CN109904879A - 一种混合发电系统的孤网微电网频率控制方法 - Google Patents

一种混合发电系统的孤网微电网频率控制方法 Download PDF

Info

Publication number
CN109904879A
CN109904879A CN201910225636.9A CN201910225636A CN109904879A CN 109904879 A CN109904879 A CN 109904879A CN 201910225636 A CN201910225636 A CN 201910225636A CN 109904879 A CN109904879 A CN 109904879A
Authority
CN
China
Prior art keywords
capacitance sensor
micro
frequency
isolated network
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910225636.9A
Other languages
English (en)
Inventor
王桢
朱鹏
李凤祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201910225636.9A priority Critical patent/CN109904879A/zh
Publication of CN109904879A publication Critical patent/CN109904879A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Fuel Cell (AREA)

Abstract

本发明公开了一种混合发电系统的孤网微电网频率控制方法,实时采集孤网微电网的频率,获得孤网微电网的区域控制误差ACE,并将区域控制误差ACE输入微电网控制中心,所述微电网控制中心输出负载频率控制信号LFC到混合能量中心,所述混合能量中心输出LFC响应信号到混合发电系统,所述混合发电系统中根据LFC响应信号分配相对应参与调频的部分工作,实现与孤网微电网互动,从而使得孤网微电网的区域控制误差ACE趋向于零,实现对孤岛微电网频率控制。本发明可以满足系统对频率的要求,提高微电网系统频率稳定性及电能质量。

Description

一种混合发电系统的孤网微电网频率控制方法
技术领域
本发明属于微电网频率控制技术领域,尤其涉及一种混合发电系统的孤网微电网频率控制方法。
背景技术
由于分布式发电具有污染少、能源利用率高、安装地点灵活等优点,并且与集中式发电相比,节省了输配电资源和运行费用,减少了集中输电的线路损耗。分布式发电可以减少电网总容量,改善电网峰谷性能,提高供电可靠性,是大电网的有力补充和有效支撑。进20年来,大部分国家已经把分布式发电提上了日程,人们开始对分布式发电系统的潜在效益展开认真研究。无疑,分布式发电是电力系统的发展趋势之一。
分布式电源尽管优点突出,但本身存在诸多问题。例如,分布式电源单机接入成本高、控制困难等。另外,分布式电源相对大电网来说是一个不可控源,因此大系统往往采取限制、隔离的方式来处置分布式电源,以期减小其对大电网的冲击。分布式电源与用户混杂而形成的有源型配网为电力系统带来了新的挑战,为解决分布式电源接入问题,协调大电网和分布式电源的矛盾,充分挖掘分布式电源为电网和用户带来的价值与效益,在本世纪初,学者们提出了微电网的概念。微电网将额定功率为几十千瓦的发电单元——微源、负荷、储能装置及控制装置等结合,形成一个单一可控的单元,同时供给电能和热能。基于微电网结构的电网调整能够方便大规模的分布式电源(DER)互联并介入中低压系统中,提供了一种充分利用DER单元的机制。
由于我国对微电网技术研究起步较晚,甚至有很多部分是直接将大电网的技术套用至微电网,忽略微电网的特殊性。在低压微电网系统中,受线路阻抗的影响,传统下垂控制难以实现有功功率和无功功率的分配,电压和频率调节就会出现一些问题。主要表现为分布式电源输出电压幅值和频率存在的差异。微电网并网运行时,是通过公共连接点和主电网相连的,逆变器输出的交换功率大小与微电网电压幅值和频率的测量精度密切相关。除此之外,线路的阻抗特性对P-f下垂控制也会造成很多不利的影响。这主要体现在当分布式电源间承担的有功功率负荷不均时,会产生很大的有功功率环流,甚至会对微电网运行的稳定性产生很大的影响。
发明内容
本发明根据现有技术中存在的问题,提出了一种混合发电系统的孤网微电网频率控制方法,能使各分布式电源之间较好地协调,可以满足系统对频率的要求,提高微电网系统频率稳定性及电能质量。
本发明所采用的技术方案如下:
一种混合发电系统的孤网微电网频率控制方法,实时采集孤网微电网的频率,获得孤网微电网的区域控制误差(ACE),并将区域控制误差(ACE)输入微电网控制中心,所述微电网控制中心输出负载频率控制信号(LFC)到混合能量中心,所述混合能量中心输出LFC响应信号到混合发电系统,所述混合发电系统中根据LFC响应信号分配相对应参与调频的部分工作,实现与孤网微电网互动,从而使得孤网微电网的区域控制误差(ACE)趋向于零,实现对孤岛微电网频率控制。
进一步,所述混合发电系统包括质子交换膜燃料电池(PEMFC)、蓄电池和超级电容,所述质子交换膜燃料电池通过单向变换器连接逆变器,所述蓄电池和超级电容分别通过双向变换器连接逆变器,所述逆变器连接孤网微电网。
进一步,所述负载频率控制信号(LFC)为孤网微电网交流母线处频率偏差率的上限下限,即:
-0.05<f'<0.05;
进一步,所述频率偏差率的计算方法为:
其中,fref为微电网的参考频率为50HZ,f为孤网微电网实时测量频率;
进一步,所述混合发电系统内各部分的工作优先级为:超级电容SC>蓄电池BESS>质子交换膜燃料电池PEMFC;
进一步,所述混合发电系统的控制策略为:
当f<fref,且|f'|<0.02,超级电容先输出,蓄电池随后;
当f>fref,且|f'|<0.02,超级电容先充电,蓄电池充电;
当f<fref,且|f'|>0.02,超级电容和蓄电池共同放电,当超级电容和蓄电池都放完之后,质子交换膜燃料电池发电;
当f>fref,且|f'|>0.02,超级电容和蓄电池共同充电;
本发明的有益效果:
本发明所提出混合发电系统的孤网微电网频率控制方法,在孤网微电网有功出力不足致使系统频率波动的情况下,以质子交换膜燃料电池为主调频电源,蓄电池和超级电容为辅助调频,蓄电池实行“浅冲浅放”,超级电容具有比功率大,响应迅速快等优点可实施优先调节高频分量。
由于质子交换膜燃料电池PEMFC动态特性稍差,当出现大容量缺额时,超级电容和蓄电池可以先单独或者共同提供功率缓解频率偏差更一步恶化;本发明采用PEMFC作为主调频电源进行有功调节并且为相应的超级电容和蓄电池进行充电以预防下一次频率波动。同时,本发明的PEMFC混合发电系统与孤网微电网互动协调控制从而稳定系统频率,提高了孤岛微电网的频率稳定性和电能质量。
附图说明
图1是交流微电网结构图;
图2是混合发电动力系统结构图(PEMFC+SC+B);
图3是计及P2M的孤网微电网负荷频率控制框图;
图4是混合发电协调控制策略。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
为了实现本发明所提出的一种混合发电系统的孤网微电网频率控制方法,首先构建如图2所示的混合发电系统,在本实施里中,所构建的混合发电系统以PEMFC为主调频电源,蓄电池和超级电容为辅助调频电源,质子交换膜燃料电池(PEMFC)通过单向DC/DC变换器连接DC/AC逆变器,蓄电池(BESS)和超级电容(SC)分别通过双向DC/DC变换器连接DC/AC逆变器,DC/AC逆变器连接孤网微电网。
本实施例所构建的混合发电系统其任意t时刻发电站的等效储能E(t)为:
E(t)=Epemfc(t)+Ein(t)-Eout(t)-ELFC(t)
其中,E(t)为t时刻混合发电系统的等效储能(MW·h),Epemfc(t)为质子交换膜燃料电池的输出能量,Ein(t)为蓄电池和超级电容充电状态的储能增量(MW·h),ELFC(t)为参与调频造成的储能变化量(MW·h),Eout(t)是复合输出能量;具体表达式如下:
其中:0.9,0.95分别为理想状态下蓄电池和超级电容的荷电状态(SOC),Nbess(t)、NSC(t)为充放电情况下蓄电池和超级电容参与充放电的数量;EB、ESC为蓄电池和超级电容的最大可控容量(MW·h);Kb为混合发电站所在区域的功率基准值;ΔPP2M(t')为发电站有功变化(MW·h)。
为了保证混合发电系统中蓄电池和超级电容不过充电过放电,增加使用寿命,本发明还提出混合发电系统的虚拟SOC(XSOC),为了维持混合发电系统的虚拟荷电状态XSOC在0.8~0.9范围内将其混合发电系统设计为一个动态XSOC保持器,实现可控功率容量动态调节饱和环节的上、下限,调整发电站的有功,表示为
其中,Ec(t)为混合发电系统最大可控能量容量;UAC、LAC分别为可用容量上限和可用容量下限,CP2M为混合发电站的可控功率容量(MW)。
本发明所提出的一种混合发电系统的孤网微电网频率控制方法,具体过程如下:
微电网控制中心实时采集孤网微电网的频率,获得孤网微电网的区域控制误差(ACE),并将区域控制误差(ACE)输入微电网控制中心,微电网控制中心输出负载频率控制信号(LFC)到混合能量中心,混合能量中心输出LFC响应信号到混合发电系统,混合发电系统中根据LFC响应信号,分配给相对应参与调频的部分工作混合发电系统内各部分的工作优先级为:超级电容SC>蓄电池BESS>质子交换膜燃料电池PEMFC,区域控制误差(ACE)根据频率划分为:|f'|<0.02为高频分量和短周期分量,为控制超级电容SC和蓄电池BESS工作的指令,|f'|>0.02为长周期分量,为控制质子交换膜燃料电池PEMFC工作的指令。
如图4,具体的混合发电系统的控制策略为:
当f<fref,且|f'|<0.02,超级电容先输出投入工作,当超级电容容量不足,此时只由蓄电池内的储能投入使用来维持交流母线处的频率稳定性。
当f>fref,且|f'|<0.02,超级电容先充电,当超级电容容量充满,此时蓄电池充电;
当f<fref,且|f'|>0.02,超级电容和蓄电池共同放电,防止频率进一步恶化,当超级电容和蓄电池放完电时PEMFC投入使用来维持交流母线处的频率稳定性;
当f>fref,且|f'|>0.02,超级电容和蓄电池共同充电;
通过上述混合发电系统内的各部分工作与孤网微电网互动,从而使得孤网微电网的区域控制误差(ACE)趋向于零,实现对孤岛微电网频率控制。
在本实施例中,负载频率控制信号(LFC)为设定孤网微电网的交流母线处设置频率偏差率的上限下限,即:-0.05<f'<0.05,频率偏差率的计算方法为:
其中,fref为微电网的参考频率为50HZ,f为孤网微电网实时测量频率。
本发明所提出的一种混合发电系统的孤网微电网频率控制方法,在实际工作中可以如图1所示,各DG发电单元通过电力电子转换接口接入微电网,为保证微电网的出力稳定,在重要负荷都备有PEMFC混合发电系统。本发明能实现孤网微电网的频率稳定,以PEMFC为主调频电源,蓄电池和超级电容为辅助调频。当孤网发生频率波动时蓄电池实行“浅冲浅放”,超级电容具有比功率大,响应迅速快等优点可实施优先调节高频分量。由于PEMFC动态特性稍差,当出现大容量缺额时,超级电容和蓄电池可以先单独或者共同提供功率缓解频率偏差更一步恶化。然后,PEMFC作为主调频电源进行有功调节并且为相应的超级电容和蓄电池进行充电以预防下一次频率波动。能够平抑孤网微电网的频率波动,提高孤网微电网的电能质量。
以上实施例仅用于说明本发明的设计思想和特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,本发明的保护范围不限于上述实施例。所以,凡依据本发明所揭示的原理、设计思路所作的等同变化或修饰,均在本发明的保护范围之内。

Claims (6)

1.一种混合发电系统的孤网微电网频率控制方法,其特征在于,实时采集孤网微电网的频率,获得孤网微电网的区域控制误差ACE,并将区域控制误差ACE输入微电网控制中心,所述微电网控制中心输出负载频率控制信号LFC到混合能量中心,所述混合能量中心输出LFC响应信号到混合发电系统,所述混合发电系统中根据LFC响应信号分配相对应参与调频的部分工作,实现与孤网微电网互动,从而使得孤网微电网的区域控制误差ACE趋向于零,实现对孤岛微电网频率控制。
2.根据权利要求1所述的一种混合发电系统的孤网微电网频率控制方法,其特征在于,所述混合发电系统包括质子交换膜燃料电池、蓄电池和超级电容,所述质子交换膜燃料电池通过单向变换器连接逆变器,所述蓄电池和超级电容分别通过双向变换器连接逆变器,所述逆变器连接孤网微电网。
3.根据权利要求1所述的一种混合发电系统的孤网微电网频率控制方法,其特征在于,所述负载频率控制信号LFC为孤网微电网交流母线处频率偏差率的上限下限,即:-0.05<f'<0.05。
4.根据权利要求3所述的一种混合发电系统的孤网微电网频率控制方法,其特征在于,所述频率偏差率的计算方法为:其中,fref为微电网的参考频率为50HZ,f为孤网微电网实时测量频率。
5.根据权利要求2所述的一种混合发电系统的孤网微电网频率控制方法,其特征在于,所述混合发电系统内各部分的工作优先级为:超级电容>蓄电池>质子交换膜燃料电池。
6.根据权利要求1-5中任意一项权利要求所述的一种混合发电系统的孤网微电网频率控制方法,其特征在于,所述混合发电系统的控制策略为:
当f<fref,且|f'|<0.02,超级电容先输出,蓄电池随后;
当f>fref,且|f'|<0.02,超级电容先充电,蓄电池充电;
当f<fref,且|f'|>0.02,超级电容和蓄电池共同放电,当超级电容和蓄电池都放完之后,质子交换膜燃料电池发电;
当f>fref,且|f'|>0.02,超级电容和蓄电池共同充电。
CN201910225636.9A 2019-03-25 2019-03-25 一种混合发电系统的孤网微电网频率控制方法 Pending CN109904879A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910225636.9A CN109904879A (zh) 2019-03-25 2019-03-25 一种混合发电系统的孤网微电网频率控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910225636.9A CN109904879A (zh) 2019-03-25 2019-03-25 一种混合发电系统的孤网微电网频率控制方法

Publications (1)

Publication Number Publication Date
CN109904879A true CN109904879A (zh) 2019-06-18

Family

ID=66952489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910225636.9A Pending CN109904879A (zh) 2019-03-25 2019-03-25 一种混合发电系统的孤网微电网频率控制方法

Country Status (1)

Country Link
CN (1) CN109904879A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969627A (zh) * 2020-08-14 2020-11-20 湖南高创新能源有限公司 电能质量优化系统和孤岛微电网
CN112186786A (zh) * 2020-09-27 2021-01-05 国网辽宁省电力有限公司经济技术研究院 一种基于虚拟同步发电机的储能辅助调频容量配置方法
CN113394798A (zh) * 2021-06-30 2021-09-14 广西大学 基于混合燃料电池的电网调频系统及方法
CN117175646A (zh) * 2023-11-02 2023-12-05 国网江西省电力有限公司电力科学研究院 用于混合储能系统的储能参与一次调频控制方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069789A (zh) * 2017-05-13 2017-08-18 东北电力大学 一种面向电网agc调频的储能系统控制策略
CN107294116A (zh) * 2017-07-18 2017-10-24 上海电力学院 一种多域电力系统负荷频率控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069789A (zh) * 2017-05-13 2017-08-18 东北电力大学 一种面向电网agc调频的储能系统控制策略
CN107294116A (zh) * 2017-07-18 2017-10-24 上海电力学院 一种多域电力系统负荷频率控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969627A (zh) * 2020-08-14 2020-11-20 湖南高创新能源有限公司 电能质量优化系统和孤岛微电网
CN112186786A (zh) * 2020-09-27 2021-01-05 国网辽宁省电力有限公司经济技术研究院 一种基于虚拟同步发电机的储能辅助调频容量配置方法
CN112186786B (zh) * 2020-09-27 2024-03-15 国网辽宁省电力有限公司经济技术研究院 一种基于虚拟同步发电机的储能辅助调频容量配置方法
CN113394798A (zh) * 2021-06-30 2021-09-14 广西大学 基于混合燃料电池的电网调频系统及方法
CN117175646A (zh) * 2023-11-02 2023-12-05 国网江西省电力有限公司电力科学研究院 用于混合储能系统的储能参与一次调频控制方法及系统
CN117175646B (zh) * 2023-11-02 2024-03-12 国网江西省电力有限公司电力科学研究院 用于混合储能系统的储能参与一次调频控制方法及系统

Similar Documents

Publication Publication Date Title
CN109904879A (zh) 一种混合发电系统的孤网微电网频率控制方法
CN103647274B (zh) 一种用于可并网和离网运行的微电网系统的能量控制方法
CN104184159B (zh) 光储分布式微网系统中多元储能的协同调度策略
CN102868167B (zh) 光伏电站无功电压控制方法
CN108964139A (zh) 一种基于一致性算法的分层控制微电网并网同步频率控制方法
CN110311379B (zh) 一种功能性模块化微电网组网及灵活调控方法
CN110137992B (zh) 一种孤岛直流微电网协调稳定运行控制方法
CN109004691A (zh) 含电力电子变压器的交直流混合系统日前优化调度方法
CN104065099A (zh) 基于混合储能的交直流混合模块化微电网组网结构及方法
CN108258728A (zh) 一种基于下垂控制的可调度型风光柴储独立微网的控制方法
CN108199380A (zh) 一种适用于交直流混合微电网的双向dc-ac变换器的控制方法
CN107240934A (zh) 交直流混合微网多模式运行协调控制方法及平滑切换方法
CN110289621A (zh) 一种含分布式电源接入的交直流电能路由器
CN108899921A (zh) 一种面向储能的多端口能量路由器能量管理策略
Tang et al. Energy storage control in renewable energy based microgrid
WO2019075879A1 (zh) 一种交直流混合微电网运行模式转换方法
CN106130026A (zh) 一种双层结构的微电网群电压控制方法
CN110336268A (zh) 用于储能双向变换器的充放电控制方法
CN105391047A (zh) 一种车载式直流微电网系统及控制方法
CN210297268U (zh) 一种用于火电联合agc调频的混合储能系统
Zhao et al. A decentralized frequency regulation strategy of PV power plant based on droop control
Tasnim et al. Hardware in The Loop Implementation of The Control Strategies for the AC-Microgrid in OPAL-RT Simulator
CN107681649A (zh) 一种控制直流微电网母线电压稳定的方法
Huang et al. Research on performance improvement methods of vanadium redox flow battery in microgrid
CN115473279A (zh) 一种含电解水制氢负载的风光储离网微电网运行控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190618

RJ01 Rejection of invention patent application after publication