烯或氯乙烯等毒性更强的脱氯产物,从而提高DNAPL污染源区中TCE去除率。同时,该特定性能的钠基膨润土在去除三氯乙烯过程中能维持反应体系pH稳定,故而在反应过程中不需额外添加碱试剂且不需调节pH值。经测试,TCE去除率在8天内达到51%~56%、64天内达到93%~100%,反应过程中不产生1,2-二氯乙烯和氯乙烯等毒性更强的脱氯产物,二次污染小,生态环境风险小,安全性高,在技术性和环保性上具有显著的优势。(1) The medicament for synchronously fixing and reducing trichlorethylene in soil and/or groundwater provided by the present invention adopts bentonite, persulfate and water to cooperate under a specific proportion, and simultaneously bentonite adopts sodium-based bentonite with specific properties , using this specific performance of sodium bentonite can effectively activate persulfate to produce more strong oxidizing SO 4 ·- and ·OH, and use SO 4 ·- and ·OH to completely oxidize trichlorethylene without generating 1,1 - More toxic dechlorination products such as dichloroethylene, 1,2-dichloroethylene or vinyl chloride, thereby improving the removal rate of TCE in DNAPL pollution source areas. At the same time, the sodium-based bentonite with this specific performance can maintain the pH stability of the reaction system during the process of removing trichlorethylene, so no additional addition of alkaline reagents and adjustment of the pH value are required during the reaction process. After testing, the removal rate of TCE reached 51%-56% within 8 days, and 93%-100% within 64 days, and no more toxic dechlorination products such as 1,2-dichloroethylene and vinyl chloride were produced during the reaction process. Small secondary pollution, low risk to the ecological environment, high safety, and significant advantages in terms of technology and environmental protection.
(2)本发明所提供的同步固定和削减土壤和/或地下水中三氯乙烯的药剂,采用钠基膨润土,并优化钠基膨润土中Na+含量、总有机碳含量、pH和粒径,能提高钠基膨润土的触变可塑性、膨胀性和粘结性等性能,从而能使该钠基膨润土有效填充土壤、包气带和地下水介质的空隙,最终能长期有效地阻断三氯乙烯的迁移与扩散。(2) The medicament for synchronously fixing and reducing trichlorethylene in soil and/or groundwater provided by the present invention adopts sodium bentonite, and optimizes Na content, total organic carbon content, pH and particle size in sodium bentonite, which can Improve the thixotropic plasticity, expansibility and cohesiveness of sodium-based bentonite, so that the sodium-based bentonite can effectively fill the gaps in soil, vadose zone and groundwater medium, and finally effectively block the migration of trichlorethylene for a long time with diffusion.
(3)本发明所提供的同步固定和削减土壤和/或地下水中三氯乙烯的药剂,过硫酸盐为过硫酸钾和过硫酸钠,过硫酸钾和过硫酸钠的质量比为1:(4-5),通过不同种类的过硫酸盐按特定配比配合使用,有助于提高DNAPL污染源区中TCE去除率。(3) the medicament of synchronously fixing and reducing trichlorethylene in soil and/or groundwater provided by the present invention, persulfate is potassium persulfate and sodium persulfate, and the mass ratio of potassium persulfate and sodium persulfate is 1:( 4-5), through the use of different types of persulfates in specific proportions, it helps to improve the removal rate of TCE in the DNAPL pollution source area.
(4)本发明所提供的同步固定和削减土壤和/或地下水中三氯乙烯的方法,先将膨润土与水混合,制成泥浆;再采用围堰或高压喷射方式,将泥浆灌注到DNAPL污染源区周围土壤和地下水介质中,形成垂直阻隔墙和/或水平阻隔墙,阻断DNAPL污染源的迁移扩散,固定三氯乙烯;最后将药剂注入DNAPL污染源区,药剂中膨润土填充于土壤和地下水介质空隙内,过硫酸盐借助重力作用和毛细现象分散于污染源区内,形成低渗透反应区,延长三氯乙烯在反应区的停留时间,以完全氧化降解三氯乙烯。(4) The method for synchronously fixing and reducing trichlorethylene in soil and/or groundwater provided by the present invention first mixes bentonite with water to make mud; then adopts a cofferdam or high-pressure injection mode to pour the mud into the DNAPL pollution source In the soil and groundwater medium around the area, a vertical barrier wall and/or a horizontal barrier wall are formed to block the migration and diffusion of DNAPL pollution sources and fix trichlorethylene; finally inject the agent into the DNAPL pollution source area, and the bentonite in the agent fills the gaps in the soil and groundwater medium In the interior, persulfate is dispersed in the pollution source area by gravity and capillary phenomenon, forming a low-permeability reaction area, prolonging the residence time of trichlorethylene in the reaction area to completely oxidize and degrade trichlorethylene.
(5)本发明所提供的同步固定和削减土壤和/或地下水中三氯乙烯的方法,通过将膨润土与水按特定质量比混合形成泥浆,该泥浆适于灌注到DNAPL污染源区周围土壤和地下水介质中,形成垂直阻隔墙和/或水平阻隔墙;通过优选垂直阻隔墙和/或水平阻隔墙的渗透系数和厚度,阻断三氯乙烯的迁移与扩散;通过限定药剂中过硫酸盐与DNAPL污染源区中三氯乙烯的质量比,能提高DNAPL污染源区中TCE去除率。(5) The method for synchronously fixing and reducing trichlorethylene in soil and/or groundwater provided by the present invention forms mud by mixing bentonite and water in a specific mass ratio, and this mud is suitable for pouring into soil and groundwater around the DNAPL pollution source area In the medium, a vertical barrier wall and/or a horizontal barrier wall are formed; by optimizing the permeability coefficient and thickness of the vertical barrier wall and/or horizontal barrier wall, the migration and diffusion of trichlorethylene are blocked; by limiting the persulfate and DNAPL in the medicament The mass ratio of trichlorethylene in the pollution source area can improve the removal rate of TCE in the DNAPL pollution source area.
(6)本发明所提供的同步固定和削减土壤和/或地下水中三氯乙烯的方法,不需要加热、紫外光照射、过渡金属离子和双氧水等,常温常压下即可进行,反应体系简单,反应条件温和,运行与维护管理成本低。使用本方法,可以显著降低对现有阻隔墙厚度和服务年限(至少10年)的技术要求,进而降低阻隔墙建设费用。同时可以实现土壤和地下水特别是深层地下水污染物原位固定与治理修复及突发应急污染处理,适用范围广。(6) The method for synchronously fixing and reducing trichlorethylene in soil and/or groundwater provided by the present invention does not require heating, ultraviolet light irradiation, transition metal ions and hydrogen peroxide, etc., and can be carried out under normal temperature and pressure, and the reaction system is simple , mild reaction conditions, low operation and maintenance management costs. By using the method, the technical requirements on the thickness and service life (at least 10 years) of the existing barrier wall can be significantly reduced, thereby reducing the construction cost of the barrier wall. At the same time, it can realize in-situ fixation, treatment and repair of soil and groundwater, especially deep groundwater pollutants, as well as emergency pollution treatment, and has a wide range of applications.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the description of the specific embodiments or prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明实施例中膨润土和过硫酸盐联用同步原位固定与削减地下水DNAPL污染源区三氯乙烯的结构示意及布设状态图;Fig. 1 is the schematic diagram of the structure and the layout state of trichlorethylene in the groundwater DNAPL pollution source area of the synchronous in-situ fixation and reduction of groundwater DNAPL pollution source area in combination with bentonite and persulfate in the embodiment of the present invention;
图2为本发明实施例4膨润土和过硫酸盐联用同步原位固定与削减土壤DNAPL污染源区三氯乙烯的结构示意及布设状态图;Fig. 2 is the schematic diagram of the structure and layout state diagram of trichlorethylene in the soil DNAPL pollution source area of Example 4 of the present invention combined with bentonite and persulfate synchronously in situ to fix and reduce;
图3为本发明实施例中膨润土和过硫酸盐联用引起的TCE去除率随反应时间的短期变化图;Fig. 3 is the short-term variation figure of the TCE removal rate that causes in the embodiment of the present invention bentonite and persulfate combined with reaction time;
图4为本发明实施例中膨润土和过硫酸盐联用引起的TCE氧化降解动力学线性拟合图;Fig. 4 is the linear fitting diagram of the kinetics of TCE oxidative degradation caused by the combination of bentonite and persulfate in the embodiment of the present invention;
图5为本发明实施例中膨润土和过硫酸盐联用引起的反应体系pH随反应时间的短期变化图;Fig. 5 is the short-term variation figure of the pH of the reaction system caused by the joint use of bentonite and persulfate in the embodiment of the present invention along with the reaction time;
图6为本发明实施例中膨润土和过硫酸盐联用引起的TCE去除率随反应时间的长期变化图;Fig. 6 is the long-term variation figure of the TCE removal rate that causes in the embodiment of the present invention bentonite and persulfate combined with reaction time;
图7为本发明实施例中膨润土和过硫酸盐联用引起的反应体系pH随反应时间的长期变化图;Fig. 7 is the long-term variation diagram of the pH of the reaction system caused by the combination of bentonite and persulfate in the embodiment of the present invention with the reaction time;
图8为本发明实施例中膨润土和过硫酸盐联用引起的反应体系Eh随反应时间的长期变化图;Fig. 8 is the long-term change diagram of the reaction system Eh caused by the combination of bentonite and persulfate in the embodiment of the present invention with the reaction time;
图9为本发明实施例中膨润土和过硫酸盐联用引起的反应体系S2O8 2-残留量随反应时间的长期变化图;Fig. 9 is a graph showing the long-term change of the residual amount of S 2 O 8 2- in the reaction system with the reaction time caused by the combination of bentonite and persulfate in the embodiment of the present invention;
图10为本发明实施例中膨润土的SEM(5000倍)形貌图;Fig. 10 is the SEM (5000 times) morphology figure of bentonite in the embodiment of the present invention;
图11为本发明实施例中膨润土的EDS分析谱图。Fig. 11 is the EDS analysis spectrogram of bentonite in the embodiment of the present invention.
具体实施方式Detailed ways
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the described embodiments are some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明中术语“膨润土”是以蒙脱石为主要矿物成分的含水粘土矿,蒙脱石属于2:1型晶体结构,由两个硅氧四面体夹一层铝氧八面体组成,主要化学成分是二氧化硅、三氧化二铝和水,还含有铁、镁、钙、钠、钾等元素,硬度1~2,密度2~3g/cm3,呈黄绿、黄白、灰、白色等颜色,加水后体积胀大数倍至20~30倍。蒙脱石晶胞形成的层状结构存在某些阳离子,如Cu2+、Mg2+、Na+、K+。这些阳离子与蒙脱石晶胞的作用很不稳定,易被其他阳离子交换。The term "bentonite" in the present invention is a hydrous clay mineral with montmorillonite as the main mineral component. Montmorillonite belongs to the 2:1 crystal structure and is composed of two silicon-oxygen tetrahedrons sandwiching a layer of aluminum-oxygen octahedron. The main chemical The composition is silicon dioxide, aluminum oxide and water, and also contains elements such as iron, magnesium, calcium, sodium, potassium, etc., with a hardness of 1-2 and a density of 2-3g/cm 3 . It is yellow-green, yellow-white, gray, white, etc. Color, after adding water, the volume expands several times to 20-30 times. There are certain cations in the layered structure formed by the montmorillonite unit cell, such as Cu 2+ , Mg 2+ , Na + , K + . The interaction between these cations and the montmorillonite unit cell is very unstable, and they are easily exchanged by other cations.
本发明中术语“重质非水相液体(dense non aqueous phase liquid,DNAPL)”,是指土壤和地下水中所有不溶于水且密度比水大的液体污染物的总称,如煤焦油、木榴油、三氯乙烯和四氯乙烯,具有较低的溶解度和较高的界面张力。In the present invention, the term "heavy non-aqueous phase liquid (dense non aqueous phase liquid, DNAPL)" refers to the general term of all liquid pollutants that are insoluble in water and have a higher density than water in soil and groundwater, such as coal tar, woodgrain Oils, trichloroethylene and tetrachloroethylene, have lower solubility and higher interfacial tension.
本发明中术语“三氯乙烯(trichloroethylene,TCE),是分子式C2HCl3、相对分子量131.39、沸点87.1℃、熔点-86℃、无色、气味似氯仿的易燃、易挥发液体,难溶于水,易溶于乙醇、乙醚等,可混溶于多数有机溶剂,为DNAPL代表污染物之一。The term "trichloroethylene (TCE)" in the present invention is a flammable and volatile liquid with a molecular formula of C 2 HCl 3 , a relative molecular weight of 131.39, a boiling point of 87.1°C, a melting point of -86°C, a colorless odor similar to chloroform, and is difficult to dissolve. In water, easily soluble in ethanol, ether, etc., and miscible in most organic solvents, it is one of the representative pollutants of DNAPL.
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。In addition, the technical features involved in the different embodiments of the present invention described below may be combined with each other as long as there is no conflict with each other.
实施例1Example 1
本实施例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂,该药剂包括4000g的膨润土、384g的过硫酸盐和水,膨润土与水的质量比为1:50;其中,膨润土为钠基膨润土,钠基膨润土中Na+含量为2.6wt%,总有机碳含量为13.7mg/L,pH为10.5,粒径为150μm,过硫酸盐为过硫酸钠;The present embodiment provides a medicament for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, the medicament includes 4000g of bentonite, 384g of persulfate and water, and the mass ratio of bentonite to water is 1:50; wherein , the bentonite is sodium-based bentonite, the Na + content in the sodium-based bentonite is 2.6wt%, the total organic carbon content is 13.7mg/L, the pH is 10.5, the particle size is 150 μm, and the persulfate is sodium persulfate;
本实施例中膨润土的微观表征如图10及图11,从图10可得知:膨润土的表面为不规则多边形、光滑、具棱角;从图11可得知:其主要由氧、硅、铝组成并含有少量钠、钾、铁、钙、镁等,符合蒙脱石的硅氧四面体夹一层铝氧八面体组成的2:1型晶体结构;The microscopic characterization of bentonite in this embodiment is as shown in Figure 10 and Figure 11, as can be seen from Figure 10: the surface of bentonite is an irregular polygon, smooth, with edges and corners; as can be seen from Figure 11: it is mainly composed of oxygen, silicon, aluminum It is composed of and contains a small amount of sodium, potassium, iron, calcium, magnesium, etc., and conforms to the 2:1 crystal structure composed of silicon-oxygen tetrahedron sandwiching a layer of aluminum-oxygen octahedron of montmorillonite;
模拟应用环境,将本实施例中的药剂应用于10mg/L的含有TCE的厌氧地下水中,具体应用方法如下:将药剂中的过硫酸盐和水投加至10mg/L的含有TCE的厌氧地下水中,再加入膨润土,保证药剂中膨润土、过硫酸盐与含有TCE的厌氧地下水中TCE的质量比为4000:384:2,在常温、常压、振荡(250rpm)条件下反应8天后,含有TCE的厌氧地下水中TCE去除率达到56%,反应64天后,含有TCE的厌氧地下水中TCE去除率达到100%。Simulate the application environment, apply the medicament in this embodiment to 10mg/L anaerobic groundwater containing TCE, the specific application method is as follows: add persulfate and water in the medicament to 10mg/L anaerobic groundwater containing TCE Add bentonite to oxygenated groundwater to ensure that the mass ratio of bentonite and persulfate in the agent to TCE in anaerobic groundwater containing TCE is 4000:384:2. React for 8 days under normal temperature, normal pressure, and vibration (250rpm) conditions. , the removal rate of TCE in anaerobic groundwater containing TCE reached 56%, and after 64 days of reaction, the removal rate of TCE in anaerobic groundwater containing TCE reached 100%.
实施例2Example 2
本实施例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂,该药剂包括4000g的膨润土、384g的过硫酸盐和水,膨润土与水的质量比为1:50;其中,膨润土为钠基膨润土,钠基膨润土中Na+含量为2.6wt%,总有机碳含量为13.7mg/L,pH为10.6,粒径为120μm,过硫酸盐为过硫酸钾;The present embodiment provides a medicament for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, the medicament includes 4000g of bentonite, 384g of persulfate and water, and the mass ratio of bentonite to water is 1:50; wherein , the bentonite is sodium-based bentonite, the Na + content in the sodium-based bentonite is 2.6wt%, the total organic carbon content is 13.7mg/L, the pH is 10.6, the particle size is 120 μm, and the persulfate is potassium persulfate;
模拟应用环境,将本实施例中的药剂应用于10mg/kg的含TCE的土壤中,具体应用方法如下:将药剂中的过硫酸盐投加10mg/kg的含TCE的土壤中,再加入药剂中的膨润土和水,保证药剂中膨润土、过硫酸盐与含TCE的土壤中TCE的质量比为4000:384:2,在常温、常压、振荡(250rpm)条件下反应8天后,含有TCE的厌氧地下水中TCE去除率达到54%,反应64天后,含有TCE的厌氧地下水中TCE去除率达到97%。Simulate the application environment, apply the medicament in this embodiment to 10 mg/kg of TCE-containing soil, the specific application method is as follows: add the persulfate in the medicament to 10 mg/kg of TCE-containing soil, and then add the medicament Bentonite and water in the medicament, to ensure that the mass ratio of bentonite, persulfate and TCE-containing soil in the medicament is 4000:384:2, after reacting for 8 days under normal temperature, normal pressure, and oscillation (250rpm) conditions, the TCE-containing The removal rate of TCE in the anaerobic groundwater reaches 54%, and after 64 days of reaction, the removal rate of TCE in the anaerobic groundwater containing TCE reaches 97%.
实施例3Example 3
本实施例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂,该药剂包括3800g的膨润土、400g的过硫酸盐和水,膨润土与水的质量比为1:55;其中,膨润土为钠基膨润土,钠基膨润土中Na+含量为2.5wt%,总有机碳含量为14mg/L,pH为10.8,粒径为130μm,过硫酸盐为过硫酸钠;The present embodiment provides a medicament for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, the medicament includes 3800g of bentonite, 400g of persulfate and water, and the mass ratio of bentonite to water is 1:55; wherein , the bentonite is sodium-based bentonite, the Na content in the sodium - based bentonite is 2.5wt%, the total organic carbon content is 14mg/L, the pH is 10.8, the particle size is 130 μm, and the persulfate is sodium persulfate;
模拟应用环境,将本实施例中的药剂应用于10mg/L的含有TCE的厌氧地下水中,具体应用方法如下:将药剂中的过硫酸盐和水投加至10mg/L的含有TCE的厌氧地下水中,再加入膨润土,保证药剂中膨润土、过硫酸盐与含有TCE的厌氧地下水中TCE的质量比为3800:400:1,在常温、常压、振荡(250rpm)条件下反应8天后,含有TCE的厌氧地下水中TCE去除率达到55%,反应64天后,含有TCE的厌氧地下水中TCE去除率达到99%。Simulate the application environment, apply the medicament in this embodiment to 10mg/L anaerobic groundwater containing TCE, the specific application method is as follows: add persulfate and water in the medicament to 10mg/L anaerobic groundwater containing TCE Add bentonite to oxygenated groundwater to ensure that the mass ratio of bentonite and persulfate in the agent to TCE in anaerobic groundwater containing TCE is 3800:400:1. React for 8 days under normal temperature, normal pressure, and vibration (250rpm) conditions. , the removal rate of TCE in anaerobic groundwater containing TCE reaches 55%, and after 64 days of reaction, the removal rate of TCE in anaerobic groundwater containing TCE reaches 99%.
实施例4Example 4
本实施例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂,该药剂包括4200g的膨润土、350g的过硫酸盐和水,膨润土与水的质量比为2:45;其中,膨润土为钠基膨润土,钠基膨润土中Na+含量为3wt%,总有机碳含量为13mg/L,pH为10.5,粒径为140μm,过硫酸盐为过硫酸钾;The present embodiment provides a medicament for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, the medicament includes 4200g of bentonite, 350g of persulfate and water, and the mass ratio of bentonite to water is 2:45; wherein , the bentonite is sodium-based bentonite, the Na content in the sodium - based bentonite is 3wt%, the total organic carbon content is 13mg/L, the pH is 10.5, the particle size is 140 μm, and the persulfate is potassium persulfate;
模拟应用环境,将本实施例中的药剂应用于10mg/L的含有TCE的厌氧地下水中,具体应用方法如下:将药剂中的过硫酸盐和水投加至10mg/L的含有TCE的厌氧地下水中,再加入膨润土,保证药剂中膨润土、过硫酸盐与含有TCE的厌氧地下水中TCE的质量比为4200:350:5,在常温、常压、振荡(250rpm)条件下反应8天后,含有TCE的厌氧地下水中TCE去除率达到56.7%,反应64天后,含有TCE的厌氧地下水中TCE去除率达到99.8%。Simulate the application environment, apply the medicament in this embodiment to 10mg/L anaerobic groundwater containing TCE, the specific application method is as follows: add persulfate and water in the medicament to 10mg/L anaerobic groundwater containing TCE Add bentonite to oxygenated groundwater to ensure that the mass ratio of bentonite, persulfate and TCE in the anaerobic groundwater containing TCE is 4200:350:5. After reacting for 8 days under normal temperature, normal pressure and oscillation (250rpm) conditions , the removal rate of TCE in anaerobic groundwater containing TCE reached 56.7%, and after 64 days of reaction, the removal rate of TCE in anaerobic groundwater containing TCE reached 99.8%.
实施例5Example 5
本实施例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂,该药剂包括3000g的膨润土、500g的过硫酸盐和水,膨润土与水的质量比为1:60;其中,膨润土为钠基膨润土,钠基膨润土中Na+含量为4wt%,总有机碳含量为10mg/L,pH为11,粒径为75μm,过硫酸盐为过硫酸钠;The present embodiment provides a medicament for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, the medicament includes 3000g of bentonite, 500g of persulfate and water, and the mass ratio of bentonite to water is 1:60; wherein , the bentonite is sodium-based bentonite, the Na content in the sodium - based bentonite is 4wt%, the total organic carbon content is 10mg/L, the pH is 11, the particle size is 75 μm, and the persulfate is sodium persulfate;
模拟应用环境,将本实施例中的药剂应用于10mg/L的含有TCE的厌氧地下水中,具体应用方法如下:将药剂中的过硫酸盐和水投加至10mg/L的含有TCE的厌氧地下水中,再加入膨润土,保证药剂中膨润土、过硫酸盐与含有TCE的厌氧地下水中TCE的质量比为3000:500:2,在常温、常压、振荡(250rpm)条件下反应8天后,含有TCE的厌氧地下水中TCE去除率达到52%,反应64天后,含有TCE的厌氧地下水中TCE去除率达到95%。Simulate the application environment, apply the medicament in this embodiment to 10mg/L anaerobic groundwater containing TCE, the specific application method is as follows: add persulfate and water in the medicament to 10mg/L anaerobic groundwater containing TCE Add bentonite to oxygenated groundwater to ensure that the mass ratio of bentonite and persulfate in the agent to TCE in anaerobic groundwater containing TCE is 3000:500:2. React for 8 days under normal temperature, normal pressure, and vibration (250rpm) conditions. , the removal rate of TCE in anaerobic groundwater containing TCE reached 52%, and after 64 days of reaction, the removal rate of TCE in anaerobic groundwater containing TCE reached 95%.
实施例6Example 6
本实施例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂,该药剂包括5000g的膨润土、300g的过硫酸盐和水,膨润土与水的质量比为2:40;其中,膨润土为钠基膨润土,钠基膨润土中Na+含量为2wt%,总有机碳含量为15mg/L,pH为10,粒径为180μm,过硫酸盐为过硫酸钾;The present embodiment provides a medicament for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, the medicament includes 5000g of bentonite, 300g of persulfate and water, and the mass ratio of bentonite to water is 2:40; wherein , the bentonite is sodium-based bentonite, the Na content in the sodium - based bentonite is 2wt%, the total organic carbon content is 15 mg/L, the pH is 10, the particle size is 180 μm, and the persulfate is potassium persulfate;
模拟应用环境,将本实施例中的药剂应用于10mg/L的含有TCE的厌氧地下水中,具体应用方法如下:将药剂中的过硫酸盐和水投加至10mg/L的含有TCE的厌氧地下水中,再加入膨润土,保证药剂中膨润土、过硫酸盐与含有TCE的厌氧地下水中TCE的质量比为5000:300:2,在常温、常压、振荡(250rpm)条件下反应8天后,含有TCE的厌氧地下水中TCE去除率达到51%,反应64天后,含有TCE的厌氧地下水中TCE去除率达到93%。Simulate the application environment, apply the medicament in this embodiment to 10mg/L anaerobic groundwater containing TCE, the specific application method is as follows: add persulfate and water in the medicament to 10mg/L anaerobic groundwater containing TCE Add bentonite to oxygenated groundwater to ensure that the mass ratio of bentonite and persulfate in the agent to TCE in anaerobic groundwater containing TCE is 5000:300:2. React for 8 days under normal temperature, normal pressure, and vibration (250rpm) conditions. , the removal rate of TCE in anaerobic groundwater containing TCE reached 51%, and after 64 days of reaction, the removal rate of TCE in anaerobic groundwater containing TCE reached 93%.
实施例7Example 7
本实施例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂,同实施例2,唯一不同之处在于:本实施例中过硫酸盐为过硫酸钾和过硫酸钠的混合物,其中,过硫酸钾和过硫酸钠的质量比为1:4.5;This embodiment provides a kind of medicament for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, with embodiment 2, only difference is: in the present embodiment, persulfate is potassium persulfate and sodium persulfate The mixture, wherein the mass ratio of potassium persulfate to sodium persulfate is 1:4.5;
按照实施例2中的方法测试,经测试,在常温、常压、振荡(250rpm)条件下反应8天后,含有TCE的厌氧地下水中TCE去除率达到56%,反应64天后,含有TCE的厌氧地下水中TCE去除率达到99%。According to the method test in embodiment 2, after testing, after reacting 8 days under normal temperature, normal pressure, vibration (250rpm) condition, the removal rate of TCE in the anaerobic groundwater containing TCE reaches 56%, after reacting for 64 days, the anaerobic groundwater containing TCE removes 56%. The removal rate of TCE in oxygen groundwater reaches 99%.
实施例8Example 8
本实施例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的方法,如图1所示,包括如下步骤:The present embodiment provides a method for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, as shown in Figure 1, comprising the steps:
S1、将膨润土与水混合,膨润土与水的质量比为1.5:50,制成泥浆;S1, mix bentonite and water, the mass ratio of bentonite and water is 1.5:50, and make mud;
S2、DNAPL污染源区埋深为10~30m,采用高压喷射的方式,将步骤S1中的泥浆灌注到DNAPL污染源区下游含水层中,形成垂直阻隔墙,垂直阻隔墙的渗透系数为1×10-7cm/s,厚度16cm,垂直阻隔墙的底部至隔水层,阻断DNAPL污染源的迁移扩散,固定三氯乙烯;S2. The burial depth of the DNAPL pollution source area is 10-30 m. The mud in step S1 is poured into the aquifer downstream of the DNAPL pollution source area by means of high-pressure jetting to form a vertical barrier wall. The permeability coefficient of the vertical barrier wall is 1×10 - 7 cm/s, thickness 16cm, from the bottom of the vertical barrier wall to the water barrier, blocking the migration and diffusion of DNAPL pollution sources, and immobilizing trichlorethylene;
S3、将实施例1中的药剂注入DNAPL污染源区,控制药剂中过硫酸盐与DNAPL污染源区中三氯乙烯的质量比为300:5,降解其中的三氯乙烯;S3. Inject the medicament in Example 1 into the DNAPL pollution source area, control the mass ratio of persulfate in the medicament to trichlorethylene in the DNAPL pollution source area to be 300:5, and degrade the trichlorethylene therein;
经测试,反应64天后,DNAPL污染源区中TCE去除率达到98%以上。After testing, after 64 days of reaction, the removal rate of TCE in the DNAPL pollution source area reached over 98%.
实施例9Example 9
本实施例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的方法,包括如下步骤:This embodiment provides a method for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, comprising the steps of:
S1、将膨润土与水混合,膨润土与水的质量比为1:60,制成泥浆;S1, mix bentonite and water, the mass ratio of bentonite and water is 1:60, and make mud;
S2、DNAPL污染源区埋深为10~30m,采用高压喷射的方式,将步骤S1中的泥浆灌注到DNAPL污染源区下游含水层中,形成垂直阻隔墙,垂直阻隔墙的渗透系数为1×10-8cm/s,厚度19cm,垂直阻隔墙的底部至隔水层,阻断DNAPL污染源的迁移扩散,固定三氯乙烯;S2. The burial depth of the DNAPL pollution source area is 10-30 m. The mud in step S1 is poured into the aquifer downstream of the DNAPL pollution source area by means of high-pressure jetting to form a vertical barrier wall. The permeability coefficient of the vertical barrier wall is 1×10 - 8 cm/s, thickness 19cm, from the bottom of the vertical barrier wall to the water barrier, blocking the migration and diffusion of DNAPL pollution sources, and immobilizing trichlorethylene;
S3、将实施例2中的药剂注入DNAPL污染源区,控制药剂中过硫酸盐与DNAPL污染源区中三氯乙烯的质量比为500:1,降解其中的三氯乙烯;S3. Inject the medicament in Example 2 into the DNAPL pollution source area, control the mass ratio of the persulfate in the medicament to the trichlorethylene in the DNAPL pollution source area to be 500:1, and degrade the trichlorethylene therein;
经测试,反应64天后,DNAPL污染源区中TCE去除率达到98%以上。After testing, after 64 days of reaction, the removal rate of TCE in the DNAPL pollution source area reached over 98%.
实施例10Example 10
本实施例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的方法,包括如下步骤:This embodiment provides a method for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, comprising the steps of:
S1、将膨润土与水混合,膨润土与水的质量比为2:40,制成泥浆;S1, mix bentonite with water, the mass ratio of bentonite to water is 2:40, and make mud;
S2、DNAPL污染源区埋深为10~30m,采用高压喷射的方式,将步骤S1中的泥浆灌注到DNAPL污染源区下游含水层中,形成垂直阻隔墙,垂直阻隔墙的渗透系数为1×10-9cm/s,厚度9cm,垂直阻隔墙的底部至隔水层,阻断DNAPL污染源的迁移扩散,固定三氯乙烯;S2. The burial depth of the DNAPL pollution source area is 10-30 m. The mud in step S1 is poured into the aquifer downstream of the DNAPL pollution source area by means of high-pressure jetting to form a vertical barrier wall. The permeability coefficient of the vertical barrier wall is 1×10 - 9 cm/s, 9cm thick, from the bottom of the vertical barrier wall to the water barrier, blocking the migration and diffusion of DNAPL pollution sources, and immobilizing trichlorethylene;
S3、将实施例3中的药剂注入DNAPL污染源区,控制药剂中过硫酸盐与DNAPL污染源区中三氯乙烯的质量比为500:1,降解其中的三氯乙烯;S3. Inject the medicament in Example 3 into the DNAPL pollution source area, control the mass ratio of the persulfate in the medicament to the trichlorethylene in the DNAPL pollution source area to be 500:1, and degrade the trichlorethylene therein;
经测试,反应64天后,DNAPL污染源区中TCE去除率达到98%以上。After testing, after 64 days of reaction, the removal rate of TCE in the DNAPL pollution source area reached over 98%.
实施例11Example 11
本实施例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的方法,如图2所示,包括如下步骤:The present embodiment provides a method for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, as shown in Figure 2, comprising the steps:
S1、将膨润土与水混合,膨润土与水的质量比为1.5:55,制成泥浆;S1, mix bentonite and water, the mass ratio of bentonite and water is 1.5:55, and make mud;
S2、DNAPL污染源区埋深<10m,采用围堰的方式,将步骤S1中的泥浆灌注到DNAPL污染源区周围的包气带中,在包气带且在DNAPL污染源区的周围形成垂直阻隔墙和水平阻隔墙,垂直阻隔墙的渗透系数为1×10-7cm/s,厚度16cm,水平阻隔墙的渗透系数为1×10-7cm/s,厚度16cm,阻断DNAPL污染源的迁移扩散,固定三氯乙烯;S2. The burial depth of the DNAPL pollution source area is <10m, and the mud in step S1 is poured into the vadose zone around the DNAPL pollution source area by means of a cofferdam to form a vertical barrier wall and The horizontal barrier wall, the permeability coefficient of the vertical barrier wall is 1×10 -7 cm/s, and the thickness is 16cm. The permeability coefficient of the horizontal barrier wall is 1×10 -7 cm/s, and the thickness is 16cm, which blocks the migration and diffusion of DNAPL pollution sources. fixed trichlorethylene;
S3、将实施例4中的药剂注入DNAPL污染源区,控制药剂中过硫酸盐与DNAPL污染源区中三氯乙烯的质量比为400:3,降解其中的三氯乙烯;S3. Inject the medicament in Example 4 into the DNAPL pollution source area, control the mass ratio of the persulfate in the medicament to the trichlorethylene in the DNAPL pollution source area to be 400:3, and degrade the trichlorethylene therein;
经测试,反应64天后,DNAPL污染源区中TCE去除率达到98%以上。After testing, after 64 days of reaction, the removal rate of TCE in the DNAPL pollution source area reached over 98%.
实施例12Example 12
本实施例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的方法,包括如下步骤:This embodiment provides a method for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, comprising the steps of:
S1、将膨润土与水混合,膨润土与水的质量比为2:50,制成泥浆;S1, mix bentonite and water, the mass ratio of bentonite and water is 2:50, and make mud;
S2、DNAPL污染源区埋深<10m,采用围堰的方式,将步骤S1中的泥浆灌注到DNAPL污染源区周围的包气带中,在包气带且在DNAPL污染源区的周围形成垂直阻隔墙和水平阻隔墙,垂直阻隔墙的渗透系数为1×10-8cm/s,厚度14cm,水平阻隔墙的渗透系数为1×10-8cm/s,厚度14cm,阻断DNAPL污染源的迁移扩散,固定三氯乙烯;S2. The burial depth of the DNAPL pollution source area is <10m, and the mud in step S1 is poured into the vadose zone around the DNAPL pollution source area by means of a cofferdam to form a vertical barrier wall and The horizontal barrier wall, the vertical barrier wall has a permeability coefficient of 1×10 -8 cm/s and a thickness of 14cm, and the horizontal barrier wall has a permeability coefficient of 1×10 -8 cm/s and a thickness of 14cm, which can block the migration and diffusion of DNAPL pollution sources, fixed trichlorethylene;
S3、将实施例5中的药剂注入DNAPL污染源区,控制药剂中过硫酸盐与DNAPL污染源区中三氯乙烯的质量比为450:2,降解其中的三氯乙烯;S3. Inject the medicament in Example 5 into the DNAPL pollution source area, control the mass ratio of the persulfate in the medicament to the trichlorethylene in the DNAPL pollution source area to be 450:2, and degrade the trichlorethylene therein;
经测试,反应64天后,DNAPL污染源区中TCE去除率达到98%以上。After testing, after 64 days of reaction, the removal rate of TCE in the DNAPL pollution source area reached over 98%.
对比例1Comparative example 1
本对比例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂,同实施例1,唯一不同之处在于:本对比例中膨润土为钙基膨润土,购自张家口恒泰膨润土有限责任公司;This comparative example provides a medicament for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, the same as in Example 1, the only difference is that the bentonite in this comparative example is calcium-based bentonite, purchased from Zhangjiakou Hengtai bentonite limited liability company;
模拟应用环境,将本对比例中的药剂应用于10mg/L的含有TCE的厌氧地下水中,具体应用方法如下:将药剂中的过硫酸盐和水投加至10mg/L的含有TCE的厌氧地下水中,再加入钙基膨润土,保证药剂中钙基膨润土、过硫酸盐与含有TCE的厌氧地下水中TCE的质量比为4000:384:2,在常温、常压、振荡(250rpm)条件下反应8天后,含有TCE的厌氧地下水中TCE去除率达到31%,反应64天后,含有TCE的厌氧地下水中TCE去除率达到72%。Simulate the application environment, apply the medicament in this comparative example to the anaerobic groundwater containing TCE at 10mg/L, the specific application method is as follows: add the persulfate and water in the medicament to the anaerobic groundwater containing TCE at 10mg/L Add calcium-based bentonite to oxygenated groundwater to ensure that the mass ratio of calcium-based bentonite and persulfate in the agent to TCE in anaerobic groundwater containing TCE is 4000:384:2. After 8 days of reaction, the removal rate of TCE in the anaerobic groundwater containing TCE reached 31%, and after 64 days of reaction, the removal rate of TCE in the anaerobic groundwater containing TCE reached 72%.
对比例2Comparative example 2
本对比例提供了一种同步固定和削减土壤和/或地下水中三氯乙烯的药剂,同实施例1,唯一不同之处在于:本对比例中膨润土为钠基膨润土,钠基膨润土中Na+含量为5wt%,总有机碳含量为9mg/L,pH为10.6,粒径为150μm;This comparative example provides a kind of medicament for synchronously fixing and reducing trichlorethylene in soil and/or groundwater, with embodiment 1, only difference is: in this comparative example, bentonite is sodium-based bentonite, Na in sodium - based bentonite The content is 5wt%, the total organic carbon content is 9mg/L, the pH is 10.6, and the particle size is 150μm;
模拟应用环境,将本对比例中的药剂应用于10mg/L的含有TCE的厌氧地下水中,具体应用方法如下:将药剂中的过硫酸盐和水投加至10mg/L的含有TCE的厌氧地下水中,再加入膨润土,保证药剂中膨润土、过硫酸盐与含有TCE的厌氧地下水中TCE的质量比为4000:384:2,在常温、常压、振荡(250rpm)条件下反应8天后,含有TCE的厌氧地下水中TCE去除率达到40%,反应64天后,含有TCE的厌氧地下水中TCE去除率达到81%。Simulate the application environment, apply the medicament in this comparative example to the anaerobic groundwater containing TCE at 10mg/L, the specific application method is as follows: add the persulfate and water in the medicament to the anaerobic groundwater containing TCE at 10mg/L Add bentonite to oxygenated groundwater to ensure that the mass ratio of bentonite and persulfate in the agent to TCE in anaerobic groundwater containing TCE is 4000:384:2. React for 8 days under normal temperature, normal pressure, and vibration (250rpm) conditions. , the removal rate of TCE in anaerobic groundwater containing TCE reached 40%, and after 64 days of reaction, the removal rate of TCE in anaerobic groundwater containing TCE reached 81%.
试验例1:膨润土耦合过硫酸盐削减地下水污染源区三氯乙烯的应用Test Example 1: Application of bentonite coupled with persulfate to reduce trichlorethylene in groundwater pollution source areas
1、实验材料与仪器:TCE:北京化工厂(纯度≥99.5%);过硫酸钠:北京化工厂(分析纯);碘化钾:北京化工厂(分析纯);碳酸氢钠:北京化工厂(分析纯);氯化钠:北京化工厂(分析纯);硫酸钾:北京化工厂(分析纯);硫酸镁:北京化工厂(分析纯);硫酸钙:北京化工厂(分析纯);甲醇:DIKMA公司(纯度≥99.9%)、美国Honeywell公司(色谱纯);替代标准混合物:美国Chem Service公司(2000μg/mL于甲醇);54组分挥发性有机物混标:美国ChemService公司(2000μg/mL于甲醇);膨润土:国药集团化学试剂股份有限公司(钠基);实验用水:超纯水;氦气:北京华元气体有限公司(纯度99.999%);气相色谱-质谱仪:Agilent,6890/5973N,美国;顶空自动进样器:Agilent,G1888,美国;恒温培养摇床:福玛,QYC-2102C,中国;台式低速离心机:湘仪,L550,中国;台式高速离心机:京立,LG16-W(Ⅰ),中国;紫外分光光度计:Shimadzu,UV-1800,日本;厌氧箱手套箱:COY,14500Coy Drive,美国;pH计:Sartorius,PB-10,德国;氧化还原电位计:Clean,ORP30,美国;微量进样针:Hamilton,10、25、100、1000μL,瑞士;1. Experimental materials and instruments: TCE: Beijing Chemical Plant (purity ≥ 99.5%); Sodium persulfate: Beijing Chemical Plant (analytical pure); Potassium iodide: Beijing Chemical Plant (analytical pure); Sodium bicarbonate: Beijing Chemical Plant (analytically pure); Sodium chloride: Beijing Chemical Plant (analytical pure); Potassium sulfate: Beijing Chemical Plant (analytical pure); Magnesium sulfate: Beijing Chemical Plant (analytical pure); Calcium sulfate: Beijing Chemical Plant (analytical pure); Methanol: DIKMA Company (purity≥99.9%), American Honeywell Company (chromatographically pure); alternative standard mixture: American Chem Service Company (2000 μg/mL in methanol); 54 component volatile organic compound standard: American ChemService Company (2000 μg/mL in methanol) methanol); bentonite: Sinopharm Chemical Reagent Co., Ltd. (sodium base); experimental water: ultrapure water; helium: Beijing Huayuan Gas Co., Ltd. (purity 99.999%); gas chromatography-mass spectrometer: Agilent, 6890/5973N , the United States; headspace autosampler: Agilent, G1888, the United States; constant temperature culture shaker: Fuma, QYC-2102C, China; desktop low-speed centrifuge: Xiangyi, L550, China; desktop high-speed centrifuge: Jingli, LG16-W(Ⅰ), China; UV spectrophotometer: Shimadzu, UV-1800, Japan; anaerobic glove box: COY, 14500 Coy Drive, USA; pH meter: Sartorius, PB-10, Germany; redox potentiometer : Clean, ORP30, the United States; micro-injection needles: Hamilton, 10, 25, 100, 1000μL, Switzerland;
2、实验:2. Experiment:
(1)膨润土和过硫酸盐削减地下水中三氯乙烯的短期性能:(1) Bentonite and persulfate reduce the short-term performance of trichlorethylene in groundwater:
分取0.4g膨润土置于一系列20mL具盖(内衬聚四氟乙烯/硅胶隔垫)螺纹口棕色玻璃瓶中;加入20mL驱氧超纯水;加入100μL 476g/L过硫酸钠母液,保证过硫酸盐初始浓度为1.9g/L;加入5μL 40.0g/L TCE母液,保证TCE初始浓度为10mg/L;玻璃瓶置于恒温振荡器中(250rpm,25±1.0℃),8天内定期取出并离心(3000rpm,20min);取上清液检测TCE、1,1-二氯乙烯、1,2-二氯乙烯、氯乙烯和pH;每组实验设定3个平行;Take 0.4g of bentonite and place it in a series of 20mL screw-top brown glass bottles with caps (lined with polytetrafluoroethylene/silica gel septa); add 20mL of oxygen-dispelling ultrapure water; add 100μL of 476g/L sodium persulfate mother liquor to ensure The initial concentration of persulfate is 1.9g/L; add 5μL of 40.0g/L TCE mother solution to ensure the initial concentration of TCE is 10mg/L; place the glass bottle in a constant temperature oscillator (250rpm, 25±1.0℃), and take it out regularly within 8 days And centrifuge (3000rpm, 20min); take the supernatant to detect TCE, 1,1-dichloroethylene, 1,2-dichloroethylene, vinyl chloride and pH; set 3 parallel experiments for each group;
实施例1中的药剂引起的TCE短期去除效果见图3、有关动力学线性拟合见图4,单一膨润土引起的TCE短期去除效果见图3,实施例1中的药剂引起的TCE脱氯产物变化见表1,实施例1中的药剂引起的pH变化见图5。反应5天时,单一膨润土对TCE去除率仅为3%,表明膨润土的吸附作用微弱(图3)。常温常压下,单一过硫酸钠亦仅能去除少量的TCE。反应8天时,膨润土与过硫酸盐联用对TCE去除率达56%,说明过硫酸盐能够有效氧化降解TCE(图3)。膨润土和过硫酸盐联用氧化降解TCE符合准一级反应动力学,且降解速率常数为0.094(d-1)(图4)。另一方面,膨润土和过硫酸盐联用时,未检测到1,1-二氯乙烯、1,2-二氯乙烯、氯乙烯等3种脱氯产物(表1),证明TCE被完全矿化。再一方面,在膨润土和过硫酸盐反应体系中,在初始pH为10.5的条件下,8天后pH依然维持在10.2(图5)。可见,体系pH随反应时间的变化不大,说明膨润土能够保证体系处于稳定的碱性环境,进而有利于实现碱活化过硫酸盐。The short-term removal effect of TCE caused by the agent in Example 1 is shown in Figure 3, and the relevant kinetic linear fitting is shown in Figure 4, and the short-term removal effect of TCE caused by a single bentonite is shown in Figure 3, and the TCE dechlorination product caused by the agent in Example 1 The changes are shown in Table 1, and the pH changes caused by the agents in Example 1 are shown in Figure 5. After 5 days of reaction, the removal rate of TCE by a single bentonite was only 3%, indicating that the adsorption of bentonite was weak (Fig. 3). Under normal temperature and pressure, sodium persulfate can only remove a small amount of TCE. After 8 days of reaction, the combined use of bentonite and persulfate had a TCE removal rate of 56%, indicating that persulfate can effectively oxidize and degrade TCE (Figure 3). The oxidative degradation of TCE by combined use of bentonite and persulfate conformed to pseudo-first-order kinetics, and the degradation rate constant was 0.094(d -1 ) (Fig. 4). On the other hand, when bentonite and persulfate were combined, the three dechlorinated products of 1,1-dichloroethylene, 1,2-dichloroethylene, and vinyl chloride were not detected (Table 1), proving that TCE was completely mineralized . On the other hand, in the reaction system of bentonite and persulfate, under the condition of initial pH of 10.5, the pH remained at 10.2 after 8 days (Fig. 5). It can be seen that the pH of the system does not change much with the reaction time, indicating that bentonite can ensure the system is in a stable alkaline environment, which is beneficial to the realization of alkali-activated persulfate.
表1实施例1中引起的TCE脱氯产物变化The change of TCE dechlorination product caused in the embodiment 1 of table 1
注:ND表示未检出。Note: ND means not detected.
(2)膨润土和过硫酸盐削减地下水中三氯乙烯的长期性能:(2) Long-term performance of bentonite and persulfate to reduce trichlorethylene in groundwater:
分取0.4g膨润土置于一系列20mL具盖(内衬聚四氟乙烯/硅胶隔垫)螺纹口棕色玻璃瓶中;加入20mL驱氧超纯水;加入100μL 476g/L过硫酸钠母液,保证过硫酸盐初始浓度为1.9g/L;加入5μL 40.0g/L TCE母液,保证TCE初始浓度为10mg/L;玻璃瓶置于恒温振荡器中(250rpm,25±1.0℃),64天内定期取出并离心(3000rpm,20min);取上清液检测TCE、S2O8 2-、pH和Eh;每组实验设定3个平行。Take 0.4g of bentonite and place it in a series of 20mL screw-top brown glass bottles with caps (lined with polytetrafluoroethylene/silica gel septa); add 20mL of oxygen-dispelling ultrapure water; add 100μL of 476g/L sodium persulfate mother liquor to ensure The initial concentration of persulfate is 1.9g/L; add 5μL of 40.0g/L TCE mother solution to ensure the initial concentration of TCE is 10mg/L; place the glass bottle in a constant temperature oscillator (250rpm, 25±1.0℃), and take it out regularly within 64 days And centrifuge (3000rpm, 20min); take the supernatant to detect TCE, S 2 O 8 2- , pH and Eh; set 3 parallel experiments for each group.
实施例1中的药剂引起的TCE长期去除效果、反应体系Eh变化、反应体系pH变化及过硫酸盐残留量变化分别见图6、图7、图8和图9。随着反应时间延长至64天,实施例1中的药剂对TCE去除率达100%(图6)。体系pH逐渐降低,但是变幅不大,由初始10.5降至9.3(64天时)(图7)。尽管过硫酸盐在氧化降解TCE时会伴随生成H+(公式1),但是膨润土展现出很强的缓冲作用,致使体系pH变化不大。前15天,体系Eh逐渐升高,由初始60.1mV升高至225.6mV;15天后,Eh时高、时低,数值介于174.0~225.7mV之间(图8)。Eh的升高进一步佐证膨润土可以维持体系的碱性、氧化环境,促使过硫酸盐被活化生成SO4 ·-,进而引起SO4 ·-转化为·OH。64天后TCE得到完全去除(图6),然而体系中仍然残留大量的过硫酸盐(残留率大于90%)(图9)。结合体系pH、Eh和过硫酸盐残留量,推测该体系依然具备氧化降解TCE的能力。The long-term removal effect of TCE caused by the agent in Example 1, the change of Eh of the reaction system, the change of pH of the reaction system and the change of residual persulfate are shown in Figure 6, Figure 7, Figure 8 and Figure 9 respectively. As the reaction time was extended to 64 days, the TCE removal rate of the reagent in Example 1 reached 100% ( FIG. 6 ). The pH of the system decreased gradually, but not much, from the initial 10.5 to 9.3 (at 64 days) (Figure 7). Although persulfate is accompanied by the generation of H + (Eq. 1) during the oxidative degradation of TCE, bentonite exhibits a strong buffering effect, resulting in little change in the pH of the system. In the first 15 days, the Eh of the system gradually increased, from the initial 60.1mV to 225.6mV; after 15 days, the Eh was high and low, and the value was between 174.0 and 225.7mV (Figure 8). The increase of Eh further proves that bentonite can maintain the alkaline and oxidative environment of the system, and promote the activation of persulfate to generate SO 4 ·- , which in turn leads to the transformation of SO 4 ·- into ·OH. After 64 days, TCE was completely removed (FIG. 6), but a large amount of persulfate (residual rate greater than 90%) still remained in the system (FIG. 9). Combined with the system pH, Eh and residual persulfate, it is speculated that the system still has the ability to oxidatively degrade TCE.
SO4 ·-+C2HCl3+4H2O→2CO2+9H++3Cl-+6SO4 2- (1)SO 4 ·- +C 2 HCl 3 +4H 2 O→2CO 2 +9H + +3Cl - +6SO 4 2- (1)
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clear description, rather than limiting the implementation. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. And the obvious changes or changes derived therefrom are still within the scope of protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910195313.XA CN109909281B (en) | 2019-03-14 | 2019-03-14 | medicament and method for synchronously fixing and reducing trichloroethylene in soil and/or underground water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910195313.XA CN109909281B (en) | 2019-03-14 | 2019-03-14 | medicament and method for synchronously fixing and reducing trichloroethylene in soil and/or underground water |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109909281A CN109909281A (en) | 2019-06-21 |
CN109909281B true CN109909281B (en) | 2019-12-13 |
Family
ID=66964935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910195313.XA Active CN109909281B (en) | 2019-03-14 | 2019-03-14 | medicament and method for synchronously fixing and reducing trichloroethylene in soil and/or underground water |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109909281B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111589042B (en) * | 2020-05-26 | 2021-04-27 | 常熟理工学院 | A dry dechlorination process for waste incineration fly ash |
CN114180666A (en) * | 2021-12-13 | 2022-03-15 | 中国地质大学(北京) | A kind of medicament for fixing and reducing benzene series and its preparation method and application |
CN116656373B (en) * | 2023-05-09 | 2023-12-01 | 亚泰电化有限公司 | Preparation method of sodium persulfate for soil treatment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102241454A (en) * | 2011-05-26 | 2011-11-16 | 哈尔滨工业大学 | Method for remediating contaminated underground water in situ on basis of persulfate thermal activation technique |
CN105110448B (en) * | 2015-10-09 | 2017-11-07 | 中国科学院南海海洋研究所 | A kind of method that utilization Zero-valent Iron persulfate removes the organic compound contaminated water body of removing heavy metals simultaneously |
CN106669839A (en) * | 2016-12-26 | 2017-05-17 | 华侨大学 | Iron carbon and bentonite sodium alginate gel catalyst and preparation method and application thereof |
CN107720853B (en) * | 2017-11-20 | 2021-04-16 | 中国环境科学研究院 | DNAPL pollution remediation system and method in groundwater based on pollution control |
-
2019
- 2019-03-14 CN CN201910195313.XA patent/CN109909281B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109909281A (en) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109909281B (en) | medicament and method for synchronously fixing and reducing trichloroethylene in soil and/or underground water | |
CN109909280B (en) | medicament and method for synchronously fixing and reducing benzene in soil and/or underground water | |
Yang et al. | Treatment of drilling fluid waste during oil and gas drilling: A review | |
Tong et al. | Physiochemical technologies for HCB remediation and disposal: A review | |
CN109304363B (en) | A kind of chemical remediation agent suitable for oil-polluted soil and using method thereof | |
US20100003082A1 (en) | Method and Compositions for Treatment of Subsurface Contaminants | |
CN109909279B (en) | Medicament and method for synchronously fixing and reducing trichloroethylene in soil and/or underground water | |
Xu et al. | Coupling surfactants with ISCO for remediating of NAPLs: Recent progress and application challenges | |
Li et al. | Electrochemical oxidation combined with UV irradiation for synergistic removal of perfluorooctane sulfonate (PFOS) in water | |
Barisci et al. | Degradation of emerging per-and polyfluoroalkyl substances (PFAS) using an electrochemical plug flow reactor | |
Gong et al. | Removal of thiophene in air stream by absorption combined with electrochemical oxidation | |
JP2007209824A (en) | Method for cleaning contaminated soil or contaminated groundwater | |
Han et al. | Kill two birds with one stone: Solubilizing PAHs and activating PMS by photoresponsive surfactants for the cycle remediation of contaminated groundwater | |
KR20010086551A (en) | Method of purifying soil contaminated with oil and an apparatus thereof | |
Huang et al. | Roles of oxidant, activator, and surfactant on enhanced electrokinetic remediation of PAHs historically contaminated soil | |
CN107649511B (en) | Method for promoting degradation of polychlorinated biphenyl by zero-valent iron | |
CN115340168A (en) | A method of treating soil washing waste liquid by surface polymerization modified activated carbon | |
Park et al. | Switching effects of electrode polarity and introduction direction of reagents in electrokinetic-Fenton process with anionic surfactant for remediating iron-rich soil contaminated with phenanthrene | |
CN104245055A (en) | Chemical substance decomposing agent composition and method for decomposing chemical substance using same | |
CN101461989A (en) | Method for degrading polybrominated diphenyl ethers using surface active agent solubilization combined with UV technique | |
JP2005139328A (en) | Remover of organochlorine compound and method for removing organochlorine compound | |
KR101796239B1 (en) | Remediation method for oil-contaminated soil | |
Wang et al. | Sequential coupling of bio-augmented permeable reactive barriers for remediation of 1, 1, 1-trichloroethane contaminated groundwater | |
CN115672967A (en) | Method for strengthening electrokinetic remediation of phenanthrene contaminated soil by combining surfactant and oxidant | |
CN112429830B (en) | In-situ constructed bone charcoal catalysis Fe (OH) 2 Environmental remediation method for removing chlorinated hydrocarbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |