CN109905136A - Weakened phase restoring device and weakened phase restoring method - Google Patents

Weakened phase restoring device and weakened phase restoring method Download PDF

Info

Publication number
CN109905136A
CN109905136A CN201711292278.0A CN201711292278A CN109905136A CN 109905136 A CN109905136 A CN 109905136A CN 201711292278 A CN201711292278 A CN 201711292278A CN 109905136 A CN109905136 A CN 109905136A
Authority
CN
China
Prior art keywords
phase
value
pilot
phase error
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711292278.0A
Other languages
Chinese (zh)
Inventor
周裕仁
廖懿颖
赖科印
郑凯文
童泰来
珍路易斯·东史特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MStar Semiconductor Inc Taiwan
Original Assignee
MStar Semiconductor Inc Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MStar Semiconductor Inc Taiwan filed Critical MStar Semiconductor Inc Taiwan
Priority to CN201711292278.0A priority Critical patent/CN109905136A/en
Publication of CN109905136A publication Critical patent/CN109905136A/en
Pending legal-status Critical Current

Links

Abstract

A kind of weakened phase restoring device, including a phase detecting module, receive multiple reception signals, wherein multiple reception signal includes multiple pilot signals and multiple data-signals, the phase detecting module includes a pilot phase detection unit, for calculating multiple The Pilot Phase Errors according to multiple pilot signal;One weight unit is used to receive signal according in multiple reception signal at least one, calculates the multiple weighted values for corresponding to multiple pilot phase;And a combining unit, it is used to calculate the multiple phase errors for corresponding to multiple data-signal according to multiple The Pilot Phase Error and multiple weighted value;And a phase compensation block, it is used to compensate multiple multiple phases for receiving signal according to multiple phase error.

Description

Weakened phase restoring device and weakened phase restoring method
Technical field
The present invention refers to a kind of weakened phase restoring device and weakened phase restoring method, espespecially a kind of precisely to detect phase error Weakened phase restoring device and weakened phase restoring method.
Background technique
Weakened phase restoring (Phase Recovery) is carried out in the receiving end of digital communication system, it can be by the phase error of signal Compensation is returned, the symbol error rate (Symbol Error Rate, SER) or bit error rate (Bit of system is effectively reduced Error Rate, BER), and improve system effectiveness.
In general, weakened phase restoring needs first to carry out phase error detection (Phase Error to reception signal Detection, PED), further according to detected phase error, carry out phase compensation.In the prior art, weakened phase restoring device In phase error detector be open loop phase error detector (Open Loop PED), open loop phase error detector Although circuit structure and operand it is relatively simple, the precision of the phase error detected by it is also poor.
Therefore, how the weakened phase restoring device and weakened phase restoring method of precisely detection phase error are provided, industry is also just become One of the target that boundary is made great efforts.
Summary of the invention
Therefore, the main object of the present invention be to provide a kind of weakened phase restoring device that can precisely detect phase error and Weakened phase restoring method, the shortcomings that improve known technology.
One aspect of the present invention provides a kind of weakened phase restoring device, including a phase detecting module, receives multiple reception letters Number, wherein multiple reception signal includes multiple pilot signals and multiple data-signals, which includes a pilot tone Phase detection unit is used to calculate multiple The Pilot Phase Errors according to multiple pilot signal;One weight unit is used to basis At least one receives signal in multiple reception signal, calculates the multiple weighted values for corresponding to multiple pilot phase;An and knot Unit is closed, is used to calculate according to multiple The Pilot Phase Error and multiple weighted value and correspond to the more of multiple data-signal A phase error, wherein multiple phase error is the linear combination of multiple pilot phase;And a phase compensation block, it uses To compensate multiple multiple phases for receiving signal according to multiple phase error.
Another aspect of the present invention provides a kind of weakened phase restoring method, including receives multiple reception signals, wherein multiple Receiving signal includes multiple pilot signals and multiple data-signals;According to multiple pilot signal, calculates multiple pilot phases and miss Difference;Signal is received according in multiple reception signal at least one, calculates the multiple weighted values for corresponding to multiple pilot phase;Root According to multiple The Pilot Phase Error and multiple weighted value, the multiple phase errors for corresponding to multiple data-signal are calculated, In multiple phase error be multiple pilot phase linear combination;And it according to multiple phase error, compensates multiple Receive multiple phases of signal.
Detailed description of the invention
For the above objects, features and advantages of the present invention can be clearer and more comprehensible, below in conjunction with attached drawing to tool of the invention Body embodiment elaborates, in which:
Fig. 1 is the block diagram of one weakened phase restoring device of the embodiment of the present invention.
Fig. 2 is the flow chart of one weakened phase restoring method of the embodiment of the present invention.
Fig. 3 is the schematic diagram of multiple pilot signals and multiple data-signals in multiple reception signals.
Fig. 4 is the block diagram of one weight unit of the embodiment of the present invention.
Fig. 5 is the block diagram of one combining unit of the embodiment of the present invention.
Fig. 6 is the block diagram of one initial cell of the embodiment of the present invention.
Fig. 7 is the block diagram of one updating unit of the embodiment of the present invention.
Fig. 8 is the block diagram of one accumulated unit of the embodiment of the present invention.
Symbol description:
1 weakened phase restoring device
10 phase detecting modules
12 pilot phase detection units
14 weight units
140 cross-correlation calculation units
142 autocorrelation calculation units
144 weight calculation units
146 measurement error computing units
16 combining units
160 initial cells
162 updating units
164 accumulated units
20 phase compensation blocks
22 weakened phase restoring methods
200~208 steps
70 multiplication units
72 sum units
74 adjustment units
Fi-1、Fi、Fi+1、Fi+2Frame
ACC1 accumulator
AD1 adder
H regulation coefficient
I adds up result
KyxCross correlation vector
KyyAutocorrelation matrix
LRA updated value
LW initial value
MP1 multiplier
MUX multiplexer
Q1, Q2 register
R receives signal
rDData-signal
rP1、rP2、rP3、rP4Pilot signal
RC, RC ' keep in content
SB subtracter
TDData interval
TPPilot tone section
w1~w4Weighted value
X phase error
α T phase error intensity
ε measurement error
θ14The Pilot Phase Error
Specific embodiment
Fig. 1 is the block diagram of one weakened phase restoring of the embodiment of the present invention (Phase Recovery) device 1.Weakened phase restoring device 1 is used to carry out weakened phase restoring to multiple reception signal r.Weakened phase restoring device 1 includes a phase detecting module 10 and a phase Compensating module 20, phase detecting module 10 receive multiple reception signal r, and calculate/detect and correspond to multiple reception signal r's Multiple phase error x.Phase compensation block 20 compensates multiple multiple phases for receiving signal r according to multiple phase error x.Phase Position detection module 10 includes a pilot phase detection unit 12, a weight unit 14 and a combining unit 16.Fig. 2 is the present invention The flow chart of one weakened phase restoring method 22 of embodiment.
Please also refer to Fig. 1 and Fig. 2, phase detecting module 10 receives multiple reception signal r, plurality of reception signal r Including multiple pilot signals (Pilot Signal) and multiple data-signals (Data Signal) (step 200), pilot phase inspection Unit 12 is surveyed to be used to calculate multiple The Pilot Phase Error (steps 202) according to multiple pilot signals in multiple reception signal r.Separately On the one hand, weight unit 14 receives signal according in multiple reception signal r at least one, calculates and corresponds to the more of The Pilot Phase Error A weighted value (step 204).Combining unit 16 is calculated according to multiple The Pilot Phase Errors and multiple weighted values corresponding to multiple Each phase error x is the linear of multiple pilot phases in multiple phase error x of data-signal, plurality of phase error x Combine (Linear Combination) (step 206).In this way, which phase compensation block 20 can be according to multiple phase errors X compensates multiple multiple phase (steps 208) for receiving signal.
Specifically, referring to FIG. 3, Fig. 3 is multiple pilot signal r in multiple reception signal rP1、rP2、rP3、rP4And it is more A data-signal rDSchematic diagram, multiple data-signal rDFor the data to be compensated in the first time letter of weakened phase restoring device 1 Number, multiple pilot signal rP2And multiple data-signal rDForm frame (Frame) Fi, plurality of data-signal rDPositioned at frame Fi In data interval TD, multiple pilot signal rP2Positioned at frame FiIn pilot tone section TP.Multiple pilot signal rP1、rP3、rP4It is right It should be in frame Fi-1、Fi+1、Fi+2Pilot signal.In an embodiment, pilot tone section TPIt may include 36 pilot signals, and data Section TDIt may include 1440 data-signals.
In step 202, pilot phase detection unit 12 can be according to multiple pilot signal rP1、rP2、rP3、rP4, calculating corresponds to Frame Fi-1、Fi、Fi+1、Fi+2(or correspond to pilot signal rP1、rP2、rP3、rP4) The Pilot Phase Error θ1、θ2、θ3、θ4, wherein leading Frequency phase detection unit 12 is according to multiple pilot signal rP1~rP4Calculate The Pilot Phase Error θ14Technical detail be ability Known to field technique personnel, therefore do not repeated in this.
In step 204, weight unit 14 calculates according at least one reception signal and corresponds to The Pilot Phase Error θ14 Multiple weighted value w1~w4.Referring to FIG. 3, Fig. 3 is the block diagram of weight unit of the embodiment of the present invention 14, weight unit 14 is wrapped A cross-correlation calculation unit 140, an autocorrelation calculation unit 142, a weight calculation unit 144 and a measurement error is included to calculate Unit 146.Cross-correlation calculation unit 140 is used to according to a time t, and calculating is relevant to time t and corresponds to The Pilot Phase Error θ14Multiple cross correlation value kyx1~kyx4, plurality of cross correlation value kyx1~kyx4A respectively first phase error thetatWith Multiple The Pilot Phase Error θ14Cross-correlation (Cross-correlation), first phase error thetatIt can be multiple data Signal rDIn in the data-signal r of time tD,tPhase error.Cross correlation value kyx1~kyx4A cross correlation vector K can be formedyx, That is Kyx=[kyx1,kyx2,kyx3,kyx4]T=E { [θ1234]Tθt(wherein E { } represents desired value operator).Another party Face, measurement error computing unit 146 are used to calculate a measurement error ε, autocorrelation calculation list according at least one reception signal r Member 142 is used to calculate multiple autocorrelation values according to measurement error ε, and plurality of autocorrelation value is multiple The Pilot Phase Error θ14Auto-correlation (Auto-correlation), multiple autocorrelation values can form an autocorrelation matrix Kyy, it is Kyy=E {[θ1234]T1234]}.Weight calculation unit 144 is according to cross correlation vector Kyx(cross correlation value kyx1~kyx4) And autocorrelation matrix Kyy(multiple autocorrelation values) calculates multiple weighted value w1~w4
Specifically, assuming that the track movement for receiving phase error in signal r is Brownian movement (Brownian Motion, BM) in the case where (assume to receive the function of time that changes over time of phase error in signal r meet/be proportional to one Brownian movement program (BM Process)), cross correlation vector KyxIt is represented by formula 1, autocorrelation matrix KyyIt is represented by formula 2, wherein constant c is an arbitrary constant.
Cross correlation vector K is calculated in cross-correlation calculation unit 140yxAnd phase is come from the calculating of autocorrelation calculation unit 142 Close matrix KyyAfterwards, weight calculation unit 144 can be according to cross correlation vector KyxAnd autocorrelation matrix Kyy, calculate weight vectors w= [w1,w2,w3,w4]T(wherein weighted value w1~w4Form weight vectors w).Weight calculation unit 144 can calculate calculating weight vectors W is w=[w1,w2,w3,w4]T=(Kyy)-1Kyx(formula 3).In other words, weight calculation unit 144 calculates autocorrelation matrix Kyy An inverse matrix, and by autocorrelation matrix KyyInverse matrix multiplied by cross correlation vector Kyx, to export weight vectors w (i.e. weighted value w1~w4)。
In addition, measurement error computing unit 146 can calculate signal-to-noise ratio (Signal-to- according at least one reception signal Noise Ratio, SNR), and according to signal-to-noise ratio and phase error intensity (Phase Noise Intensity) α T, it calculates and surveys Amount error ε is ε=σ2/ (1476 α T), σ2It is relevant to signal-to-noise ratio (Signal-to-Noise Ratio, SNR), letter can be proportional to It makes an uproar the inverse (Reciprocal) of ratio.In an embodiment, measurement error computing unit 146 can calculate σ2For σ2=N0/ (72ES), wherein ESFor symbol signal energy (Symbol Energy), N0For noise spectrum density (Noise Power Density), wherein ES、N0, the visual actual state of α T and adjust.In another embodiment, measurement error computing unit 146 can root Signal-to-noise ratio is calculated according at least one reception signal in multiple reception signal r, and σ is gone out according to signal-to-noise ratio computation2.In addition, measurement misses Poor computing unit 146 is known to those skilled in the art according to the technical detail that at least one reception signal calculates signal-to-noise ratio, therefore It is not repeated in this.
In step 206, combining unit 16 is according to The Pilot Phase Error θ1、θ2、θ3、θ4And weighted value w1、w2、w3、w4, meter It calculates and corresponds to multiple data-signal rDMultiple phase error x, any phase error x can be generally shown as x=w1θ1 +w2θ2+w3θ3+w4θ4(formula 4).Since weight vectors w is to be calculated by formula 3 and obtained, 16/ phase-detection mould of combining unit The phase error x that block 10 is calculated/detected is to carry out maximum likelihood (Maximum Likelihood, ML) to phase error x Detection.
In an embodiment, cross-correlation calculation unit 140 can be by data interval TDIt is divided into N number of time point t0~tN(N can be waited In 1440), cross-correlation calculation unit 140 can be calculated by formula 1 corresponding to time point t0~tN-1N number of cross correlation vector Kyx,0 ~Kyx,N-1, weight calculation unit 144 can be by formula 3 according to N number of cross correlation vector Kyx,0~Kyx,N-1It calculates separately out and corresponds to Time point t0~tN-1Weighted value (w1,0,w2,0,w3,0,w4,0)~(w1,N-1,w2,N-1,w3,N-1,w4,N-1) (it is related to the anti-square of n times Battle array operation), combining unit 16 can be calculated by formula 4 corresponding to data-signal rD,nPhase error xnFor xn=w1,nθ1+w2,n θ2+w3,nθ3+w4,nθ4, wherein data-signal rD,nFor multiple data-signal rDIn correspond to time point tnData-signal, time point tnIt can be time point t0~tNIn a time point.
In an embodiment, cross-correlation calculation unit 140 can be calculated by formula 1 corresponding to time point t01 mutually Close vector Kyx,0, re-computation unit 144 can be by formula 3 according to cross correlation vector Kyx,0It calculates and corresponds to time point t0Weight It is worth (w1,0,w2,0,w3,0,w4,0) (it only relates to 1 matrix inversion operation), combining unit 16 can be by formula 4 in addition to calculating data Signal rD,0Phase error x0Except (it can be considered initial value LW), combining unit 16 can further calculate a updated value LRA, So that corresponding to data-signal rD,nPhase error xnFor xn=LW-n*LRA.
Specifically, referring to FIG. 5, Fig. 5 is the block diagram of combining unit of the embodiment of the present invention 16.As shown in figure 5, in conjunction with Unit 16 may include an initial cell 160, a updating unit 162 and an accumulated unit 164.Initial cell 160 can be according to power Weight values w1、w2、w3、w4And The Pilot Phase Error θ1、θ2、θ3、θ4, calculating initial value LW is LW=w1θ1+w2θ2+w3θ3+w4θ4, Calculate weighted value w1、w2、w3、w4With The Pilot Phase Error θ1、θ2、θ3、θ4Between a product item and (Sum-of-Product), In addition, weighted value (w at this time1,w2,w3,w4) can be for corresponding to time point t0Weighted value (w1,0,w2,0,w3,0,w4,0), and meter Calculation initial value LW is LW=w1,0θ1+w2,0θ2+w3,0θ3+w4,0θ4.Updating unit 162 can be according to weighted value w1、w2、w3、w4And it leads Frequency phase error theta1、θ2、θ3、θ4, updated value LRA is calculated, wherein updated value LRA can be proportional to (w1–w41+(w2–w32+(w3– w23+(w4–w14.Accumulated unit 164 can calculate according to initial value LW and updated value LRA and correspond to (time point tn) data Signal rD,nPhase error xnFor xn=LW-n*LRA.
Initial cell 160, updating unit 162 and accumulated unit 164 are not limited to be realized with specific circuit architecture, be lifted For example, please refer to Fig. 6 to Fig. 8, Fig. 6 to Fig. 8 be initial cell of the embodiment of the present invention 160, updating unit 162 and The schematic diagram of accumulated unit 164.It will be appreciated from fig. 6 that initial cell 160 includes an a multiplier MP1 and accumulator ACC1, add up Device ACC1 includes an an adder AD1 and register Q1.Initial cell 160 receives The Pilot Phase Error according to a time sequencing θ1、θ2、θ3、θ4, for example, initial cell 160 is respectively at time s1、s2、s3、s4Receive The Pilot Phase Error θ1、θ2、θ3、θ4.Yu Shi Between s1, multiplier MP1 is by weighted value w1With The Pilot Phase Error θ1It is multiplied, to generate multiplied result w1θ1, initial cell 160 is by phase Multiply result w1θ1It is stored in register Q1.In time s2, multiplier MP1 is by weighted value w2With The Pilot Phase Error θ2It is multiplied, to produce Raw multiplied result w2θ2, adder AD1 is by multiplied result w2θ2With multiplied result w1θ1It is added, to generate accumulation result w1θ1+w2 θ2, initial cell 160 is by accumulation result w1θ1+w2θ2It is stored in register Q1.And so on, in time s4, multiplier MP1 will weigh Weight values w4With The Pilot Phase Error θ4It is multiplied, adder AD1 is by multiplied result w4θ4With corresponding time s3Accumulation result w1θ1+w2 θ2+w3θ3It is added, to generate accumulation result w1θ1+w2θ2+w3θ3+w4θ4, initial cell 160 is by accumulation result w1θ1+w2θ2+w3θ3+ w4θ4It is stored in register Q1, and exporting initial value LW is LW=w1θ1+w2θ2+w3θ3+w4θ4
As shown in Figure 7, updating unit 162 may include a multiplication unit 70, a sum unit 72 and an adjustment unit 74. Multiplication unit 70 is respectively by The Pilot Phase Error θ1、θ2、θ3、θ4Multiplied by subtracting each other result (w1–w4)、(w2–w3)、(w3–w2)、(w4– w1), to generate multiplied result (w1–w41、(w2–w32、(w3–w23、(w4–w14.Sum unit 72 is used to the knot that will be multiplied Fruit (w1–w41、(w2–w32、(w3–w23、(w4–w14Aggregation is I=(w to generate an aggregation result I1–w41+(w2– w32+(w3–w23+(w4–w14.Adjustment unit 74 is used to the aggregation result multiplied by a regulation coefficient h, to generate updated value LRA is LRA=h*I=h* [(w1–w41+(w2–w32+(w3–w23+(w4–w14], adjustment unit 74 can be come with multiplier It realizes.In an embodiment, regulation coefficient h can be equal to or be proportional to (1/N), and N can be 1440.
As shown in Figure 8, accumulated unit 164 includes register Q2, subtracter SB and multiplexer MUX.In time point t0, more Initial value LW is stored in register Q2, posts at this time by work device MUX exportable initial value LW to register Q2, accumulated unit 164 The temporary content RC of storage Q2 is initial value LW.In time point t1, subtracter SB subtracts temporary content RC (i.e. initial value LW) Updated value LRA, to generate updated temporary content RC ', i.e. RC '=RC-LRA=LW-LRA, in addition multiplexer MUX can will be temporary The temporary content RC for depositing content RC ' output to register Q2 is LW-LRA.In time point t2, subtracter SB is by temporary content RC (i.e. LW-LRA) subtracts updated value LRA, to generate updated temporary content RC ', i.e. RC '=RC-LRA=LW -2*LRA, separately It is LW -2*LRA that outer multiplexer MUX, which can export temporary content RC ' to the temporary content RC of register Q2,.And so on, Yu Shi Between point tn, temporary content RC (i.e. LW-(n -1) * LRA) is subtracted updated value LRA by subtracter SB, with generate it is updated it is temporary in Hold RC ', i.e. RC '=RC-LRA=LW-n*LRA, and exporting temporary content RC ' is corresponding to (time point tn) data-signal rD,nPhase error xn
In step 208, phase compensation block 20 compensates multiple multiple phases for receiving signal according to multiple phase error x Position, technical detail is known to those skilled in the art, therefore does not repeat in this.
In general, Maximum Likelihood Detection has preferable efficiency, but its operation cost is quite high, even if using formula 3 calculate weight vectors w, however, cross correlation vector K in the prior artyxAnd autocorrelation matrix KyyNeed to by statistics in the way of come It realizes, needs to expend more operand and count the required waiting time (Latency).In comparison, this hair It is bright assuming that receive signal r in phase error track movement be Brownian movement in the case where, cross-correlation calculation unit 140 and Autocorrelation calculation unit 142 simply can calculate cross correlation vector K by formula 1 and formula 2yxAnd autocorrelation matrix Kyy, can Maximum Likelihood Detection is realized using easy mode.
Further, due to cross correlation vector KyxFor (Time Varying) (the please referring to formula 1) of time-varying, in order to save It goes to carry out n times matrix inversion operation, the present invention calculates initial value LW using initial cell 160, calculates and updates using updating unit 162 Value LRA, and accumulated unit 164 is utilized, in a manner of progressive updating (Update), calculates and correspond to (time point tn) data Signal rD,nPhase error xn(n=1 ..., N) only needs to carry out 1 matrix inversion operation, and computational complexity is greatly reduced.
In addition, pilot signal rP1、rP2、rP3、rP4Multiple data-signal r are distributed on timeDBefore and later, institute Calculated phase error x can be considered according to The Pilot Phase Error θ1、θ2、θ3、θ4The 4 rank interpolations (4 carried outth Order Interpolation), it can be increased and detect precision.
Although the present invention is disclosed as above with preferred embodiment, however, it is not to limit the invention, any this field skill Art personnel, without departing from the spirit and scope of the present invention, when can make a little modification and perfect therefore of the invention protection model It encloses to work as and subject to the definition of the claims.

Claims (18)

1. a kind of weakened phase restoring device, comprising:
One phase detecting module receives multiple reception signals, wherein multiple reception signal includes multiple pilot signals and multiple Data-signal, the phase detecting module include:
One pilot phase detection unit is used to calculate multiple The Pilot Phase Errors according to multiple pilot signal;
One weight unit is used to receive signal according in multiple reception signal at least one, calculates and correspond to multiple pilot tone phase Multiple weighted values of position;And
One combining unit is used to calculate according to multiple The Pilot Phase Error and multiple weighted value and correspond to multiple data Multiple phase errors of signal, wherein multiple phase error is the linear combination of multiple pilot phase;And
One phase compensation block is used to compensate multiple multiple phases for receiving signal according to multiple phase error.
2. weakened phase restoring device as described in claim 1, which is characterized in that the weight unit includes:
One measurement error computing unit is used to calculate a measurement error according at least one reception signal;
One cross-correlation calculation unit is used to the multiple cross correlation values for being relevant to the time be calculated, wherein multiple according to the time Cross correlation value be relevant in multiple data-signal in a first phase error of the first data-signal of the time with it is multiple The cross-correlation of The Pilot Phase Error;
One autocorrelation calculation unit is used to calculate multiple autocorrelation values of multiple The Pilot Phase Error according to the measurement error; And
One weight calculation unit is used to calculate multiple weighted value according to multiple cross correlation value and multiple autocorrelation value.
3. weakened phase restoring device as claimed in claim 2, which is characterized in that multiple cross correlation value formed a cross-correlation to Amount, multiple autocorrelation value form an autocorrelation matrix, the weight calculation unit according to multiple cross correlation value and it is multiple from Correlation, the step of calculating multiple weighted value, include:
Calculate an inverse matrix of the autocorrelation matrix;And
By the inverse matrix multiplied by the cross correlation vector, to export multiple weighted value.
4. weakened phase restoring device as claimed in claim 2, which is characterized in that the measurement error computing unit according to this at least one Receive signal, calculate measurement error the step of include:
According at least one reception signal, a signal-to-noise ratio is calculated;And
According to the signal-to-noise ratio and a phase noise intensity, the measurement error is calculated.
5. weakened phase restoring device as described in claim 1, which is characterized in that the combining unit includes:
One initial cell is used to calculate an initial value, wherein this is more according to multiple The Pilot Phase Error and multiple weighted value A weighted value corresponding one is at the first time;
One updating unit is used to calculate a updated value according to multiple The Pilot Phase Error and multiple weighted value;And
One accumulated unit is used to calculate the first phase in multiple phase error according to the initial value or the updated value and misses Difference;
Wherein, the first phase error corresponding one second time, this second it is late in this at the first time.
6. weakened phase restoring device as claimed in claim 5, which is characterized in that the initial cell calculates multiple pilot phase and misses Poor one between multiple weighted value accumulates item and as the initial value.
7. weakened phase restoring device as claimed in claim 5, which is characterized in that the initial cell is received according to a time sequencing should Multiple The Pilot Phase Errors, the initial cell include:
One multiplier is more to generate according to the time sequencing by multiple The Pilot Phase Error respectively multiplied by multiple weighted value A first multiplied result;And
One first accumulator, for multiple first multiplied result adds up, to generate the initial value.
8. weakened phase restoring device as claimed in claim 7, which is characterized in that first accumulator includes:
One first register, for storing one first accumulation result;And
One first adder is used to first accumulation result and one first multiplied result phase in multiple first multiplied result Add, to generate one second accumulation result.
9. weakened phase restoring device as claimed in claim 5, which is characterized in that the updating unit includes:
One multiplication unit, for subtracting each other as a result, to generate multiple second phases multiple The Pilot Phase Error multiplied by multiple respectively Multiply as a result, it is one first weighted value and one the in multiple weighted value that wherein multiple 1 subtracted each other in result first, which subtracts each other result, Two weighted values subtract each other result;
One sum unit is used to add up multiple second multiplied result, to generate an aggregation result;And
One adjustment unit is used to the aggregation result multiplied by a regulation coefficient, to generate the updated value.
10. weakened phase restoring device as claimed in claim 5, which is characterized in that the accumulated unit includes:
One second register, for storing one first temporary content;
One subtracter, for the first temporary content is subtracted the updated value, to generate one second temporary content;And
One multiplexer, for export the initial value or the second temporary content to second register and export this second it is temporary in Hold and is used as the first phase error.
11. a kind of weakened phase restoring method, comprising:
Multiple reception signals are received, wherein multiple reception signal includes multiple pilot signals and multiple data-signals;
According to multiple pilot signal, multiple The Pilot Phase Errors are calculated;
Signal is received according in multiple reception signal at least one, calculates the multiple weighted values for corresponding to multiple pilot phase;
According to multiple The Pilot Phase Error and multiple weighted value, the multiple phases mistake for corresponding to multiple data-signal is calculated Difference, wherein multiple phase error is the linear combination of multiple pilot phase;And
According to multiple phase error, multiple multiple phases for receiving signal are compensated.
12. weakened phase restoring method as claimed in claim 11, which is characterized in that calculate and correspond to the more of multiple pilot phase The step of a weighted value includes:
According at least one reception signal, a measurement error is calculated;
According to the time, calculate the multiple cross correlation values for being relevant to the time, wherein multiple cross correlation value be relevant to it is multiple In the cross-correlation of a first phase error and multiple The Pilot Phase Error of the first data-signal of the time in data-signal;
According to the measurement error, multiple autocorrelation values of multiple The Pilot Phase Error are calculated, wherein multiple autocorrelation value phase Auto-correlation about multiple The Pilot Phase Error;And
According to multiple cross correlation value and multiple autocorrelation value, multiple weighted value is calculated.
13. weakened phase restoring method as claimed in claim 12, which is characterized in that multiple cross correlation value formed a cross-correlation to Amount, multiple autocorrelation value form an autocorrelation matrix, it is more to calculate this according to multiple cross correlation value and multiple autocorrelation value The step of a weighted value, includes:
Calculate an inverse matrix of the autocorrelation matrix;And
Multiple weighted value is calculated, wherein multiple weighted value is relevant to the multiplied result of the inverse matrix Yu the cross correlation vector.
14. weakened phase restoring method as claimed in claim 11, which is characterized in that according to multiple The Pilot Phase Error and this is more A weighted value, calculate correspond to multiple data-signal multiple phase errors the step of include:
According to multiple The Pilot Phase Error and multiple weighted value, an initial value is calculated, wherein multiple weighted value corresponding one At the first time;
According to multiple The Pilot Phase Error and multiple weighted value, a updated value is calculated;And
According to the initial value or the updated value, the first phase error in multiple phase error is calculated;
Wherein, the first phase error corresponding one second time, this second it is late in this at the first time.
15. weakened phase restoring method as claimed in claim 14, which is characterized in that the step of calculating the initial value include:
Calculate between multiple The Pilot Phase Error and multiple weighted value one product item and, to be produced as the initial value.
16. weakened phase restoring method as claimed in claim 14, which is characterized in that according to multiple The Pilot Phase Error and this is more A weighted value calculates the step of initial value and includes:
The initial cell receives multiple The Pilot Phase Error according to a time sequencing;
According to the time sequencing by multiple The Pilot Phase Error respectively multiplied by multiple weighted value, to generate multiple first phases Multiply result;And
First multiplied result is added up, to generate the initial value.
17. weakened phase restoring method as claimed in claim 14, which is characterized in that according to multiple The Pilot Phase Error and this is more A weighted value, the step of calculating the updated value include:
Multiple The Pilot Phase Error is subtracted each other multiplied by multiple as a result, to generate multiple second multiplied results respectively, wherein this is more It is that one first weighted value and one second weighted value subtract each other in multiple weighted value that a 1 subtracted each other in result first, which subtracts each other result, As a result;
Multiple second multiplied result is added up, to generate an aggregation result;And
By the aggregation result multiplied by a regulation coefficient, to generate the updated value.
18. weakened phase restoring method as claimed in claim 14, which is characterized in that according to the initial value or the updated value, generate The step of first phase error in multiple phase error includes:
Calculating the first phase error is that the initial value adds the accumulation result of the updated value at least once.
CN201711292278.0A 2017-12-08 2017-12-08 Weakened phase restoring device and weakened phase restoring method Pending CN109905136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711292278.0A CN109905136A (en) 2017-12-08 2017-12-08 Weakened phase restoring device and weakened phase restoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711292278.0A CN109905136A (en) 2017-12-08 2017-12-08 Weakened phase restoring device and weakened phase restoring method

Publications (1)

Publication Number Publication Date
CN109905136A true CN109905136A (en) 2019-06-18

Family

ID=66940161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711292278.0A Pending CN109905136A (en) 2017-12-08 2017-12-08 Weakened phase restoring device and weakened phase restoring method

Country Status (1)

Country Link
CN (1) CN109905136A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0175613B1 (en) * 1996-05-14 1999-04-01 서정욱 Inter-base station synchronization method using pilot signal in code division multiple access system
WO2002069515A1 (en) * 2001-02-21 2002-09-06 Magis Networks, Inc. Ofdm pilot tone tracking for wireless lan
CN101103604A (en) * 2004-11-16 2008-01-09 汤姆森许可贸易公司 Method and device for carrier recovery using phase interpolation with assist
CN101390298A (en) * 2005-09-28 2009-03-18 Lg电子株式会社 Method and apparatus for channel estimation
CN101455046A (en) * 2006-05-22 2009-06-10 高通股份有限公司 Phase correction for OFDM and mimo transmissions
CN102123126A (en) * 2010-01-08 2011-07-13 无锡百阳科技有限公司 Common phase error correction method and device of digital receiver
CN102511126A (en) * 2011-04-21 2012-06-20 华为技术有限公司 Phase difference compensating device and phase difference compensating method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0175613B1 (en) * 1996-05-14 1999-04-01 서정욱 Inter-base station synchronization method using pilot signal in code division multiple access system
WO2002069515A1 (en) * 2001-02-21 2002-09-06 Magis Networks, Inc. Ofdm pilot tone tracking for wireless lan
CN101103604A (en) * 2004-11-16 2008-01-09 汤姆森许可贸易公司 Method and device for carrier recovery using phase interpolation with assist
CN101390298A (en) * 2005-09-28 2009-03-18 Lg电子株式会社 Method and apparatus for channel estimation
CN101455046A (en) * 2006-05-22 2009-06-10 高通股份有限公司 Phase correction for OFDM and mimo transmissions
CN102123126A (en) * 2010-01-08 2011-07-13 无锡百阳科技有限公司 Common phase error correction method and device of digital receiver
CN102511126A (en) * 2011-04-21 2012-06-20 华为技术有限公司 Phase difference compensating device and phase difference compensating method

Similar Documents

Publication Publication Date Title
US8543633B2 (en) Modified Gram-Schmidt core implemented in a single field programmable gate array architecture
CN105915477B (en) Extensive MIMO detection method and hardware structure based on GS method
CN104009734A (en) Gradient variable-step LMS self-adaptation filtering method
CN105974777A (en) Method for generating atomic time scale through Algos and Kalman combination
CN110361691A (en) Coherent DOA based on nonuniform noise estimates FPGA implementation method
Liu et al. Recurrent neural network based narrowband channel prediction
Butler et al. Noniterative automatic equalization
CN102680945A (en) Doppler modulation frequency estimation method based on field programmable gate array (FPGA)
CN113271271B (en) Step length adjusting method and device of adaptive equalizer, signal receiver and system
CN101577536B (en) Method for realizing improved LMS algorithm
CN114362140B (en) High-precision time keeping method and device suitable for power distribution network measuring device
CN109905136A (en) Weakened phase restoring device and weakened phase restoring method
Acimovic et al. Adaptive distributed algorithms for power-efficient data gathering in sensor networks
CN102355435A (en) Wavelet weighted multi-modulus blind equalization algorithm based on fractional lower order statistics (WT-FLOSWMMA)
CN105471783B (en) Mimo system transmitting terminal digital pre-distortion optimization method based on list entries
CN104901917B (en) The loop method of adjustment and its realization device of IQ delay inequalities in ofdm communication system
CN109088646B (en) For the shared digital pre-distortion system and method for multiple-input and multiple-output transmitter
CN111641471B (en) Weight design method for prediction in atomic clock signal combination control
CN105635008B (en) A kind of adaptive equilibrium method, device and adaptive equalizer
CN111865385B (en) Two-dimensional planar array digital beam forming method based on FPGA
TW201926939A (en) Phase recovery device and phase recovery method
CN110365610A (en) Phase recovery device and phase recovery method
CN103700011B (en) A kind of Feature Extraction Method and device
CN108988881A (en) A kind of wavelet transformation amendment blind balance method based on dual channel model
CN108366025B (en) Signal synthesis method and system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190618

WD01 Invention patent application deemed withdrawn after publication