CN109891953B - 一种确定发射功率的方法及无线通讯设备 - Google Patents

一种确定发射功率的方法及无线通讯设备 Download PDF

Info

Publication number
CN109891953B
CN109891953B CN201780066946.XA CN201780066946A CN109891953B CN 109891953 B CN109891953 B CN 109891953B CN 201780066946 A CN201780066946 A CN 201780066946A CN 109891953 B CN109891953 B CN 109891953B
Authority
CN
China
Prior art keywords
wireless communication
power
communication device
cmax
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780066946.XA
Other languages
English (en)
Other versions
CN109891953A (zh
Inventor
吴茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN109891953A publication Critical patent/CN109891953A/zh
Application granted granted Critical
Publication of CN109891953B publication Critical patent/CN109891953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/08Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本发明实施例公开了一种确定发射功率的方法。本发明实施例方法包括:第一无线通讯设备确定第一无线通讯设备与第二无线通讯设备之间的距离;第一无线通讯设备确定第二无线通讯设备的工作频率;第一无线通讯设备确定满足第一条件时,若确定第一无线通讯设备对应的最大发射功率大于预设阈值,则调整最大发射功率,使得调整后的最大发射功率等于或小于预设阈值,预设阈值用于在第一条件下,抑制第一无线通讯设备对第二无线通讯设备的接收性能的干扰;其中,第一条件包括:距离小于或等于第一阈值,以及第一无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。

Description

一种确定发射功率的方法及无线通讯设备
技术领域
本申请涉及通信领域,尤其涉及一种确定发射功率的方法及无线通讯设备。
背景技术
在欧洲,自动收费站(tolling station)使用的频率范围和智能交通系统(Intelligent traffic system,ITS)使用的频率范围非常接近。为了保护收费站不被ITS终端干扰,在欧洲电信标准化组织(European Telecommunications StandardsInstitute,ETSI)技术规范(Technical Specification,TS)102792中,定义了ITS技术与现有tolling station的共存要求,如图1。当ITS终端(工作频率范围为5855-5925MHz)在tolling station(工作频率范围为5795-5815MHz)附近时,为了不干扰tolling station,要求ITS终端的功率不能大于某一个数值。这个因共存产生的功率要求需要反映到3GPP的车对车(Vehicle to Vehicle,V2V)用户设备(User equipment,UE)的功率定义上,使得V2VUE能够满足ETSI规定的共存要求。
现有技术将动态最大功率回退(dynamic maximum power reduction,D-MPR)引入到最大配置发射功率中,将3GPP TS36.101中的最大配置发射功率的计算公式修改为:
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure GPA0000265815170000031
PCMAX_H,c=MIN{PEMAX,c,PPowerClass};
但是上述方式仅仅只对最大配置发射功率的下限进行了修改,并未对上限进行修改,上限值仍然比共存需求规定的一般情况要大,因此上述方式并不能很好的满足ETSI规定的共存要求,设备之间仍然会产生较大的干扰。
发明内容
本发明实施例提供了一种确定发射功率的方法及无线通讯设备,用于抑制设备之间的干扰,满足多个设备的共存需求。
有鉴于此,本发明实施例第一方面提供了一种确定发射功率的方法,包括:
第一无线通讯设备确定其与第二无线通讯设备之间的距离,以及第二无线通讯设备的工作频率,当第一无线通讯设备确定满足第一条件时,若第一无线通讯设备确定自身对应的最大发射功率大于预设阈值,则调整该最大发射功率为该预设阈值,该预设阈值用于在第一条件下,抑制第一无线通讯设备对第二无线通讯设备的接收性能干扰,其中,第一条件包括:第一无线通讯设备与第二无线通讯设备之间的距离小于或等于第一阈值,第一无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。
需要说明的是,接收性能包括接收的灵敏度,接收范围以及接收阻塞指标等。
本发明实施例通过对预设阈值的限定,在第一条件下,可以抑制第一无线通讯设备对第二无线通讯设备对第二无线通讯设备的接收性能的干扰,从而能够满足第一无线通讯设备与第二无线通讯设备的共存需求。
结合本发明实施例的第一方面,在本发明实施例第一方面的第一种实现方式中,第一无线通讯设备对应的最大发射功率包括:第一无线通讯设备的载波的最大配置发射功率PCMAX,c
本发明实施例中可以通过对载波的最大配置发送功率的调整降低干扰,提供了一种降低设备之间干扰的实现方式,提高了方案的可实现性。
结合本发明实施例第一方面的第一种实现方式,在本发明实施例第一方面的第二种实现方式中,第一无线通讯设备可以通过如下公式调整第一无线通讯设备的目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure GPA0000265815170000041
PCMAX_H,c=MIN{PEMAX,c,PPowerClass};
其中,PEMAX,c为无线资源控制(Radio Resource Control,RRC)层对目标载波下发的功率值,PEMAXc等于预设阈值;ΔTC,c为第一功率损失值;PPowerClass为第一无线通讯设备的功率等级;MPRc为第一功率回退值;A-MPRc为第二功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPRc为第三功率回退值。
应理解,目标载波指的是第一无线通讯设备对应的任意一个载波,第一功率损失值指的是第一无线通讯设备的滤波器的平坦度在目标载波上造成的功率损失,第二功率损失值和第三功率损失值指的是额外的滤波器造成的功率损失,第一功率回退值指的是目标载波对应的最大功率回退值,第二功率回退值指的是目标载波对应的额外最大功率回退值,第三功率回退值指的是第一无线通讯设备对应的多个无线连接带来的功率共享在目标载波上造成的功率回退。
本发明实施例提供了一种调整载波的最大配置发射功率的具体方式,提高了方案的可实现性。
结合本发明实施例第一方面的第一种实现方式,在本发明实施例第一方面的第三种实现方式中,第一无线通讯设备可以通过如下公式调整第一无线通讯设备的目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure GPA0000265815170000042
PCMAX_H,c=MIN{PEMAX,c,PPowerClass,PRe gulatory,c};
其中,PEMAX,c为RRC层对目标载波下发的功率值;ΔTC,c为第一功率损失值;PPowerClass为第一无线通讯设备的功率等级;MPRc为第一功率回退值;A-MPRc为第二功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPRc为第三功率回退值;PRegulatory,c等于预设阈值。
本发明实施例提供了另一种调整载波的最大配置发射功率的具体方式,提高了方案的灵活性。
结合本发明实施例第一方面的第三种实现方式,在本发明实施例第一方面的第四种实现方式中,
PRegulalory,c=PPowerClass-PCRc
PCRc为预设载波功率回退值。
本发明实施例提供了另一种调整载波的最大配置发射功率的具体方式,提高了方案的灵活性。
结合本发明实施例第一方面的第三种实现方式,在本发明实施例第一方面的第五种实现方式中,
PRe gulatory,c=EIRP_PRe gulatory,c-GAnt
或,
PRe gulatory,c=EIRP_PSDRe gulatory,c-GAnt+10lg BW;
EIRP_PRe gulatory,c为预设载波有效全向辐射功率值,GAnt为第一无线通讯设备的天线增益,EIRP_PSDRe gulatory,c为预设载波有效全向辐射功率谱密度值。
本发明实施例可以设定载波的有效全向辐射功率值,以调整载波的最大配置发射功率,从而使设备满足共存需求,提高了方案的灵活性。
结合本发明实施例第一方面的第三种实现方式,在本发明实施例第一方面的第六种实现方式中,
PRe gulatory,c=PSDRe gulatory,c+10lg BW;
PSDRegulatory,c为预设载波功率谱密度值,BW为目标载波占用的带宽。
本发明实施例可以设定载波的功率谱密度值,以调整载波的最大配置发射功率,从而使设备满足共存需求,提高了方案的灵活性。
结合本发明实施例第一方面的第二种实现方式,在本发明实施例第一方面的第七种实现方式中,第一无线通讯设备可以通过如下公式调整第一无线通讯设备的目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure GPA0000265815170000051
PCMAX_H,c=MIN{PEMAX,c,PPowerClass,PRe gulatory,c,PSDRe gulatory,c+10lg BW};
其中,PEMAX,c为RRC层对目标载波下发的功率值;ΔTC,c为第一功率损失值;PPowerClass为第一无线通讯设备的功率等级;MPRc为第一功率回退值;A-MPRc为第二功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPRc第三功率回退值;PRe gulatory,c为预设阈值;所述PSDRe gulatory,c为预设载波功率谱密度值。
本发明实施例能够同时对载波配置发射功率和载波功率谱密度进行限定,以满足共存需求,提高了方案的灵活性。
结合本发明实施例的第一方面,在本发明实施例第一方面的第八种实现方式中,第一无线通讯设备对应的最大发射功率包括:第一无线通讯设备的最大配置发射功率PCMAX
本发明实施例可以通过对第一无线通讯设备的最大配置发射功率的调整抑制第一无线通讯设备对第二无线通讯设备的接收性能的下降,提供了一种满足共存需求的实现方式,提高了方案的可实现性。
结合本发明实施例第一方面的第八种实现方式,在本发明实施例第一方面的第九种实现方式中,第一无线通讯设备可以通过如下公式调整第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H
Figure GPA0000265815170000061
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass};
其中,10log10∑pEMAX,c等于预设阈值;ΔTC为第四功率损失值;PPowerClass为第一无线通讯设备的功率等级;MPR为第四功率回退值;A-MPR为第五功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPR为第六功率回退值;pEMAX,c为RRC层对第一无线通讯设备对应的载波下发的功率值。
应理解,第四功率损失值指的是第一无线通讯设备的滤波器的平坦度在第一无线通讯设备上造成的功率损失,第二功率损失值和第三功率损失值指的是额外的滤波器造成的功率损失,第四功率回退值指的是第一无线通讯设备对应的最大功率回退值,第五功率回退值指的是第一无线通讯设备对应的额外最大功率回退值,第六功率回退值指的是第一无线通讯设备对应的多个无线连接带来的功率共享在第一无线通讯设备上造成的功率回退。
本发明实施例提供了一种调整第一无线通讯设备的最大配置发射功率的具体方式,提高了方案的可实现性。
结合本发明实施例第一方面的第八种实现方式,在本发明实施例第一方面的第十种实现方式中,第一无线通讯设备可以通过如下公式调整第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H
Figure GPA0000265815170000062
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass,PRegulatoty};
其中,PEMAX,c为RRC对第一无线通讯设备对应的载波下发的功率值;ΔTC为第四功率损失值;PPowerClass为第一无线通讯设备的功率等级;MPR为第四功率回退值;A-MPR为第五功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPR为第六功率回退值;PRe gulatory等于预设阈值。
本发明实施例提供了另一种调整第一无线通讯设备的最大配置发射功率的具体方式,提高了方案的灵活性。
结合本发明实施例第一方面的第十种实现方式,在本发明实施例第一方面的第十一种实现方式中,
PRe gulatory=PPowerClass-PCR;
PCR为预设设备功率回退值。
本发明实施例提供了另一种调整第一无线通讯设备的最大配置发射功率的具体方式,提高了方案的灵活性。
结合本发明实施例第一方面的第十种实现方式,在本发明实施例第一方面的第十二种实现方式中,
PRe gulatory=EIRP_PRe gulatory-GAnt
或,
PRe gulatory=EIRP_PSDRe gulatory-GAnt+10lg BW;
EIRP_PRe gulatory为预设设备有效全向辐射功率值,GAnt为第一无线通讯设备的天线增益,EIRP_PSDRe gulatory为预设设备有效全向辐射功率谱密度值。
本发明实施例可以设定设备的有效全向辐射功率值,以调整设备的最大配置发射功率,从而使设备满足共存需求,提高了方案的灵活性。
结合本发明实施例第一方面的第十种实现方式,在本发明实施例第一方面的第十三种实现方式中,
PRe gulatory=PSDRe gulatory+10lg BW;
PSDRegulatory为预设设备功率谱密度值,BW为第一无线通讯设备占用的带宽。
本发明实施例可以设定设备的功率谱密度值,以调整设备的最大配置发射功率,从而使设备满足共存需求,提高了方案的灵活性。
结合本发明实施例第一方面的第十种实现方式,在本发明实施例第一方面的第十四种实现方式中,第一无线通讯设备可以通过如下公式调整第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H
Figure GPA0000265815170000071
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass,PRe gulatory,PSDRe gulatory+10lg BW};
其中,pEMAX,c为RRC层对第一无线通讯设备对应的载波下发的功率值;ΔTC为第四功率损失值;PPowerClass为第一无线通讯设备的功率等级;MPR为第四功率回退值;A-MPR为第五功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPR为第六功率回退值;PRe gulatory为预设阈值;PSDRe gulatory为预设设备功率谱密度值。
本发明实施例可以同时对设备的功率谱密度以及设备的配置发射功率进行限定,以满足共存需求,提高了方案的灵活性。
结合本发明实施例第一方面,第一方面的第一至第十四种实现方式,在本发明实施例第一方面的第十五种实现方式中,第一条件还包括:第一无线通讯设备的天线方向与第二无线通讯的天线方向之间的角度差值小于或等于第三阈值。
结合本发明实施例第一方面,在本发明实施例第一方面的第十六种实现方式中,当第一无线通讯设备确定满足第一条件时,若第一无线通讯设备确定自身对应的最大发射功率不大于预设阈值,则第一无线通讯设备执行其他流程。
结合本发明实施例第一方面的第十六种实现方式,在本发实施例第一方面的第十七种实现方式中,第一无线通讯设备可以通过如下公式确定第一无线通讯设备的目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure GPA0000265815170000081
PCMAX_H,c=MIN{PEMAX,c,PPowerClass};
其中,PEMAX,c为RRC层对目标载波下发的功率值,PEMAX,c小于预设阈值;ΔTC,c为第一功率损失值;MPRc为第一功率回退值;A-MPRc为第二功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPRc为第三功率回退值;PPowerClass为第一无线通讯设备的功率等级。
结合本发明实施例第一方面的第十六种实现方式,在本发实施例第一方面的第十八种实现方式中,第一无线通讯设备可以通过如下公式确定第一无线通讯设备的目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure GPA0000265815170000082
PCMAX_H,c=MIN{PEMAX,c,PPowerClass,PRe gulatory,c};
其中,PEMAX,c为RRC层对目标载波下发的功率值;ΔTC,c为第一功率损失值;PPowerClass为第一无线通讯设备的功率等级;MPRc为第一功率回退值;A-MPRc为第二功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPRc为第三功率回退值;PRegulatory,c等于预设阈值。
结合本发明实施例第一方面的第十八种实现方式,在本发明实施例第一方面的第十九种实现方式中,
PRe gulatory,c=PPowerClass-PCRc
或,
PRe gulatory,c=EIRP_PRe gulatory,c-GAnt
或,
PRe gulatory,c=PSDRe gulatory,c+10lg BW;
或,
PRe gulatory,c=EIRP_PSDRe gulatory,c-GAnt+10lg BW;
其中PCRc为预设载波功率回退值,EIRP_PRe gulatory,c为预设载波有效全向辐射功率值,GAnt为第一无线通讯设备的天线增益,PSDRe gulatory,c为预设载波功率谱密度值,BW为目标载波占用的带宽,EIRP_PSDRe gulatory,c为预设载波有效全向辐射功率谱密度值。
结合本发明实施例第一方面的第十六种实现方式,在本发实施例第一方面的第二十种实现方式中,第一无线通讯设备可以通过如下公式确定第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H
Figure GPA0000265815170000091
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass}
其中,pEMA,X为RRC层对第一无线通讯设备对应的载波下发的功率值,10log10∑pEMAX,c小于预设阈值;ΔTC为第四功率损失值;PPowerClass为第一无线通讯设备的功率等级;MPR为第四功率回退值;A-MPR为第五功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPR为第六功率回退值。
结合本发明实施例第一方面的第十六种实现方式,在本发实施例第一方面的第二十一种实现方式中,第一无线通讯设备可以通过如下公式确定第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H
Figure GPA0000265815170000092
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass,PRe gulatory};
其中,pEMAX,c为RRC层对第一无线通讯设备对应的载波下发的功率值;ΔTC为第四功率损失值;PPowerClass为第一无线通讯设备的功率等级;MPR为第四功率回退值;A-MPR为第五功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPR为第六功率回退值;PRe gulatory等于预设阈值。
结合本发明实施例第一方面的第二十一种实现方式,在本发明实施例第一方面的第二十二种实现方式中,
PRe gulatory=PPowerClass-PCR;
或,
PRe gulatory=EIRP_PRe gulatory-GAnt
或,
PRe gulatory=PSDRe gulatory+10lg BW;
或,
PRe gulatory=EIRP_PSDRe gulatory-GAnt+10lg BW;
其中,PCR为预设设备功率回退值,EIRP_PRe gulatory为预设设备有效全向辐射功率值,GAnt为第一无线通讯设备的天线增益,PSDRegulatory为预设设备功率谱密度值,BW为第一无线通讯设备占用的带宽,EIRP_PSDRe gulatory为预设设备有效全向辐射功率谱密度值。
本发明实施例第二方面提供了一种无线通讯设备,该无线通讯设备包括:
第一确定模块,用于确定该无线通讯设备与第二无线通讯设备之间的距离;
第二确定模块,用于确定第二无线通讯设备的工作频率;
调整模块,用于确定满足第一条件且确定无线通讯设备对应的最大发射功率大于预设阈值时,调整最大发射功率,使得调整后的最大发射功率等于或小于预设阈值,预设阈值用于在第一条件下,抑制无线通讯设备对第二无线通讯设备的接收性能的干扰;
其中,第一条件包括:距离小于或等于第一阈值,以及无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。
结合本发明实施例第二方面,在本发明实施例第二方面的第一种实现方式中,无线通讯设备对应的最大发射功率包括:无线通讯设备的载波的最大配置发射功率PCMAX,c
结合本发明实施例第二方面的第一种实现方式,在本发明实施例第二方面的第二种实现方式中,调整模块包括:
第一调整单元,用于通过如下公式调整无线通讯设备的目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure GPA0000265815170000101
PCMAX_H,c=MIN{PEMAX,c,PPowerClass};
其中,PEMAX,c为无线资源控制RRC层对目标载波下发的功率值,PEMAX,c等于预设阈值;ΔTC,c为第一功率损失值;PPowerClass为无线通讯设备的功率等级;MPRc为第一功率回退值;A-MPRc为第二功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPRc为第三功率回退值。
结合本发明实施例第二方面的第一种实现方式,在本发明实施例第二方面的第三种实现方式中,调整模块包括:
第二调整单元,用于通过如下公式调整无线通讯设备的目标载波的最大配置发射功率PEMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure GPA0000265815170000102
PCMAX_H,c=MIN{PEMAX,c,PPowerClass,PRe gulatory,c};
其中,PEMAX,c为无线资源控制RRC层对目标载波下发的功率值;ΔTC,c为第一功率损失值;PPowerClass为无线通讯设备的功率等级;MPRc为第一功率回退值;A-MPRc为第二功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPRc为第三功率回退值;PRe gulatory,c等于预设阈值。
结合本发明实施例第二方面的第三种实现方式,在本发明实施例第二方面的第四种实现方式中,
PRe gulatory,c=PPowerClass-PCRc
PCRc为预设载波功率回退值。
结合本发明实施例第二方面的第三种实现方式,在本发明实施例第二方面的第五种实现方式中,
PRe gulatory,c=EIRP_PRe gulatory,c-GAnt
或,
PRe gulatory,c=EIRP_PSDRe gulatory,c-GAnt+10lg BW;
EIRP_PRe gulatory,c为预设载波有效全向辐射功率值,GAnt为无线通讯设备的天线增益,EIRP_PSDRe gulatory,c为预设载波有效全向辐射功率谱密度值。
结合本发明实施例第二方面的第三种实现方式,在本发明实施例第二方面的第六种实现方式中,
PRe gulatory,c=PSDRe gulatory,c+10lg BW;
PSDRe gulatory,c为预设载波功率谱密度值,BW为目标载波占用的带宽。
结合本发明第二方面的第一种实现方式,在本发明实施例第二方面的第七种实现方式中,无线通讯设备对应的最大发射功率包括:无线通讯设备的最大配置发射功率PCMAX
结合本发明实施例第二方面的第七种实现方式,在本发明实施例第二方面的第八种实现方式中,调整模块包括:
第三调整单元,用于通过如下公式调整无线通讯设备的最大配置发射功率:
PCMAX_L≤PCMAX≤PCMAX_H
Figure GPA0000265815170000111
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass};
其中,pEMAX,c为无线资源控制RRC对无线通讯设备对应的载波下发的功率值,10log10∑pEMAX,c等于预设阈值;ΔTC为第四功率损失值;PPowerClass为无线通讯设备的功率等级;MPR为第四功率回退值;A-MPR为第五功率回退值;ΔTIB,c为第二功率损失值;ΔTProSe为第三功率损失值;P-MPR为第六功率回退值。
结合本发明实施例第二方面的第七种实现方式,在本发明实施例第二方面的第九种实现方式中,调整模块包括:
第四调整单元,用于通过如下公式调整无线通讯设备的最大配置发射功率:
PCMAX_L≤PCMAX≤PCMAX_H
Figure GPA0000265815170000112
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass,PRe gulatory};
其中,pEMAX,c为无线资源控制RRC层对无线通讯设备对应的载波下发的功率值;ΔTC为第四功率损失值;PPowerClass为无线通讯设备的功率等级;MPR为第四功率回退值;A-MPR为第五功率回退值;ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPR为第六功率回退值;所述PRe gulatory等于所述预设阈值。
结合本发明实施例第二方面的第九种实现方式,在本发明实施例第二方面的第十种实现方式中,
PRe gulatory=PPowerClass-PCR;
PCR为预设设备功率回退值。
结合本发明实施例第二方面的第九种实现方式,在本发明实施例第二方面的第十一种实现方式中,
PRe gulatory=EIRP_PRe gulatory-GAnt
EIRP_PRe gulatory为预设设备有效全向辐射功率值,GAnt为无线通讯设备的天线增益。
结合本发明实施例第二方面的第九种实现方式,在本发明实施例第二方面的第十二种实现方式中,
PRe gulatory=PSDRe gulatory+10lg BW;
或,
PRe gulatory=EIRP_PSDRe gulatory-GAnt+10lg BW;
PSDRegulatory为预设设备功率谱密度值,BW为无线通讯设备占用的带宽,EIRP_PSDRe gulatory为预设设备有效全向辐射功率谱密度值。。
结合本发明实施例第二方面,第二方面的第一至第十二种实现方式,在本发明实施例第二方面的第十三种实现方式中,第一条件还包括:无线通讯设备的天线方向与第二无线通讯设备的天线方向之间的角度差值小于或等于第三阈值。
本发明实施例第三方面提供了一种无线通讯设备,包括:输入设备,输出设备,处理器和存储器;
存储器用于存储程序;
处理器用于执行存储器中的程序,具体包括如下步骤:
确定无线通讯设备与第二无线通讯设备之间的距离;
确定第二无线通讯设备的工作频率;
当无线通讯设备确定满足第一条件时,若确定无线通讯设备对应的最大发射功率大于预设阈值,则调整最大发射功率,使得调整后的最大发射功率等于或小于预设阈值,预设阈值用于在第一条件下,抑制无线通讯设备对第二无线通讯设备的接收性能的干扰;
其中,第一条件包括:距离小于或等于第一阈值,以及无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明实施例中,当第一无线通讯设备确定满足第一条件时,若第一无线通讯设备对应的最大发射功率大于预设阈值,则对第一无线通讯设备对应的最大发射功率进行调整,使得调整后的最大发射功率小于或等于预设阈值,其中,第一条件包括:第一无线通讯设备与第二无线通讯设备之间的距离小于或等于第一阈值,以及第一无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。则通过对预设阈值的设定,可以抑制第一无线通讯设备对第二无线通讯设备的接收性能的干扰,满足第一条件下第一无线通讯设备与第二无线通讯设备的共存需求。也就是说本方案能够抑制设备之间的干扰,满足多个设备的共存需求。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1是本发明实施例中确定发射功率的方法的一个实施例流程图;
图2是本发明实施例中无线通讯设备的一个实施例示意图;
图3是本发明实施例中无线通讯设备的另一实施例示意图;
图4是本发明实施例中无线通讯设备的另一实施例示意图;
图5是本发明实施例中无线通讯设备的另一实施例示意图。
具体实施方式
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本发明实施例中确定发射功率的方法及无线通讯设备可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband CodeDivision Multiple Access,WCDMA)系统、通用分组无线业务(General Packet RadioService,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(FrequencyDivision Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统等。
应理解,在本发明实施例中的通讯设备包括但不限于用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(MobileTelephone)、手机(handset)、便携设备(portable equipment)及自动收费设备等,该通讯设备可以经无线接入网(Radio Access Network,)与一个或多个核心网进行通信,例如,通讯设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,通讯设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本发明实施例提供了一种确定发射功率的方法和无线通讯设备,用于抑制设备之间的干扰,满足多个设备的共存需求。
应理解,本发明实施例中方法和无线通讯设备除了适用于ITS终端与自动收费设备共存的场景,还适用于其他无线通讯设备共存的场景,具体本发明实施例中不作限定。
为了便于理解本发明实施例,下面对本发明实施例中的一些参数进行介绍:
无线接入系统分为三层,其中,层一为物理(Physical,PHY)层,层二为媒体接入控制子(Media Access Control,MAC)层、无线链路控制子层(Radio Link Control,RLC)和分组数据会聚协议子层(Packet Data Convergence Protocol,PDCP),层三为无线资源控制(Radio Resource Control,RRC)层。本发明实施例中的RRC层指的就是第一无线通讯设备所接入的无线通信系统中的第三层,PEMAX,c即系统在RRC层的信令中针对第一无线通讯设备对应的某个载波下发的功率值,∑pEMAX,c即系统在RRC层的信令中针对第一无线通讯对应的每个载波下发的功率值之和。
无线通讯设备中包含有射频滤波器,射频滤波器的不平坦会造成功率的损失,第一功率损失值ΔTC,c指的是第一无线通讯设备的射频滤波器的平坦度在目标载波上造成的功率损失,第四功率损失值ΔTC指的是第一无线通讯设备的射频滤波器的平坦度在各个载波上造成的功率损失值中的最大值,关于ΔTC,c和ΔTC的具体定义和取值可以参考3GPPTS36.101,此处不赘述。
第二功率损失值ΔTIB,c和第三功率损失值ΔTProSe指的是为了满足多频段同时发生等需求而新增的滤波器给第一无线通讯设备带来的功率损失,关于ΔTIB,c和ΔTProSe的具体定义和取值可以参考3GPP TS36.101,此处不赘述。
第一功率回退值MPRc指的是目标载波对应的最大功率回退值,第二功率回退值A-MPRc指的是目标载波对应的额外最大功率回退值,第三功率回退值P-MPRc指的是第一无线通讯设备对应的多个无线连接带来的功率共享在目标载波上造成的功率回退,第四功率回退值MPR指的是第一无线通讯设备对应的最大功率回退值,第五功率回退值A-MPR指的是第一无线通讯设备对应的额外最大功率回退值,第六功率回退值P-MPR指的是第一无线通讯设备对应的多个无线连接带来的功率共享在第一无线通讯设备上造成的功率回退,关于MPRc,A-MPRc,P-MPRc,MPR,A-MPR和P-MPR的具体定义可以参考3GPP TS36.101,此处不赘述。
下面先介绍本发明实施例中确定发射功率的方法,请参阅图1,本发明实施例中确定发射功率的方法的一个实施例包括:
101、第一无线通讯设备确定第一无线通讯设备与第二无线通讯设备之间的距离;
第一无线通讯设备与第二无线通讯设备接入无线通信系统后,第一无线通讯设备可以获取第二无线通讯设备的位置,然后根据该位置和自身的位置确定第一无线通讯设备与第二无线通讯设备之间的距离。具体地,第一无线通讯设备可以通过查询数据库确定第二无线通讯设备的位置,可以通过接收到的第二无线通讯设备发出的信号确定第二无线通讯设备的位置,还可以通过其他方式确定第二无线通讯设备的位置,具体此处不作限定。
应理解,第一无线通讯设备确定第一无线通讯设备与第二无线通讯设备之间的距离是动态的过程,该距离应当随着第一无线通讯设备和/或第二无线通讯设备的移动而改变,第一无线通讯设备可以定期或不定期获取该距离。
102、第一无线通讯设备确定第二无线通讯设备的工作频率;
第二无线通讯设备工作在一定的频段,第一无线通讯设备可以通过查询数据库确定第二无线通讯设备的工作频率,也可以通过接收第二无线通讯设备发出的信号确定第二无线通讯设备的工作频率,还可以通过其他方式确定第二无线通讯设备的工作频率,具体此处不作限定。当第一无线通讯设备确定第二无线通讯设备的工作频率后,即可以确定自身的工作频率与第二无线通讯设备的工作频率的差值。
103、第一无线通讯设备调整第一无线通讯设备对应的最大发射功率。
确定第一无线通讯设备与第二无线通讯设备之间的距离,以及第一无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值,第一无线通讯设备即可确定是否满足第一条件,该第一条件包括:该距离小于或等于第一阈值,该差值小于或等于第二阈值,当第一无线通讯设备确定满足该第一条件时,第一无线通讯设备判断第一无线通讯设备对应的最大发射功率是否大于预设阈值,若大于,则第一无线通讯设备调整该最大发射功率,使得调整后的最大发射功率小于或等于该预设阈值,
应理解,第一阈值及第二阈值是基于第一无线通讯设备与第二无线通讯设备之间产生干扰的条件设定,即当第一无线通讯设备与第二无线通讯设备满足第一条件时,第一无线通讯设备与第二无线通讯设备之间会产生干扰,其具体数值可以通过测试或其他方式确定。而预设阈值则用于在该第一条件下,抑制第一无线通讯设备对第二无线通讯设备的接收性能的干扰。
本发明实施例中,当第一无线通讯设备确定满足第一条件时,若第一无线通讯设备对应的最大发射功率大于预设阈值,则对第一无线通讯设备对应的最大发射功率进行调整,使得调整后的最大发射功率小于或等于预设阈值,其中,第一条件包括:第一无线通讯设备与第二无线通讯设备之间的距离小于或等于第一阈值,以及第一无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。则通过对预设阈值的设定,可以抑制第一无线通讯设备对第二无线通讯设备的接收性能的干扰,满足第一条件下第一无线通讯设备与第二无线通讯设备的共存需求。也就是说本方案能够抑制设备之间的干扰,满足多个设备的共存需求。
基于上述图1对应的实施例,第一条件除了可以包括距离小于或等于第一阈值以及工作频率差值小于或等于第二阈值,还可以包括角度差值小于或等于第三阈值,角度差值指的是第一无线通讯设备与第二无线通讯设备的天线方向之间的角度的差值,该第三阈值也是基于第一无线通讯设备与第二无线通讯设备之间产生干扰的条件设定的。
基于上述图1对应的实施例,第一无线通讯设备对应的最大发射功率可以是第一无线通讯设备的载波的最大配置发射功率,可以是第一无线通讯设备的最大配置发射功率,还可以是第一无线通讯设备对应的基于其他原因限定的最大发射功率。下面分别对第一无线通讯设备对应的最大发射功率为载波的最大配置发射功率,和第一无线通讯设备对应的最大发射功率为设备的最大配置发射功率这两种情况进行介绍。
一、第一无线通讯设备对应的最大发射功率为载波的最大配置发射功率。
方式1、在RRC层调整PEMAX,c的值。
在本发明实施例提供的确定发射功率的方法的另一实施例中,第一无线通讯设备对应的最大发射功率为第一无线通讯设备的载波的最大配置发射功率PCMAX,c,第一无线通讯设备通过如下方式调整第一无线通讯设备对应的最大发射功率:
对于第一无线通讯设备对应的任意一个载波,即目标载波,第一无线通讯设备通过如下(1)至(3)调整目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c (1);
Figure GPA0000265815170000161
PCMAX_H,c=MIN{PEMAX,c,PPowerClass} (3);
应理解,PEMAX,c为RRC层对目标载波下发的功率值,RRC层一般是基于运营商的设定或其他原因设定该功率值,而在本发明实施例中,在RRC层,会将该基于运营商或其他原因设定PEMAX,c的值与预设阈值作比较,当该值大于预设阈值时,则在RRC层将该PEMAX,c的值调整为预设阈值后,再通过信令下发给第一无线通讯设备,此时第一无线通讯设备根据上述公式(1)至(3)确定目标载波的最大配置发射功率,即可使得目标载波的最大配置发射功率小于或等于预设阈值。
还应理解,当该基于运营商或其他原因设定PEMAX,c的值小于预设阈值时,则说明原来的通过3GPP TS36.101定义的该目标载波的最大配置发射功率不小于预设阈值,则第一无线通讯设备无需调整该目标载波的最大配置发射功率,RRC层直接将该值通过信令下发给第一无线通讯设备,第一无线通讯设备再根据上述公式(1)至(3)确定该目标载波的最大配置发射功率。
本发明实施例提供了一种调整第一无线通讯设备的载波的最大配置发射功率的具体方式,提高了方案的可实现性。
方式2、定义一个新的功率量。
在本发明实施例提供的确定发射功率的方法的另一实施例中,第一无线通讯设备对应的最大发射功率为第一无线通讯设备的载波的最大配置发射功率PCMAX,c,第一无线通讯设备通过如下方式调整第一无线通讯设备对应的最大发射功率:
对于第一无线通讯设备对应的任意一个载波,即目标载波,第一无线通讯设备通过如下公式(4)至(6)调整该目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c (4);
Figure GPA0000265815170000162
PCMAX_H,c=MIN{PEMAX,c,PPowerClass,PRe gulatory,c} (6);
应理解,PRe gulatory,c为新定义的一个功率量,PRe gulatory,c等于预设阈值。
还应理解,上述公式(4)至(6)除了适用于目标载波的最大配置发射功率小于预设阈值的情况,同样也可以适用于目标载波的最大配置发射功率大于预设阈值的情况。
还应理解,上述公式(5)和(6)中,可以直接将PRe gulatory,c设定为预设阈值,也可以将PRe gulatory,c替换成如下公式:
PPowerClass-PCRc (7);
其中PCRc为预设载波功率回退值,该预设载波功率回退值基于预设阈值和PPowerClass的值设定,在不同场景下对应不同的值。
PRe gulatory,c还可以替换成如下公式:
EIRP_PRe gulatory,c-GAnt (8);
其中,EIRP_PRe gulatory,c为预设载波有效全向辐射功率值,GAnt为第一无线通讯设备对应的天线增益。应理解,预设载波有效全向辐射功率值是由用户或系统设定,具体可以基于第一条件下,第一无线通讯设备与第二无线通讯设备的共存对载波的有效全向辐射功率的限制来设定的,也可以基于其他因素设定,具体此处不作限定。此时,预设阈值等于该预设载波有效全向辐射功率值减去第一无线通讯设备对应的天线增益。
PRe gulatory,c还可以替换成如下公式:
PRe gulatory,c=PSDRe gulatory,c+10lg BW (9);
其中,PSDRe gulatory,c为预设载波功率谱密度值,BW为目标载波占用的带宽。应理解,预设载波功率谱密度值是由用户或系统设定,具体可以基于第一条件下,第一无线通讯设备与第二无线通讯设备的共存对载波的功率谱密度的限制来设定的,也可以基于其他因素设定,具体此处不作限定。此时,预设阈值等于该PSDRe gulatory,c+10lg BW。
PRe gulatory,c还可以替换成如下公式:
PRe gulatory,c=EIRP_PSDRe gulatory,c-GAnt+10lg BW (10);
其中,EIRP_PSDRe gulatory,c为预设载波有效全向辐射功率谱密度值,BW为目标载波占用的带宽,GAnt为第一无线通讯设备对应的天线增益。应理解,预设载波有效全向功率谱密度值由用户或系统设定,具体可以基于第一条件下,第一无线通讯设备与第二无线通讯设备的共存对载波的有效全向辐射功率谱密度的限制来设定,也可以基于其他因素设定,具体此处不作限定。
本发明实施例提供了多种调整第一无线通讯设备的载波的最大配置发射功率的具体方式,提高了方案的灵活性。
方式3、定义多个新的功率量。
在本发明实施例提供的确定发射功率的方法的另一实施例中,第一无线通讯设备对应的最大发射功率为第一无线通讯设备的载波的最大配置发射功率PCMAX,c,第一无线通讯设备通过如下方式调整第一无线通讯设备对应的最大发射功率:
对于第一无线通讯设备对应的任意一个载波,即目标载波,第一无线通讯设备通过如下公式(11)至(13)调整该目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c (11);
Figure GPA0000265815170000171
PCMAX_H,c=MIN{PEMAX,c,PPowerClass,PRe gulatory,c,PSDRe gulatory,c+10lg BW} (13);
其中PRe gulatory,c为预设阈值,具体可以基于第一条件下,第一无线通讯设备与第二无线通讯设备的共存对载波的配置发射功率的限制来设定的,PSDRe gulatory,c为预设载波功率谱密度值,具体可以基于第一条件下,第一无线通讯设备与第二无线通讯设备的共存对载波的功率谱密度的限制来设定的,也可以基于其他因素设定,具体此处不作限定。则第一无线通讯设备通过上述公式(11)至(13)确定目标载波的最大配置发射功率,可以同时满足第一无线通讯设备与第二无线通讯设备共存时,对载波的功率谱密度和载波的配置发射功率的限定。
除了同时对载波的功率谱密度以及载波的配置发射功率的限定,也可以同时对载波的有效全向辐射功率以及,载波的配置发射功率进行限定,具体地,第一无线通讯设备通过如下公式(14)至(16)调整该目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c (14);
Figure GPA0000265815170000181
PCMAX_H,c=MIN{PEMAX,c,PPowerClass,PRe gulatory,c,EIRP_PRe gulatory,c-GAnt} (16);
其中PRe gulatory,c为预设阈值,EIRP_PRe gulatory,c为预设载波有效全向辐射功率值。
还可以同时对载波的有效全向辐射功率以及载波的功率谱密度进行限定,具体地,第一无线通讯设备通过如下公式(17)至(19)调整该目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c (17);
Figure GPA0000265815170000182
Figure GPA0000265815170000183
其中PSDRe gulatory,c为预设载波功率谱密度值,EIRP_PRe gulatory,c为预设载波有效全向辐射功率值,此时预设阈值等于PSDRe gulatory,c+10lg BW与EIRP_PRe gulatory,c-GAnt之间的最小值。
还可以同时对载波的有效全向辐射功率,载波的配置发射功率以及载波的功率谱密度这三个参数进行限定,具体地,第一无线通讯设备通过如下公式(20)至(22)调整该目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c (20);
Figure GPA0000265815170000184
Figure GPA0000265815170000185
其中EIRP_PRe gulatory,c为预设载波有效全向辐射功率值,PSDRe gulatory,c为预设载波功率谱密度值,PRe gulatory,c为预设阈值。
应理解,除了上述列举的几种情况,本申请还可以同时对载波的配置发射功率,载波的功率谱密度,载波的有效全向辐射功率,载波的有效全向辐射功率谱密度这四个参数中的两个或两个以上的参数进行限定,此处不再一一列举其对应的公式。还应理解,上述公式(11)至(13),(14)至(16),(17)至(19)以及(20)至(22)除了适用于目标载波的最大配置发射功率小于预设阈值的情况,同样也可以适用于目标载波的最大配置发射功率大于预设阈值的情况。
本发明实施例定义多个新的功率量,可以同时满足第一无线通讯设备与第二无线通讯设备共存时,对第一无线通讯设备的载波的多个参数进行限定。
二、第一无线通讯设备对应的最大发射功率为设备的最大配置发射功率。
方式1、在RRC层调整pEMAX,c的值。
在本发明实施例提供的确定发射功率的方法的另一实施例中,第一无线通讯设备对应的最大发射功率为第一无线通讯设备的最大配置发射功率PCMAX,第一无线通讯设备通过如下公式(23)至(25)调整第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H (23);
Figure GPA0000265815170000191
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass} (25);
应理解,∑pEMAX,c为系统在RRC层的信令中针对第一无线通讯对应的每个载波下发的功率值之和,RRC层一般是基于运营商的设定或其他原因设定该每个载波的功率值的,而在本发明实施例中,在RRC层,会根据该基于运营商或其他原因设定的各个载波的功率值计算出10log10∑pEMAX,c的值,并将该值与预设阈值作比较,当该值大于预设阈值时,则在RRC层对各个载波的功率值进行调整,使得10log10∑pEMAX,c等于预设阈值后,再通过信令下发每个载波的功率值,此时第一无线通讯设备根据上述公式(23)至(25)确定第一无线通讯设备的最大配置发射功率,即可使得第一无线通讯设备的最大配置发射功率小于或等于预设阈值。
本发明实施例提供了一种调整第一无线通讯设备的最大配置发射功率的具体方式,提高了方案的可实现性。
方式2、定义一个新的功率量。
在本发明实施例提供的确定发射功率的方法的另一实施例中,第一无线通讯设备对应的最大发射功率为第一无线通讯设备的最大配置发射功率PCMAX,第一无线通讯设备通过如下公式(26)至(28)调整第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H (26);
Figure GPA0000265815170000201
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass,PRe gulatory} (28);
应理解,PRe gulatory为新定义的一个功率量,PRe gulatory等于预设阈值。
还应理解,上述公式(26)至(27)除了适用于第一无线通讯设备的最大配置发射功率小于预设阈值的情况,同样也可以适用于第一无线通讯设备的最大配置发射功率大于预设阈值的情况。
还应理解,上述公式(27)和(28)中,可以直接将PRegulatory设定为预设阈值,也可以将PRe gulatory替换成如下公式:
PRe gulatory=PPowerClass-PCR (29);
其中PCR为预设设备功率回退值,该预设设备功率回退值基于预设阈值和PPowerClass的值设定,在不同场景下对应不同的值。
PRe gulatory还可以替换成如下公式:
PRe gulatory=EIRP_PRe gulatory-GAnt (230);
其中,EIRP_PRe gulatory为预设设备有效全向辐射功率值,GAnt为第一无线通讯设备对应的天线增益。应理解,预设设备有效全向辐射功率值是由用户或系统设定,具体可以基于第一条件下,第一无线通讯设备与第二无线通讯设备的共存对第一无线通讯设备的有效全向辐射功率的限制来设定的,也可以基于其他因素设定,具体此处不作限定。此时,预设阈值等于该预设设备有效全向辐射功率值减去第一无线通讯设备对应的天线增益。
PRe gulatory还可以替换成如下公式:
PRe gulatory=PSDRe gulatory+10lg BW (31);
其中,PSDRe gulatory为预设设备功率谱密度值,BW为第一无线通讯设备占用的带宽。应理解,预设设备功率谱密度值是由用户或系统设定,具体可以基于第一条件下,第一无线通讯设备与第二无线通讯设备的共存对第一无线通讯设备的功率谱密度的限制来设定的,也可以基于其他因素设定,具体此处不作限定。此时,预设阈值等于该PSDRe gulatory+10lgBW。
PRe gulatory还可以替换成如下公式:
PRe gulatory=EIRP_PSDRe gulatory-GAnt+10lg BW (32);
其中,EIRP_PSDRe gulatory为预设设备有效全向辐射功率谱密度值,BW为第一无线通讯设备占用的带宽,GAnt为第一无线通讯设备对应的天线增益。应理解,预设设备有效全向功率谱密度值由用户或系统设定,具体可以基于第一条件下,第一无线通讯设备与第二无线通讯设备的共存对设备的有效全向辐射功率谱密度的限制来设定,也可以基于其他因素设定,具体此处不作限定。本发明实施例提供了多种调整第一无线通讯设备的最大配置发射功率的具体方式,提高了方案的灵活性。
方式3、定义多个新的功率量。
在本发明实施例提供的确定发射功率的方法的另一实施例中,第一无线通讯设备对应的最大发射功率为第一无线通讯设备的最大配置发射功率PCMAX,第一无线通讯设备通过如下公式(33)至(35)调整第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H (33);
Figure GPA0000265815170000211
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass,PRe gulatory,PSDRe gulatory+10lg BW} (35);
其中PRe gulatory为预设阈值,具体可以基于第一条件下,第一无线通讯设备与第二无线通讯设备的共存对第一无线通讯设备的配置发射功率的限制来设定的,PSDRe gulatory为预设设备功率谱密度值,具体可以基于第一条件下,第一无线通讯设备与第二无线通讯设备的共存对设备的功率谱密度的限制来设定的,也可以基于其他因素设定,具体此处不作限定。则第一无线通讯设备通过上述公式(33)至(35)确定第一无线通讯设备的最大配置发射功率,可以同时满足第一无线通讯设备与第二无线通讯设备共存时,对第一无线通讯设备的功率谱密度和第一无线通讯设备的配置发射功率的限定。
除了同时对第一无线通讯设备的功率谱密度以及第一无线通讯设备的配置发射功率的限定,也可以同时对第一无线通讯设备的有效全向辐射功率以及,第一无线通讯设备的配置发射功率进行限定,具体地,第一无线通讯设备通过如下公式(36)至(38)调整第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H (36);
Figure GPA0000265815170000212
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass,PRe gulatory,EIRP_PRe gulatory-GAnt} (38);
其中PRe gulatory,c为预设阈值,EIRP_PRe gulatory为预设设备有效全向辐射功率值。
还可以同时对第一无限通讯设备的有效全向辐射功率以及第一无线通讯设备的功率谱密度进行限定,具体地,第一无线通讯设备通过如下公式(39)至(41)调整第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H (39);
Figure GPA0000265815170000213
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass,EIRP_PRe gulatory-GAnt,PSDRe gulatory+10lgBW}(41);
其中PSDRe gulatory为预设设备功率谱密度值,EIRP_PRe gulatory为预设设备有效全向辐射功率值,此时预设阈值等于PSDRe gulatory+10lg BW与EIRP_PRe gulatory-GAnt之间的最小值。
还可以同时对第一无线通讯设备的有效全向辐射功率,第一无线通讯设备的配置发射功率以及第一无线通讯设备的功率谱密度这三个参数进行限定,具体地,第一无线通讯设备通过如下公式(42)至(44)调整该设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H (42);
Figure GPA0000265815170000221
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass,PRe gulatory,EIRP_PRe gulatory-GAnt,PSDRe gulatory+10lg BW}(44);
其中PSDRe gulatory为预设设备功率谱密度值,EIRP_PRe gulatory为预设设备有效全向辐射功率值,PRe gulatory为预设阈值。
应理解,除了上述列举的几种情况,本申请还可以同时对设备的配置发射功率,设备的功率谱密度,设备的有效全向辐射功率,设备的有效全向辐射功率谱密度这四个参数中的两个或两个以上的参数进行限定,此处不再一一列举其对应的公式。
还应理解,上述公式(33)至(35),(36)至(38),(39)至(41)以及(42)至(44)除了适用于第一无线通讯设备的最大配置发射功率小于预设阈值的情况,同样也可以适用于第一无线通讯设备的最大配置发射功率大于预设阈值的情况。
本发明实施例定义多个新的功率量,可以同时满足第一无线通讯设备与第二无线通讯设备共存时,对第一无线通讯设备的多个参数进行限定。
上面介绍了本发明实施例中的确定发射功率的方法,下面介绍本发明实施例中的无线通讯设备,请参阅图2,本发明实施例中无线通讯设备的一个实施例包括:
第一确定模块201,用于确定该无线通讯设备与第二无线通讯设备之间的距离;
第二确定模块202,用于确定第二无线通讯设备的工作频率;
调整模块203,用于当确定满足第一条件且确定无线通讯设备对应的最大发射功率大于预设阈值时,调整最大发射功率,使得调整后的最大发射功率等于或小于预设阈值,预设阈值用于在第一条件下,抑制无线通讯设备对第二无线通讯设备的接收性能的干扰;
其中,第一条件包括:距离小于或等于第一阈值,以及无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。
本发明实施例中,当无线通讯设备确定满足第一条件时,若无线通讯设备对应的最大发射功率大于预设阈值,则调整模块203对第一无线通讯设备对应的最大发射功率进行调整,使得调整后的最大发射功率小于或等于预设阈值,其中,第一条件包括:第一无线通讯设备与第二无线通讯设备之间的距离小于或等于第一阈值,以及第一无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。则通过对预设阈值的设定,可以抑制第一无线通讯设备对第二无线通讯设备的接收性能的干扰,满足第一条件下第一无线通讯设备与第二无线通讯设备的共存需求。也就是说本方案能够抑制设备之间的干扰,满足多个设备的共存需求。
基于上述图2对应的实施例,无线通讯设备对应的最大发射功率可以是无线通讯设备的载波的最大配置发射功率,可以是无线通讯设备的最大配置发射功率,还可以是无线通讯设备对应的基于其他原因限定的最大发射功率。下面分别对无线通讯设备对应的最大发射功率为载波的最大配置发射功率,和无线通讯设备对应的最大发射功率为设备的最大配置发射功率这两种情况进行介绍。
一、无线通讯设备对应的最大发射功率为载波的最大配置发射功率PEMAX,c
请参阅图3,本发明实施例中无线通讯设备的另一实施例包括:
第一确定模块301,用于确定该无线通讯设备与第二无线通讯设备之间的距离;
第二确定模块302,用于确定第二无线通讯设备的工作频率;
调整模块303,用于当确定满足第一条件且确定无线通讯设备对应的最大发射功率大于预设阈值时,调整最大发射功率,使得调整后的最大发射功率等于或小于预设阈值,预设阈值用于在第一条件下,抑制无线通讯设备对第二无线通讯设备的接收性能的干扰;
其中,第一条件包括:距离小于或等于第一阈值,以及无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。
应理解,本发明实施例中,无线通讯设备对应的最大发射功率包括:无线通讯设备的载波的最大配置发射功率。另外在本发明实施例中,第一条件还可以包括无线通讯设备的天线方向与第二无线通讯设备的天线方向的角度差值小于或等于第三阈值,或其他条件,具体本发明实施例中不作限定。
还应理解本发明实施例中,调整模块303可以包括:
第一调整单元3031,用于通过上述公式(1)至(3)调整无线通讯设备的目标载波的最大配置发射功率PCMAX,c
或,
第二调整单元3032,用于通过上述公式(4)至(6)调整无线通讯设备的目标载波的最大配置发射功率PCMAX,c
具体地,上述公式(5)和(6)中的PRe gulatory,c还可以替换成上述公式(7),(8),(9)或(10)。
本发明实施例中,当无线通讯设备确定满足第一条件时,若无线通讯设备对应的最大发射功率大于预设阈值,则调整模块303对第一无线通讯设备对应的最大发射功率进行调整,使得调整后的最大发射功率小于或等于预设阈值,其中,第一条件包括:第一无线通讯设备与第二无线通讯设备之间的距离小于或等于第一阈值,以及第一无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。则通过对预设阈值的设定,可以抑制第一无线通讯设备对第二无线通讯设备的接收性能的干扰,满足第一条件下第一无线通讯设备与第二无线通讯设备的共存需求。也就是说本方案能够抑制设备之间的干扰,满足多个设备的共存需求。
其次,本发明实施例中无线通讯设备对应的最大发射功率包括载波的最大配置发射功率,且本发明实施例提供了多种调整该载波的最大配置发射功率的方式,提高了方案的灵活性。
二、无线通讯设备对应的最大发射功率为设备的最大配置发射功率PCMAX
请参阅图4,本发明实施例中无线通讯设备的另一实施例包括:
第一确定模块401,用于确定该无线通讯设备与第二无线通讯设备之间的距离;
第二确定模块402,用于确定第二无线通讯设备的工作频率;
调整模块403,用于当确定满足第一条件且确定无线通讯设备对应的最大发射功率大于预设阈值时,调整最大发射功率,使得调整后的最大发射功率等于或小于预设阈值,预设阈值用于在第一条件下,抑制无线通讯设备对第二无线通讯设备的接收性能的干扰;
其中,第一条件包括:距离小于或等于第一阈值,以及无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。
应理解,本发明实施例中,无线通讯设备对应的最大发射功率包括:该无线通讯设备的最大配置发射功率。另外,在本发明实施例中,第一条件还可以包括无线通讯设备的天线方向与第二无线通讯设备的天线方向的角度差值小于或等于第三阈值或其他条件,具体本发明实施例中不作限定。
还应理解本发明实施例中,调整模块403可以包括:
第三调整单元4031,用于通过上述公式(23)至(25)调整无线通讯设备的最大配置发射功率PCMAX
或,
第四调整单元4032,用于通过上述公式(26)至(28)调整无线通讯设备的最大配置发射功率PCMAX
具体地,上述公式(27)和(28)中的PRe gulatory替换成上述公式(29),(30),(31)或(32)。
本发明实施例中,当无线通讯设备确定满足第一条件时,若无线通讯设备对应的最大发射功率大于预设阈值,则调整模块403对第一无线通讯设备对应的最大发射功率进行调整,使得调整后的最大发射功率小于或等于预设阈值,其中,第一条件包括:第一无线通讯设备与第二无线通讯设备之间的距离小于或等于第一阈值,以及第一无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。则通过对预设阈值的设定,可以抑制第一无线通讯设备对第二无线通讯设备的接收性能的干扰,满足第一条件下第一无线通讯设备与第二无线通讯设备的共存需求。也就是说本方案能够抑制设备之间的干扰,满足多个设备的共存需求。
其次,本发明实施例中无线通讯设备对应的最大发射功率包括设备的最大配置发射功率,且本发明实施例提供了多种调整该无线通讯设备的最大配置发射功率的方式,提高了方案的灵活性
上面从模块化的角度对本发明实施例中的无线通讯设备进行了介绍,下面从实体硬件的角度介绍本发明实施例中的无线通讯设备,请参阅图5,图5是本发明实施例无线通讯设备50的结构示意图。无线通讯设备50可包括输入设备510、输出设备520、处理器530和存储器540。
存储器540可以包括只读存储器和随机存取存储器,并向处理器530提供指令和数据。存储器540的一部分还可以包括非易失性随机存取存储器(Non-Volatile RandomAccess Memory,NVRAM)。
存储器540存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
本发明实施例中处理器530用于:
确定无线通讯设备与第二无线通讯设备之间的距离;
确定第二无线通讯设备的工作频率;
当无线通讯设备确定满足第一条件时,若确定无线通讯设备对应的最大发射功率大于预设阈值,则调整最大发射功率,使得调整后的最大发射功率等于或小于预设阈值,预设阈值用于在第一条件下,抑制无线通讯设备对第二无线通讯设备的接收性能的干扰;
其中,第一条件包括:距离小于或等于第一阈值,以及无线通讯设备的工作频率与第二无线通讯设备的工作频率的差值小于或等于第二阈值。
处理器530控制无线通讯设备50的操作,处理器530还可以称为中央处理单元(Central Processing Unit,CPU)。存储器540可以包括只读存储器和随机存取存储器,并向处理器530提供指令和数据。存储器540的一部分还可以包括NVRAM。具体的应用中,无线通讯设备50的各个组件通过总线系统550耦合在一起,其中总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。
上述本发明实施例揭示的方法可以应用于处理器530中,或者由处理器530实现。处理器530可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器530中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器530可以是通用处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器540,处理器530读取存储器540中的信息,结合其硬件完成上述方法的步骤。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (17)

1.一种确定发射功率的方法,其特征在于,包括:
第一无线通讯设备确定所述第一无线通讯设备与第二无线通讯设备之间的距离;
所述第一无线通讯设备确定所述第二无线通讯设备的工作频率;
所述第一无线通讯设备确定满足第一条件时,若确定所述第一无线通讯设备对应的最大发射功率大于预设阈值,则调整所述最大发射功率,使得所述调整后的所述最大发射功率等于或小于所述预设阈值,所述预设阈值用于在所述第一条件下,抑制所述第一无线通讯设备对所述第二无线通讯设备的接收性能的干扰;
所述第一无线通讯设备对应的最大发射功率包括:所述第一无线通讯设备的载波的最大配置发射功率PCMAX,c
所述第一无线通讯设备调整所述最大发射功率包括:
所述第一无线通讯设备通过如下公式调整所述第一无线通讯设备的目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure FDA0002644292650000011
PCMAX_H,c=MIN{PEMAX,c,PPowerClass};
其中,所述PEMAX,c为无线资源控制RRC层对所述目标载波下发的功率值,所述PEMAX,c等于所述预设阈值;所述ΔTC,c为第一功率损失值;所述PPowerClass为所述第一无线通讯设备的功率等级;所述MPRc为第一功率回退值;所述A-MPRc为第二功率回退值;所述ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPRc为第三功率回退值,
或,
所述第一无线通讯设备通过如下公式调整所述第一无线通讯设备的目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure FDA0002644292650000012
PCMAX_H,c=MIN{PEMAX,c,PPowerClass,PRegulatory,c};
其中,所述PEMAX,c为无线资源控制RRC层对所述目标载波下发的功率值;所述ΔTC,c为第一功率损失值;所述PPowerClass为所述第一无线通讯设备的功率等级;所述MPRc为第一功率回退值;所述A-MPRc为第二功率回退值;所述ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPRc为第三功率回退值;所述PRegulatory,c等于所述预设阈值;
或,所述第一无线通讯设备对应的最大发射功率包括:所述第一无线通讯设备的最大配置发射功率PCMAX
所述第一无线通讯设备调整所述最大发射功率包括:
所述第一无线通讯设备通过如下公式调整所述第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H
Figure FDA0002644292650000021
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass};
其中,所述pEMAX,c为无线资源控制RRC对所述第一无线通讯设备对应的载波下发的功率值,所述10log10∑pEMAX,c等于所述预设阈值;所述ΔTC为第四功率损失值;所述PPowerClass为所述第一无线通讯设备的功率等级;所述MPR为第四功率回退值;所述A-MPR为第五功率回退值;所述ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPR为第六功率回退值;
或,
所述第一无线通讯设备通过如下公式调整所述第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H
Figure FDA0002644292650000022
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass,PRegulatory};
其中,所述pEMAX,c为无线资源控制RRC层对所述第一无线通讯设备对应的载波下发的功率值;所述ΔTC为第四功率损失值;所述PPowerClass为所述第一无线通讯设备的功率等级;所述MPR为第四功率回退值;所述A-MPR为第五功率回退值;所述ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPR为第六功率回退值;所述PRegulatory等于所述预设阈值;
其中,所述第一条件包括:所述距离小于或等于第一阈值,以及所述第一无线通讯设备的工作频率与所述第二无线通讯设备的工作频率的差值小于或等于第二阈值。
2.根据权利要求1所述的方法,其特征在于,
所述PRegulatory,c=PPowerClass-PCRc
所述PCRc为预设载波功率回退值。
3.根据权利要求1所述的方法,其特征在于,
所述PRegulatory,c=EIRP_PRegulatory,c-GAnt
所述EIRP_PRegulatory,c为预设载波有效全向辐射功率值,所述GAnt为所述第一无线通讯设备的天线增益。
4.根据权利要求1所述的方法,其特征在于,
所述PRegulatory,c=PSDRegulatory,c+10lgBW;
所述PSDRegulatory,c为预设载波功率谱密度值,所述BW为所述目标载波占用的带宽。
5.根据权利要求1所述的方法,其特征在于,
所述PRegulatory=PPowerClass-PCR;
所述PCR为预设设备功率回退值。
6.根据权利要求1所述的方法,其特征在于,
所述PRegulatory=EIRP_PRegulatory-GAnt
所述EIRP_PRegulatory为预设设备有效全向辐射功率值,所述GAnt为所述第一无线通讯设备的天线增益。
7.根据权利要求1所述的方法,其特征在于,
所述PRegulatory=PSDRegulatory+10lgBW;
所述PSDRegulatory为预设设备功率谱密度值,所述BW为所述第一无线通讯设备占用的带宽。
8.根据权利要求1至7任一项所述的方法,其特征在于,所述第一条件还包括:所述第一无线通讯设备的天线方向与所述第二无线通讯设备的天线方向之间的角度差值小于或等于第三阈值。
9.一种无线通讯设备,其特征在于,包括:
第一确定模块,用于确定所述无线通讯设备与第二无线通讯设备之间的距离;
第二确定模块,用于确定所述第二无线通讯设备的工作频率;
调整模块,用于确定满足第一条件且确定所述无线通讯设备对应的最大发射功率大于预设阈值时,调整所述最大发射功率,使得所述调整后的所述最大发射功率等于或小于所述预设阈值,所述预设阈值用于在所述第一条件下,抑制所述无线通讯设备对所述第二无线通讯设备的接收性能的干扰;
所述调整模块,具体包括:
所述无线通讯设备对应的最大发射功率包括:所述无线通讯设备的载波的最大配置发射功率PCMAX,c
第一调整单元,用于通过如下公式调整所述无线通讯设备的目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure FDA0002644292650000041
PCMAX_H,c=MIN{PEMAX,c,PPowerClass};
其中,所述PEMAX,c为无线资源控制RRC层对所述目标载波下发的功率值,所述PEMAX,c等于所述预设阈值;所述ΔTC,c为第一功率损失值;所述PPowerClass为所述无线通讯设备的功率等级;所述MPRc为第一功率回退值;所述A-MPRc为第二功率回退值;所述ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPRc为第三功率回退值;
或,
第二调整单元,用于通过如下公式调整所述无线通讯设备的目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure FDA0002644292650000042
PCMAX_H,c=MIN{PEMAX,c,PPowerClass,PRegulatory,c};
其中,所述PEMAX,c为无线资源控制RRC层对所述目标载波下发的功率值;所述ΔTC,c为第一功率损失值;所述PPowerClass为所述无线通讯设备的功率等级;所述MPRc为第一功率回退值;所述A-MPRc为第二功率回退值;所述ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPRc为第三功率回退值;所述PRegulatory,c等于所述预设阈值;
或,所述无线通讯设备对应的最大发射功率包括:所述无线通讯设备的最大配置发射功率PCMAX
第三调整单元,用于通过如下公式调整所述无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H
Figure FDA0002644292650000043
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass};
其中,所述pEMAX,c为无线资源控制RRC对所述无线通讯设备对应的载波下发的功率值,所述10log10∑pEMAX,c等于所述预设阈值;所述ΔTC为第四功率损失值;所述PPowerClass为所述无线通讯设备的功率等级;所述MPR为第四功率回退值;所述A-MPR为第五功率回退值;所述ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPR为第六功率回退值;
或,第四调整单元,用于通过如下公式调整所述无线通讯设备的最大配置发射功率:
PCMAX_L≤PCMAX≤PCMAX_H
Figure FDA0002644292650000051
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass,PRegulatory};
其中,所述pEMAX,c为无线资源控制RRC层对所述无线通讯设备对应的载波下发的功率值;所述ΔTC为第四功率损失值;所述PPowerClass为所述无线通讯设备的功率等级;所述MPR为第四功率回退值;所述A-MPR为第五功率回退值;所述ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPR为第六功率回退值;所述PRegulatory等于所述预设阈值;
其中,所述第一条件包括:所述距离小于或等于第一阈值,以及所述无线通讯设备的工作频率与所述第二无线通讯设备的工作频率的差值小于或等于第二阈值。
10.根据权利要求9所述的无线通讯设备,其特征在于,
所述PRegulatory,c=PPowerClass-PCRc
所述PCRc为预设载波功率回退值。
11.根据权利要求9所述的无线通讯设备,其特征在于,
所述PRegulatory,c=EIRP_PRegulatory,c-GAnt
所述EIRP_PRegulatory,c为预设载波有效全向辐射功率值,所述GAnt为所述无线通讯设备的天线增益。
12.根据权利要求9所述的无线通讯设备,其特征在于,
所述PRegulatory,c=PSDRegulatory,c+10lg BW;
所述PSDRegulatory,c为预设载波功率谱密度值,所述BW为所述目标载波占用的带宽。
13.根据权利要求9所述的无线通讯设备,其特征在于,
所述PRegulatory=PPowerClass-PCR;
所述PCR为预设设备功率回退值。
14.根据权利要求9所述的无线通讯设备,其特征在于,
所述PRegulatory=EIRP_PRegulatory-GAnt
所述EIRP_PRegulatory为预设设备有效全向辐射功率值,所述GAnt为所述无线通讯设备的天线增益。
15.根据权利要求9所述的无线通讯设备,其特征在于,
所述PRegulatory=PSDRegulatory+10lgBW;
所述PSDRegulatory为预设设备功率谱密度值,所述BW为所述无线通讯设备占用的带宽。
16.根据权利要求9至15任一项所述的无线通讯设备,其特征在于,所述第一条件还包括:所述无线通讯设备的天线方向与所述第二无线通讯设备的天线方向之间的角度差值小于或等于第三阈值。
17.一种无线通讯设备,其特征在于,包括:输入设备,输出设备,处理器和存储器;
所述存储器用于存储程序;
所述处理器用于执行所述存储器中的程序,具体包括如下步骤:
确定所述无线通讯设备与第二无线通讯设备之间的距离;
确定所述第二无线通讯设备的工作频率;
当所述无线通讯设备确定满足第一条件时,若确定所述无线通讯设备对应的最大发射功率大于预设阈值,则调整所述最大发射功率,使得所述调整后的所述最大发射功率等于或小于所述预设阈值,所述预设阈值用于在所述第一条件下,抑制所述无线通讯设备对所述第二无线通讯设备的接收性能的干扰;
第一无线通讯设备对应的最大发射功率包括:所述第一无线通讯设备的载波的最大配置发射功率PCMAX,c
所述第一无线通讯设备调整所述最大发射功率包括:
所述第一无线通讯设备通过如下公式调整所述第一无线通讯设备的目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure FDA0002644292650000061
PCMAX_H,c=MIN{PEMAX,c,PPowerClass};
其中,所述PEMAX,c为无线资源控制RRC层对所述目标载波下发的功率值,所述PEMAX,c等于所述预设阈值;所述ΔTC,c为第一功率损失值;所述PPowerClass为所述第一无线通讯设备的功率等级;所述MPRc为第一功率回退值;所述A-MPRc为第二功率回退值;所述ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPRc为第三功率回退值,
或,
所述第一无线通讯设备通过如下公式调整所述第一无线通讯设备的目标载波的最大配置发射功率PCMAX,c
PCMAX_L,c≤PCMAX,c≤PCMAX_H,c
Figure FDA0002644292650000071
PCMAX_H,c=MIN{PEMAX,c,PPowerClass,PRegulatory,c};
其中,所述PEMAX,c为无线资源控制RRC层对所述目标载波下发的功率值;所述ΔTC,c为第一功率损失值;所述PPowerClass为所述第一无线通讯设备的功率等级;所述MPRc为第一功率回退值;所述A-MPRc为第二功率回退值;所述ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPRc为第三功率回退值;所述PRegulatory,c等于所述预设阈值;
或,所述第一无线通讯设备对应的最大发射功率包括:所述第一无线通讯设备的最大配置发射功率PCMAX
所述第一无线通讯设备调整所述最大发射功率包括:
所述第一无线通讯设备通过如下公式调整所述第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H
Figure FDA0002644292650000072
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass};
其中,所述pEMAX,c为无线资源控制RRC对所述第一无线通讯设备对应的载波下发的功率值,所述10log10∑pEMAX,c等于所述预设阈值;所述ΔTC为第四功率损失值;所述PPowerClass为所述第一无线通讯设备的功率等级;所述MPR为第四功率回退值;所述A-MPR为第五功率回退值;所述ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPR为第六功率回退值;
或,
所述第一无线通讯设备通过如下公式调整所述第一无线通讯设备的最大配置发射功率PCMAX
PCMAX_L≤PCMAX≤PCMAX_H
Figure FDA0002644292650000081
PCMAX_H=MIN{10log10∑pEMAX,c,PPowerClass,PRegulatory};
其中,所述pEMAX,c为无线资源控制RRC层对所述第一无线通讯设备对应的载波下发的功率值;所述ΔTC为第四功率损失值;所述PPowerClass为所述第一无线通讯设备的功率等级;所述MPR为第四功率回退值;所述A-MPR为第五功率回退值;所述ΔTIB,c为第二功率损失值;所述ΔTProSe为第三功率损失值;所述P-MPR为第六功率回退值;所述PRegulatory等于所述预设阈值;
其中,所述第一条件包括:所述距离小于或等于第一阈值,以及所述无线通讯设备的工作频率与所述第二无线通讯设备的工作频率的差值小于或等于第二阈值。
CN201780066946.XA 2017-01-16 2017-01-16 一种确定发射功率的方法及无线通讯设备 Active CN109891953B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/071281 WO2018129739A1 (zh) 2017-01-16 2017-01-16 一种确定发射功率的方法及无线通讯设备

Publications (2)

Publication Number Publication Date
CN109891953A CN109891953A (zh) 2019-06-14
CN109891953B true CN109891953B (zh) 2020-12-08

Family

ID=62839283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780066946.XA Active CN109891953B (zh) 2017-01-16 2017-01-16 一种确定发射功率的方法及无线通讯设备

Country Status (5)

Country Link
US (1) US10785731B2 (zh)
EP (1) EP3554150B1 (zh)
JP (1) JP2020507256A (zh)
CN (1) CN109891953B (zh)
WO (1) WO2018129739A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10568149B2 (en) * 2018-02-27 2020-02-18 Verizon Patent And Licensing Inc. 5G radio management based on thermal, battery, or transmit power considerations
US11438033B2 (en) 2020-11-16 2022-09-06 Ultralogic 6G, Llc Location-based power for high reliability and low latency in 5G/6G
CN112737661B (zh) * 2020-12-16 2022-04-22 中电科航空电子有限公司 一种机载北斗设备与他机铱星设备的干扰协调方法及系统
US20240064650A1 (en) * 2021-01-14 2024-02-22 Ntt Docomo, Inc. Terminal, system and communication method
EP4109997A1 (en) * 2021-06-22 2022-12-28 INTEL Corporation Methods and devices for protecting v2x communications from near-band interference
CN113472397B (zh) * 2021-08-09 2022-08-05 Oppo广东移动通信有限公司 天线控制方法、装置、存储介质及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400118A (zh) * 2007-09-28 2009-04-01 株式会社Ntt都科摩 基站、接收装置、移动终端和频率共享方法
CN103037493A (zh) * 2012-12-14 2013-04-10 中兴通讯股份有限公司 动态调整发射功率的方法及装置、智能终端

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317900B1 (en) * 2001-12-28 2008-01-08 Broadcom Corporation Method and apparatus for co-location of two radio frequency devices
US8526410B2 (en) * 2007-07-06 2013-09-03 Qualcomm Incorporated Methods and apparatus related to interference management when sharing downlink bandwidth between wide area network usage and peer to peer signaling
US7800541B2 (en) * 2008-03-31 2010-09-21 Golba Llc Methods and systems for determining the location of an electronic device
US9566383B2 (en) * 2008-10-16 2017-02-14 Roche Diabetes Care, Inc. Method and system for adaptive communication transmission
DE102009060505B4 (de) * 2008-12-30 2011-09-01 Atmel Automotive Gmbh Schaltung, System und Verfahren zur Kommunikation zwischen zwei Knoten eines Funknetzes
US8306013B2 (en) * 2009-01-23 2012-11-06 Empire Technology Development Llc Interactions among mobile devices in a wireless network
JP5531767B2 (ja) * 2009-07-31 2014-06-25 ソニー株式会社 送信電力制御方法、通信装置及びプログラム
KR101397985B1 (ko) * 2010-07-22 2014-05-27 한국전자통신연구원 무선 통신 장치 및 방법
US10517098B2 (en) * 2010-07-30 2019-12-24 Qualcomm Incorporated Interference coordination for peer-to-peer (P2P) communication and wide area network (WAN) communication
WO2013010123A1 (en) * 2011-07-13 2013-01-17 Avi Zohar System and method for enhanced point-to-point direction finding
US9084072B2 (en) * 2011-10-17 2015-07-14 Google Inc. Techniques for using software application-related metadata in near field communication transmissions
CN103384161B (zh) * 2012-05-02 2018-02-06 华为技术有限公司 Mimo无线通信系统、传输方法和装置
US10602452B2 (en) * 2012-11-20 2020-03-24 Huawei Technologies Co., Ltd. System and method for device-to-device operation in a cellular communications system
FR2998744B1 (fr) * 2012-11-29 2016-07-08 Cassidian Sas Procede et systeme de determination d’un intervalle de frequences dans un reseau de telecommunications
TW201434283A (zh) * 2013-02-22 2014-09-01 Hon Hai Prec Ind Co Ltd 減少WiMAX設備與WiFi設備共存干擾的系統及方法
EP2974504B1 (en) * 2013-03-15 2018-06-20 Keyssa, Inc. Ehf secure communication device
CN104105185B (zh) * 2013-04-03 2018-11-27 电信科学技术研究院 设备到设备通信中的发射功率控制方法、装置及系统
CN104284408B (zh) * 2013-07-02 2018-08-21 华为技术有限公司 上行发送功率校准方法及其相关设备和系统
US20150296553A1 (en) * 2014-04-11 2015-10-15 Thalmic Labs Inc. Systems, devices, and methods that establish proximity-based wireless connections
CN105099642B (zh) * 2014-05-19 2019-06-07 中兴通讯股份有限公司 一种数据传输方法、装置及计算机存储介质
EP3150018A1 (en) * 2014-05-30 2017-04-05 Nokia Solutions and Networks Oy Proximity-based communications, network assisted device discovery
US9658311B2 (en) * 2014-07-30 2017-05-23 Aruba Networks, Inc. System and methods for location determination in MIMO wireless networks
US9842013B2 (en) * 2014-10-27 2017-12-12 Aruba Networks, Inc. Dynamic adaptive approach for failure detection of node in a cluster
WO2016108456A1 (ko) * 2014-12-29 2016-07-07 엘지전자(주) 무선 통신 시스템에서 단말 간 직접 통신을 수행하기 위한 방법 및 이를 위한 장치
US9480025B2 (en) * 2015-03-27 2016-10-25 Intel IP Corporation Adaptive device transmission power for interference reduction
CN106162578B (zh) * 2015-04-24 2020-03-17 北京智谷睿拓技术服务有限公司 转发控制方法、移动终端信息发送方法、及其装置
US9780888B2 (en) * 2015-05-12 2017-10-03 Qualcomm Incorporated Techniques for mitigating cross device co-existence interference
US9980097B2 (en) * 2015-05-15 2018-05-22 Motorola Mobility Llc Method and apparatus for indoor location estimation among peer-to-peer devices
GB2539011A (en) * 2015-06-03 2016-12-07 Sensor Labs Ltd A Proximity beacon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400118A (zh) * 2007-09-28 2009-04-01 株式会社Ntt都科摩 基站、接收装置、移动终端和频率共享方法
CN103037493A (zh) * 2012-12-14 2013-04-10 中兴通讯股份有限公司 动态调整发射功率的方法及装置、智能终端

Also Published As

Publication number Publication date
JP2020507256A (ja) 2020-03-05
US10785731B2 (en) 2020-09-22
EP3554150B1 (en) 2022-03-09
EP3554150A4 (en) 2019-11-27
EP3554150A1 (en) 2019-10-16
WO2018129739A1 (zh) 2018-07-19
US20190342841A1 (en) 2019-11-07
CN109891953A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
CN109891953B (zh) 一种确定发射功率的方法及无线通讯设备
CN102215555B (zh) 发送信号的用户设备装置和控制其传输功率的方法
US9055544B2 (en) Methods of setting maximum output power for user equipment and reporting power headroom, and the user equipment
EP3282811B1 (en) Transmission power adjustment method and apparatus
EP3664565B1 (en) Information transmission method under unlicensed band, network device, and terminal
KR102634604B1 (ko) 데이터 전송 방법, 단말기 디바이스 및 네트워크 디바이스
EP3846547B1 (en) Wireless communication method and terminal device
EP3979724A1 (en) Information transmission method and apparatus and communication device
EP3117676B1 (en) Methods, a wireless device and a radio network node in a wireless communication system
CN111742583B (zh) 通信方法、终端设备和网络设备
JP2016536843A (ja) 制限された構成における動作に関わる補完的な最大電力低減
WO2019033302A1 (zh) 信号传输的方法和终端设备
KR101783609B1 (ko) 서로 다른 무선통신 방식이 적용된 복수의 무선통신 칩에서 동시에 신호를 전송하기 위한 단말 장치 및 그 단말 장치의 전송 전력 제어 방법
US10251135B2 (en) Method for controlling power of carrier signal, user equipment, and base station
US20210235423A1 (en) Access control method, terminal, and storage medium
CN112166630B (zh) 资源调整方法、装置、芯片及计算机可读存储介质
KR101770203B1 (ko) 단말 및 단말의 전송 전력을 제어하는 방법
EP3855649A1 (en) Method and apparatus for determining number of uplink control information transmission resources, and program
CN113455053A (zh) 一种资源管理方法、网络设备、用户设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant