CN109886980A - 一种基于邻域强度纹理编码的红外图像卷云检测方法 - Google Patents

一种基于邻域强度纹理编码的红外图像卷云检测方法 Download PDF

Info

Publication number
CN109886980A
CN109886980A CN201910159588.8A CN201910159588A CN109886980A CN 109886980 A CN109886980 A CN 109886980A CN 201910159588 A CN201910159588 A CN 201910159588A CN 109886980 A CN109886980 A CN 109886980A
Authority
CN
China
Prior art keywords
pixel
region
infrared image
neighborhood
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910159588.8A
Other languages
English (en)
Other versions
CN109886980B (zh
Inventor
曹兆洋
彭真明
彭凌冰
刘雨菡
曹思颖
宋立
黄苏琦
张鹏飞
吕昱霄
张兰丹
杨春平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910159588.8A priority Critical patent/CN109886980B/zh
Publication of CN109886980A publication Critical patent/CN109886980A/zh
Application granted granted Critical
Publication of CN109886980B publication Critical patent/CN109886980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)

Abstract

本发明公开了一种基于邻域强度纹理编码的红外图像卷云检测方法,涉及红外图像处理技术领域,本发明首先创建滑动窗口遍历红外图像像素点,使用邻域强度编码的方法对红外图像进行纹理编码,生成纹理图像,再基于局域概率分布大致确定疑似点区域坐标,之后使用区域生长聚合虚警源像素,最后使用邻域统计方法去噪,最终获得检测结果。本发明解决了目前红外成像技术难以对卷云进行准确检测,以及检测精度低,检测结果模糊的问题,具有准确地聚合虚警源像素区域的优点。

Description

一种基于邻域强度纹理编码的红外图像卷云检测方法
技术领域
本发明涉及红外图像处理技术领域,更具体的是涉及一种基于邻域强度纹理编码的红外图像卷云检测方法。
背景技术
红外搜索跟踪(IRST)系统在现代防空中的作用和地位越来越重要,IRST系统的使用目的要求系统能够尽快、尽早的发现目标,系统具有灵敏度高、探测率高、探测距离远、视场大等优点。但是在保证高的探测概率的同时,不可避免的虚警概率也可能增大,一个IRST系统可能的虚警源有卷云、云层、月亮、火源等。虚警源在红外辐射能量都和目标具有相似之处,极易被误判为目标物。多种虚警源使红外探测系统产生了较高的虚警率。
目前的检测方法主要有基于人工神经网络、极值理论、布尔图谱视觉理论等方法,且其主要针对红外目标进行检测,在虚警源检测中鲁棒性差,不能对卷云类型虚警源实现精确检测,且部分方法由于使用了中值滤波等方法导致检测效果模糊,不利于红外目标检测的有效进行。
发明内容
本发明的目的在于:为了解决目前红外成像技术难以对红外图像中的卷云进行准确检测,检测精度低,检测结果模糊的问题,本发明提供一种基于邻域强度纹理编码的红外图像卷云检测方法。
本发明为了实现上述目的具体采用以下技术方案:
一种基于邻域强度纹理编码的红外图像卷云检测方法,包括如下步骤:
S1:采集并输入含有卷云的红外图像I1
S2:创建用于邻域强度纹理编码的滑动窗口;
S3:确定邻域像素的相关像素;
S4:对红外图像I1进行邻域强度纹理编码,得到纹理图像I2
S5:基于局域概率分布定位纹理图像I2中的ROI区域A,并分块计算红外图像I1中每一分块的阈值;
S6:利用S5中计算得到的红外图像I1中各分块的阈值,对红外图像I1中与纹理图像I2的ROI区域A相对应的区域A′进行区域生长,并同步更新区域A′和区域A;
S7:对更新区域A后的纹理图像I2进行邻域统计去除白噪声,再次更新区域A′和区域A,得到中间图像I3
S8:将中间图像I3中与红外图像I1再次更新后的区域A′相对应的区域A″的灰度值设置为红外图像I1中相应位置的灰度值,其余位置灰度值设置为0,得到最终处理图像I4
进一步的,所述S2具体包括如下步骤:
S2.1:创建3×3的滑动窗口;
S2.2:确定滑动窗口内被编码像素的邻域及其编号:
设红外图像I1的尺寸为M×N,被编码像素I1(u,v)为Gc,其中u=2,3,…,M-1,v=2,3,…,N-1;对被编码像素Gc周围3×3邻域进行编号,编号规则为:将被编码像素Gc右侧相邻像素编号为G1,然后以G1为起点,顺时针方向依次将相邻像素编号为G2、G3、G4、G5、G6、G7和G8
进一步的,所述S3具体包括如下步骤:
计算邻域像素的相关像素位置,公式为:
Si={G1+mod(i+5,7),G1+mod(i+6,9),G1+i,Gmod(i+2,8)},i=1,3,5,7
Si={Gi-1,Gmod(i+1,8)},i=2,4,5,8
其中,Si即为Gc的邻域Gi的相关像素集合,即:
S1={G2,G3,G7,G8}
S3={G1,G2,G4,G5}
S5={G3,G4,G6,G7}
S7={G1,G5,G6,G8}
S2={G1,G3}
S4={G3,G5}
S6={G5,G7}
S8={G1,G7}
由此,得到G1、G3、G5和G7的相关像素各有4个,G2、G4、G6和G8的相关像素各有2个。
进一步的,所述S4具体包括如下步骤:
S4.1:计算阈值Tc,计算公式为:
S4.2:计算被编码像素Gc的二进制编码B8B7B6B5B4B3B2B1
其中i=1,2,…,8,R为相关像素数,取值为4或2;
S4.3:将二进制编码B8B7B6B5B4B3B2B1转换为十进制数字D,公式为:
S4.4:计算像素均值ave,公式为:
S4.5:计算被编码像素Gc的邻域强度纹理编码值:
NIT(Gc)=ave×D;
S4.6:重复执行S4.1-S4.5,对红外图像I1除边界点外的其他所有像素点进行编码,边界点像素值保持不变,最终得到纹理图像I2
进一步的,所述S5具体包括如下步骤:
S5.1:将纹理图像I2分为c个分块P1,P2,…,Pc,每个分块的尺寸r×s为:
r=floor(M/a)
s=floor(N/b)
c=a×b
其中,floor()为向下取整函数;
S5.2:对于每个分块,分别计算基于局域概率分布的可疑点坐标,对于分块P1中的像素P1(p,q),其中p=1,2,…,r,q=1,2,…,s;若像素P1(p,q)满足:
则P1(p,q)判断为可疑点,可疑点区域即为区域A,其中K为预设的阈值;
S5.3:按照S3.1的方式对红外图像I1进行分块,分别统计图像I1每个分块的灰度直方图,并按照灰度级对应的像素点数量对灰度级进行升序排列,找出指定位置处的灰度级,计算找出的灰度级的平均值作为供S6使用的阈值。
进一步的,所述S6具体包括如下步骤:
S6.1:对红外图像I1中与纹理图像I2的ROI区域A相对应的区域A′中的每一个像素点取3×3邻域;
S6.2:对所取邻域内不属于区域A′的像素点进行判断,若该像素点的灰度值大于S5.3中计算得到的该像素点所在分块的阈值,则将其纳入区域A′,对区域A′进行更新;
S6.3:重复执行S6.1-S6.2,令迭代次数小于等于5,获得最终更新的区域A′,并相应对纹理图像I2的区域A进行更新。
进一步的,所述S7具体包括如下步骤:
S7.1:对纹理图像I2更新后的区域A中的每个像素点取3×3邻域,统计其邻域内属于区域A的像素点的数量,若数量大于等于2,则判定该像素点为虚警源区域,否则,删除该像素点,再次更新区域A,并同步更新区域A′;
S7.2:遍历完成后,得到中间图像I3
本发明的有益效果如下:
1、通常情况下,高空卷云虚警源为小目标虚警源(像素数小于50),而在预处理的过程中使用中值滤波,难以避免会对小目标虚警源造成细节损失,而本发明采用邻域统计的方法,在去噪的同时,很好的保留了高空卷云细节信息,检测精度进一步提高,并且采用区域生长的方法,能够准确地聚合虚警源像素区域,能对卷云类型虚警源实现精确检测,利于红外目标检测的有效进行。
2、本发明使用邻域强度纹理编码模式,能够抑制部分噪点,降低噪点对目标的影响,降低了去噪难度,并且基于邻域强度编码图使用局域概率分布的定位效果优于原始图像,降低了后续图像处理步骤的运算量。
附图说明
图1是本发明的方法流程示意图。
图2是含有高空卷云的红外图像I1的示意图。
图3是邻域强度纹理编码后得到的纹理图像I2的示意图。
图4是纹理图像I2中定位了ROI区域A的示意图。
图5是显示有检测结果的最终处理图像I4的示意图。
具体实施方式
为了本技术领域的人员更好的理解本发明,下面结合附图和以下实施例对本发明作进一步详细描述。
实施例1
如图1所示,本实施例提供一种基于邻域强度纹理编码的红外图像卷云检测方法,包括如下步骤:
S1:采集并输入含有卷云的红外图像I1,如图2所示;
S2:创建用于邻域强度纹理编码的滑动窗口,具体为:
S2.1:创建3×3的滑动窗口;
S2.2:确定滑动窗口内被编码像素的邻域及其编号:
设红外图像I1的尺寸为M×N,被编码像素I1(u,v)为Gc,其中u=2,3,…,M-1,v=2,3,…,N-1;对被编码像素Gc周围3×3邻域进行编号,编号规则为:将被编码像素Gc右侧相邻像素编号为G1,然后以G1为起点,顺时针方向依次将相邻像素编号为G2、G3、G4、G5、G6、G7和G8
S3:确定邻域像素的相关像素,具体为:
计算邻域像素的相关像素位置,公式为:
Si={G1+mod(i+5,7),G1+mod(i+6,9),G1+i,Gmod(i+2,8)},i=1,3,5,7
Si={Gi-1,Gmod(i+1,8)},i=2,4,5,8
其中,Si即为Gc的邻域Gi的相关像素集合,即:
S1={G2,G3,G7,G8}
S3={G1,G2,G4,G5}
S5={G3,G4,G6,G7}
S7={G1,G5,G6,G8}
S2={G1,G3}
S4={G3,G5}
S6={G5,G7}
S8={G1,G7}
由此,得到G1、G3、G5和G7的相关像素各有4个,G2、G4、G6和G8的相关像素各有2个;
S4:对红外图像I1进行邻域强度纹理编码,得到纹理图像I2,具体为:
S4.1:计算阈值Tc,计算公式为:
S4.2:计算被编码像素Gc的二进制编码B8B7B6B5B4B3B2B1
其中i=1,2,…,8,R为相关像素数,取值为4或2;
S4.3:将二进制编码B8B7B6B5B4B3B2B1转换为十进制数字D,公式为:
S4.4:计算像素均值ave,公式为:
S4.5:计算被编码像素Gc的邻域强度纹理编码值:
NIT(Gc)=ave×D;
S4.6:重复执行S4.1-S4.5,对红外图像I1除边界点外的其他所有像素点进行编码,边界点像素值保持不变,最终得到纹理图像I2,如图3所示;
S5:如图4所示,基于局域概率分布定位纹理图像I2中的ROI区域A,并分块计算红外图像I1中每一分块的阈值,具体包括如下步骤:
S5.1:将纹理图像I2分为3×4=12个分块P1,P2,…,Pc,每个分块的尺寸r×s为:
r=floor(M/3)
s=floor(N/4)
其中,floor()为向下取整函数;
S5.2:对于每个分块,分别计算基于局域概率分布的可疑点坐标,对于分块P1中的像素P1(p,q),其中p=1,2,…,r,q=1,2,…,s;若像素P1(p,q)满足:
则P1(p,q)判断为可疑点,可疑点区域即为区域A,其中K为预设的阈值,一般情况下K取值1~6;
S5.3:按照S3.1的方式对红外图像I1进行分块,分别统计图像I1每个分块的灰度直方图,比如在256灰度级下,按照灰度级对应的像素点数量对灰度级进行升序排列,生成具有256个数字的数组,找出第248~253位置处的灰度级,并计算找出的灰度级的平均值作为供S6使用的阈值,所述阈值共12个;
S6:利用S5中计算得到的红外图像I1中各分块的阈值,对红外图像I1中与纹理图像I2的ROI区域A相对应的区域A′进行区域生长,并同步更新区域A′和区域A,具体包括如下步骤:
S6.1:对红外图像I1中与纹理图像I2的ROI区域A相对应的区域A′中的每一个像素点取3×3邻域;
S6.2:对所取邻域内不属于区域A′的像素点进行判断,若该像素点的灰度值大于S5.3中计算得到的该像素点所在分块的阈值,则将其纳入区域A′,对区域A′进行更新,部分情况下,还可以给阈值加一个修正值,视具体样本集而定;
S6.3:重复执行S6.1-S6.2,令迭代次数小于等于5,获得最终更新的区域A′,并相应对纹理图像I2的区域A进行更新;
S7:对更新区域A后的纹理图像I2进行邻域统计去除白噪声,再次更新区域A′和区域A,得到中间图像I3,具体包括如下步骤:
S7.1:对纹理图像I2更新后的区域A中的每个像素点取3×3邻域,统计其邻域内属于区域A的像素点的数量,若数量大于等于2,则判定该像素点为虚警源区域,否则,删除该像素点,再次更新区域A,并同步更新区域A′;
S7.2:多次迭代遍历完成后,得到中间图像I3
S8:将中间图像I3中与红外图像I1再次更新后的区域A′相对应的区域A″的灰度值设置为红外图像I1中相应位置的灰度值,其余位置灰度值设置为0(黑色),得到最终处理图像I4,如图5所示。
以上所述,仅为本发明的较佳实施例,并不用以限制本发明,本发明的专利保护范围以权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

Claims (7)

1.一种基于邻域强度纹理编码的红外图像卷云检测方法,其特征在于,包括如下步骤:
S1:采集并输入含有卷云的红外图像I1
S2:创建用于邻域强度纹理编码的滑动窗口;
S3:确定邻域像素的相关像素;
S4:对红外图像I1进行邻域强度纹理编码,得到纹理图像I2
S5:基于局域概率分布定位纹理图像I2中的ROI区域A,并分块计算红外图像I1中每一分块的阈值;
S6:利用S5中计算得到的红外图像I1中各分块的阈值,对红外图像I1中与纹理图像I2的ROI区域A相对应的区域A′进行区域生长,并同步更新区域A′和区域A;
S7:对更新区域A后的纹理图像I2进行邻域统计去除白噪声,再次更新区域A′和区域A,得到中间图像I3
S8:将中间图像I3中与红外图像I1再次更新后的区域A′相对应的区域A″的灰度值设置为红外图像I1中相应位置的灰度值,其余位置灰度值设置为0,得到最终处理图像I4
2.根据权利要求1所述的一种基于邻域强度纹理编码的红外图像卷云检测方法,其特征在于,所述S2具体包括如下步骤:
S2.1:创建3×3的滑动窗口;
S2.2:确定滑动窗口内被编码像素的邻域及其编号:
设红外图像I1的尺寸为M×N,被编码像素I1(u,v)为Gc,其中u=2,3,…,M-1,v=2,3,…,N-1;对被编码像素Gc周围3×3邻域进行编号,编号规则为:将被编码像素Gc右侧相邻像素编号为G1,然后以G1为起点,顺时针方向依次将相邻像素编号为G2、G3、G4、G5、G6、G7和G8
3.根据权利要求2所述的一种基于邻域强度纹理编码的红外图像卷云检测方法,其特征在于,所述S3具体为:
计算邻域像素的相关像素位置,公式为:
Si={G1+mod(i+5,7),G1+mod(i+6,9),G1+i,Gmod(i+2,8)},i=1,3,5,7
Si={Gi-1,Gmod(i+1,8)},i=2,4,5,8
其中,Si即为Gc的邻域Gi的相关像素集合,即:
S1={G2,G3,G7,G8}
S3={G1,G2,G4,G5}
S5={G3,G4,G6,G7}
S7={G1,G5,G6,G8}
S2={G1,G3}
S4={G3,G5}
S6={G5,G7}
S8={G1,G7}
由此,得到G1、G3、G5和G7的相关像素各有4个,G2、G4、G6和G8的相关像素各有2个。
4.根据权利要求3所述的一种基于邻域强度纹理编码的红外图像卷云检测方法,其特征在于,所述S4具体包括如下步骤:
S4.1:计算阈值Tc,计算公式为:
S4.2:计算被编码像素Gc的二进制编码B8B7B6B5B4B3B2B1
其中i=1,2,…,8,R为相关像素数,取值为4或2;
S4.3:将二进制编码B8B7B6B5B4B3B2B1转换为十进制数字D,公式为:
S4.4:计算像素均值ave,公式为:
S4.5:计算被编码像素Gc的邻域强度纹理编码值:
NIT(Gc)=ave×D;
S4.6:重复执行S4.1-S4.5,对红外图像I1除边界点外的其他所有像素点进行编码,边界点像素值保持不变,最终得到纹理图像I2
5.根据权利要求1所述的一种基于邻域强度纹理编码的红外图像卷云检测方法,其特征在于,所述S5具体包括如下步骤:
S5.1:将纹理图像I2分为c个分块P1,P2,…,Pc,每个分块的尺寸r×s为:
r=floor(M/a)
s=floor(N/b)
c=a×b
其中,floor()为向下取整函数;
S5.2:对于每个分块,分别计算基于局域概率分布的可疑点坐标,对于分块P1中的像素P1(p,q),其中p=1,2,…,r,q=1,2,…,s;若像素P1(p,q)满足:
则P1(p,q)判断为可疑点,可疑点区域即为区域A,其中K为预设的阈值;
S5.3:按照S3.1的方式对红外图像I1进行分块,分别统计图像I1每个分块的灰度直方图,并按照灰度级对应的像素点数量对灰度级进行升序排列,找出指定位置处的灰度级,计算找出的灰度级的平均值作为供S6使用的阈值。
6.根据权利要求5所述的一种基于邻域强度纹理编码的红外图像卷云检测方法,其特征在于,所述S6具体包括如下步骤:
S6.1:对红外图像I1中与纹理图像I2的ROI区域A相对应的区域A′中的每一个像素点取3×3邻域;
S6.2:对所取邻域内不属于区域A′的像素点进行判断,若该像素点的灰度值大于S5.3中计算得到的该像素点所在分块的阈值,则将其纳入区域A′,对区域A′进行更新;
S6.3:重复执行S6.1-S6.2,令迭代次数小于等于5,获得最终更新的区域A′,并相应对纹理图像I2的区域A进行更新。
7.根据权利要求1所述的一种基于邻域强度纹理编码的红外图像卷云检测方法,其特征在于,所述S7具体包括如下步骤:
S7.1:对纹理图像I2更新后的区域A中的每个像素点取3×3邻域,统计其邻域内属于区域A的像素点的数量,若数量大于等于2,则判定该像素点为虚警源区域,否则,删除该像素点,再次更新区域A,并同步更新区域A′;
S7.2:遍历完成后,得到中间图像I3
CN201910159588.8A 2019-03-04 2019-03-04 一种基于邻域强度纹理编码的红外图像卷云检测方法 Active CN109886980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910159588.8A CN109886980B (zh) 2019-03-04 2019-03-04 一种基于邻域强度纹理编码的红外图像卷云检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910159588.8A CN109886980B (zh) 2019-03-04 2019-03-04 一种基于邻域强度纹理编码的红外图像卷云检测方法

Publications (2)

Publication Number Publication Date
CN109886980A true CN109886980A (zh) 2019-06-14
CN109886980B CN109886980B (zh) 2023-04-14

Family

ID=66930423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910159588.8A Active CN109886980B (zh) 2019-03-04 2019-03-04 一种基于邻域强度纹理编码的红外图像卷云检测方法

Country Status (1)

Country Link
CN (1) CN109886980B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112329674A (zh) * 2020-11-12 2021-02-05 北京环境特性研究所 基于多纹理特征融合的结冰湖泊检测方法和装置
CN112329796A (zh) * 2020-11-12 2021-02-05 北京环境特性研究所 基于视觉显著性的红外成像卷云检测方法和装置
CN114648711A (zh) * 2022-04-11 2022-06-21 成都信息工程大学 一种基于聚类的云微粒子图像虚假目标滤除方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102222339A (zh) * 2011-06-17 2011-10-19 中国科学院自动化研究所 一种基于纹理和强度特征融合的多尺度背景建模方法
CN102622598A (zh) * 2012-01-13 2012-08-01 西安电子科技大学 基于区域标记与灰度统计的sar图像目标检测方法
CN105760883A (zh) * 2016-02-15 2016-07-13 西安科技大学 基于红外热像的带式输送机关键部件自动识别方法
CN105869156A (zh) * 2016-03-25 2016-08-17 中国科学院武汉物理与数学研究所 一种基于模糊距离的红外小目标检测方法
US20180005071A1 (en) * 2013-06-25 2018-01-04 University Of Central Florida Research Foundation, Inc. Multi-Source, Multi-Scale Counting in Dense Crowd Images
CN108647658A (zh) * 2018-05-16 2018-10-12 电子科技大学 一种高空卷云的红外成像检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102222339A (zh) * 2011-06-17 2011-10-19 中国科学院自动化研究所 一种基于纹理和强度特征融合的多尺度背景建模方法
CN102622598A (zh) * 2012-01-13 2012-08-01 西安电子科技大学 基于区域标记与灰度统计的sar图像目标检测方法
US20180005071A1 (en) * 2013-06-25 2018-01-04 University Of Central Florida Research Foundation, Inc. Multi-Source, Multi-Scale Counting in Dense Crowd Images
CN105760883A (zh) * 2016-02-15 2016-07-13 西安科技大学 基于红外热像的带式输送机关键部件自动识别方法
CN105869156A (zh) * 2016-03-25 2016-08-17 中国科学院武汉物理与数学研究所 一种基于模糊距离的红外小目标检测方法
CN108647658A (zh) * 2018-05-16 2018-10-12 电子科技大学 一种高空卷云的红外成像检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C.I.CHRISTODOULOU等: ""Classification of satellite cloud imagery based on multi-feature texture analysis and neural networks"", 《PROCEEDINGS 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING》 *
XIAOYANG WANG等: ""Infrared Dim and Small Target Detection Based on Stable Multisubspace Learning in Heterogeneous Scene"", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》 *
刘朝枢: ""天基红外预警卷云和临边背景实时仿真"", 《中国优秀硕士学位论文全文库》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112329674A (zh) * 2020-11-12 2021-02-05 北京环境特性研究所 基于多纹理特征融合的结冰湖泊检测方法和装置
CN112329796A (zh) * 2020-11-12 2021-02-05 北京环境特性研究所 基于视觉显著性的红外成像卷云检测方法和装置
CN112329796B (zh) * 2020-11-12 2023-05-23 北京环境特性研究所 基于视觉显著性的红外成像卷云检测方法和装置
CN112329674B (zh) * 2020-11-12 2024-03-12 北京环境特性研究所 基于多纹理特征融合的结冰湖泊检测方法和装置
CN114648711A (zh) * 2022-04-11 2022-06-21 成都信息工程大学 一种基于聚类的云微粒子图像虚假目标滤除方法

Also Published As

Publication number Publication date
CN109886980B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
CN106780485B (zh) 基于超像素分割和特征学习的sar图像变化检测方法
Zhuang et al. Strategies combining spectral angle mapper and change vector analysis to unsupervised change detection in multispectral images
CN109460764B (zh) 一种结合亮度特征与改进帧间差分法的卫星视频船舶监测方法
GB2581736A (en) Rotation variant object detection in deep learning
CN104834915B (zh) 一种复杂云天背景下小红外目标检测方法
CN109344702B (zh) 基于深度图像和彩色图像的行人检测方法及装置
CN109886980A (zh) 一种基于邻域强度纹理编码的红外图像卷云检测方法
CN110766058B (zh) 一种基于优化rpn网络的战场目标检测方法
CN105279772B (zh) 一种红外序列图像的可跟踪性判别方法
CN111144213B (zh) 一种对象检测方法和相关设备
CN112307901B (zh) 一种面向滑坡检测的sar与光学影像融合方法及系统
CN107392095A (zh) 一种基于掩码图像的红外弱小目标检测算法
CN108805832B (zh) 适于隧道环境特性的改进灰度投影稳像方法
CN110245600B (zh) 自适应起始快速笔画宽度无人机道路检测方法
CN101976436A (zh) 一种基于差分图修正的像素级多聚焦图像融合方法
CN111369495A (zh) 一种基于视频的全景图像的变化检测方法
CN115272876A (zh) 一种基于深度学习的遥感图像船舶目标检测方法
CN111311596A (zh) 一种基于改进lbp特征的遥感影像变化检测方法
CN109886991A (zh) 一种基于邻域强度纹理编码的红外成像河道检测方法
CN109308709B (zh) 基于图像分割的Vibe运动目标检测算法
CN113570554A (zh) 一种基于场景深度的单幅图像能见度检测方法
CN111667498B (zh) 一种面向光学卫星视频的运动舰船目标自动检测方法
CN104408432B (zh) 一种基于直方图修正的红外图像目标检测方法
CN111798415A (zh) 一种高速公路控制区建筑物监测方法、装置及存储介质
CN113284066B (zh) 遥感影像自动云检测方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant