CN109880363A - 聚吡咯@zif-8/石墨烯纳米复合材料的制备方法及应用 - Google Patents
聚吡咯@zif-8/石墨烯纳米复合材料的制备方法及应用 Download PDFInfo
- Publication number
- CN109880363A CN109880363A CN201910098098.1A CN201910098098A CN109880363A CN 109880363 A CN109880363 A CN 109880363A CN 201910098098 A CN201910098098 A CN 201910098098A CN 109880363 A CN109880363 A CN 109880363A
- Authority
- CN
- China
- Prior art keywords
- zif
- polypyrrole
- graphene
- gas
- ppy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000128 polypyrrole Polymers 0.000 title claims abstract description 120
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 42
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000000243 solution Substances 0.000 claims description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 239000000725 suspension Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 150000003233 pyrroles Chemical class 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 claims description 6
- 239000012043 crude product Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000000017 hydrogel Substances 0.000 claims description 5
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 3
- 239000000047 product Substances 0.000 claims description 3
- 238000011896 sensitive detection Methods 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 claims description 2
- 238000013019 agitation Methods 0.000 claims description 2
- 239000007853 buffer solution Substances 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000000859 sublimation Methods 0.000 claims description 2
- 230000008022 sublimation Effects 0.000 claims description 2
- 238000005034 decoration Methods 0.000 claims 1
- 239000002023 wood Substances 0.000 claims 1
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 abstract description 33
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 abstract description 33
- 238000001514 detection method Methods 0.000 abstract description 18
- 239000002131 composite material Substances 0.000 abstract description 10
- 238000011065 in-situ storage Methods 0.000 abstract description 5
- 230000003197 catalytic effect Effects 0.000 abstract description 3
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000002086 nanomaterial Substances 0.000 abstract description 2
- 238000001228 spectrum Methods 0.000 description 9
- 238000004365 square wave voltammetry Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 230000002195 synergetic effect Effects 0.000 description 5
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000012621 metal-organic framework Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002048 multi walled nanotube Substances 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- -1 2,2- methylene Chemical group 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical group C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000005518 electrochemistry Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 239000001116 FEMA 4028 Substances 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 1
- 229960004853 betadex Drugs 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000001941 electron spectroscopy Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 231100000004 severe toxicity Toxicity 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000000273 veterinary drug Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明属于纳米新材料技术领域,具体涉及一种聚吡咯@ZIF‑8/石墨烯纳米复合材料的制备方法及应用,本发明制备时利用PPy作为GAs和ZIF‑8之间的桥梁,加强结合,通过原位生长方法成功合成PPy@ZIF‑8/GAs复合材料,使体系的催化活性超过了单组分系统,提高了纳米材料的电化学特性,本发明成功合成了PPy@ZIF‑8/GAs纳米复合材料,制备的复合材料应用于快速检测Dcp的电化学生物传感器,对Dcp的检测稳定性好,良好的抗干扰能力,检测限低,检测下限为16pM。
Description
技术领域
本发明属于纳米新材料技术领域,具体涉及一种聚吡咯@ZIF-8/石墨烯纳米复合材料的制 备方法及应用。
背景技术
如今,工业生产引起的水环境污染已成为全世界日益关注的问题。Dcp(2,2-亚甲基双(4- 氯苯酚))是一种典型的氯化苯酚,由于其高毒性,致癌性和在环境中的持久性,是一种常 见且极其有害的环境污染物。它广泛用于杀虫剂,防腐剂,兽药,化学肥料和个人护理配方 中,导致严重的健康疾病,如瘙痒,微弱,贫血和癌症)。鉴于此,Dcp分析对于降低其对 水生生物和人类的健康风险至关重要。到目前为止,色谱法是最常用的Dcp检测方法。这种 方法准确有效,但也涉及昂贵的设备和复杂的检测程序。相比之下,电化学技术更优选,因 为它具有良好的灵敏度,快速响应,低成本和易操作性。据我们所知,关于Dcp的电化学检 测的报道很少。例如,基于掺入β-环糊精的多壁碳纳米管(β-CD/MWCNTs)修饰电极,已经提出了Dcp的伏安检测。但是,需要提高灵敏度。因此,探索新的电极材料以实现Dcp的灵 敏检测具有重要意义。
金属有机骨架(MOF)是一种由无机金属中心和桥接有机配体组成的结晶多孔材料。它 因其较大的表面积,丰富的可调孔径以及化学稳定性而被广泛应用于多相催化,吸附/分离, 药物输送,储能和传感器。具体而言,ZIF-8是一种经典的沸石咪唑基MOF,由于其微孔性, 易合成,大表面积和可控功能,在电化学传感应用中引起了广泛关注。然而,纯ZIF-8的性 能可能受其导电性差的负面影响。解决这些问题的有效方法是将ZIF-8与其他导电材料相结 合。
发明内容
本发明目的在于提供聚吡咯@ZIF-8/石墨烯纳米复合材料的制备方法及应用,以解决上述 问题。
本发明所述的聚吡咯@ZIF-8/石墨烯纳米复合材料的制备方法,其特征在于:包括以下步 骤:
(1)将氧化石墨烯(GO)水溶液与吡咯(Py)液体混合得混合液,将混合液置于FeCl3·6H2O 水溶液搅拌形成聚吡咯/氧化石墨烯(PPy/GO)水凝胶,将聚吡咯/氧化石墨烯水凝胶转移至 高压釜中进行水热反应,水热反应后冷却、洗涤、冷冻干燥得聚吡咯/石墨烯气凝胶(PPy/GAs);
(2)将Zn(NO3)·6H2O和步骤(1)中制得的聚吡咯/石墨烯气凝胶投入CH3OH中混 合并用超声处理得悬浮液,在搅拌条件下将悬浮液加入到含有2-甲基咪唑的CH3OH溶液中,静置沉降后离心收集粗产物,粗产物用甲醇洗涤后干燥过夜得聚吡咯@ZIF-8/石墨烯纳米复合 材料(PPy@ZIF-8/GAs)成品。
步骤(1)中高温反应的工艺条件为:水热反应温度为175-185℃,反应时间为11-13h, 步骤(1)中冷冻干燥时间为23-25h。
步骤(1)中氧化石墨烯水溶液的浓度为1.8-2.2mg/mL,FeCl3·6H2O水溶液的浓度为 4.145-4.182mol/L。
步骤(1)中制得的聚吡咯/石墨烯气凝胶的浓度为2.9-3.1mg/mL。
步骤(2)中悬浮液中Zn(NO3)·6H2O的浓度为0.048-0.055mol/L,2-甲基咪唑的CH3OH 溶液的浓度为0.73-0.85mol/L。
步骤(2)中聚吡咯/石墨烯气凝胶与Zn(NO3)·6H2O的质量比为1:5。
本发明所述的聚吡咯@ZIF-8/石墨烯纳米复合材料的应用,应用于电化学生物传感器中对 二氯苯酚进行灵敏检测,所述电化学生物传感器的工作电极上修饰有聚吡咯@ZIF-8/石墨烯纳 米复合材料,其中修饰的方法为:在工作电极表面滴加聚吡咯@ZIF-8/石墨烯纳米复合材料溶 液,室温干燥后采用PBS缓冲液冲洗。
本发明同时提供另外一种修饰方法,即:用N,N-二甲基甲酰胺(DMF)作用溶剂,将制备 的PPy@ZIF-8/GAs相应的分散体(1mg/mL),将5μL上述分散体分别涂覆在GCE表面上,得到PPy@ZIF-8/GAs/GCE,取出清洗即可。
本发明在利用PPy作为GAs和ZIF-8之间的桥梁,加强结合,通过原位生长方法成功合 成了一种新型的三维异质结构PPy@ZIF-8/GAs。
本发明电化学生物传感器的工作原理为,Dcp在PPy@ZIF-8/GAs/GCE(修饰后的玻碳电极)中的电化学行为以及三元复合材料中各组分之间的协同效应,结果表明PPy@ZIF-8/GAs是一种优良的Dcp氧化电催化剂,实现快速简易检测Dcp,开辟了基于半导体的生物 还原电子设备的新路径。
本发明具有以下有益效果。
(1)本发明制备时利用PPy作为GAs和ZIF-8之间的桥梁,加强结合,通过原位生长方法成功合成PPy@ZIF-8/GAs复合材料,使体系的催化活性超过了单组分系统,提高了纳米材料的电化学特性,本发明成功合成了PPy@ZIF-8/GAs纳米复合材料;
(2)本发明所制备的新型的用于快速检测Dcp的电化学生物传感器,对Dcp的检测稳 定性好,良好的抗干扰能力,检测限低,检测下限为16pM。
总之,基于原位生长PPy@ZIF-8/GAs纳米复合材料异质结以及三元复合材料中各组分之 间的协同效应,设计了用于监测Dcp的简单电化学传感平台;实验证实构建的电化学生物传 感器平台简单且经济,并且对于Dcp检测具有高灵敏度,选择性和可靠性,重要的是,该传 感器已成功应用于湖泊水样中的Dcp检测。
附图说明
图1、本发明实施例1中所制备的GAs/PPy@ZIF-8纳米复合材料用于检测Dcp的电化学 生物传感器的合成路线示意图和Dcp的传感策略的示意图;
图2、实施例1中GAs,PPy/GAs,ZIF-8和PPy@ZIF-8/GAs纳米复合材料的(A)X射线衍射谱(XRD);(B)傅里叶变换红外光谱(FT-IR);
图3、(A)将实施例1中合成的GAs纳米材料分散到水中,进行超声使其溶解,然后将溶液滴加到铜网上,待干燥后,进行扫描电镜图(SEM)的测试;(B)实施例1中制备的 PPy/GAs纳米复合材料的扫描电镜图;(C)实施例1中制备的PPy@ZIF-8/GAs复合材料中 的低倍扫描电镜图;(D)实施例1制备的PPy@ZIF-8/GAs纳米复合材料的高倍放大扫描电 镜图;
图4、实施例1制备的PPy@ZIF-8/GAs纳米复合材料的X射线电子能谱分析图(XPS):(A)PPy@ZIF-8/GAs的全XPS光谱;(B)PPy@ZIF-8/GAs的Zn2pXPS光谱;(C) PPy@ZIF-8/GAs的N1sXPS光谱;(D)PPy@ZIF-8/GAs的C1sXPS光谱;
图5、电化学生物传感器中,Dcp(6.0μM)在0.1MPBS(pH7.0)中以下工作电极的的循环伏安(CV)行为示意图,(a)裸GCE;(b)ZIF-8/GCE;(c)PPy/GAs/GCE;(d) PPy@ZIF-8/GAs/GCE,(e)GAs@ZIF-8/GCE;累积时间:120秒,扫描速度:100mVs-1;
图6、实施例1制备的电化学生物传感器用于检测Dcp,(A)PPy@ZIF-8/GAs体积的影响,(B)Dcp(6.0μM)在PPy@ZIF-8/GAs/GCE在0.1MPBS(pH7.0)中的电化学响应的累 积时间;
图7、实施例1制备的电化学生物传感器用于检测(A)不同浓度的Dcp的方波伏安(SWV) 响应;(B)线性校准曲线;(C)PPy@ZIF-8/GAs/GCE(a)和GAs@ZIF-8/GCE(b)在0.1M(pH7.0) 含6.0μMDcpPBS中连续15次的SWV反应;(D)在含有1.0mM金属离子和10.0μM常见的酚类化合物的0.1MPBS溶液(pH7.0)中10.0μMDcp的氧化峰电流的柱状图。
具体实施方式
下面结合实施例和说明书附图对本发明做进一步说明。
实施例1
(1)将12mL的氧化石墨烯(GO)水溶液(浓度为1.8mg/mL)与1.2mL的吡咯(Py)混合14分钟制得混合液,然后,在快速搅拌下将FeCl3·6H2O的水溶液(浓度为4.1mol/L)与上 述混合液混合,以快速形成聚吡咯/氧化石墨烯(PPy/GO)水凝胶,将PPy/GO转移至50mL 特氟隆衬里的高压釜中进行水热反应,水热反应的条件为:在175℃下保持11小时,反应后 冷却至室温后,用乙醇溶液除去未反应的单体和FeCl3,然后冷冻干燥23小时,得到浓度为3.0mg/mL的聚吡咯/石墨烯气凝胶(PPy/GAs);
(2)将56mg步骤(1)中制得的PPy/GAs与0.28gZn(NO3)·6H2O在18mLCH3OH中 混合并超声处理55分钟得悬浮液,然后,在剧烈搅拌下将上述悬浮液缓慢加入到含有1.2g 2-甲基咪唑的18mL CH3OH溶液中55分钟并沉降235小时,沉降后以9000rpm离心收集粗品 并用甲醇洗涤2-4次,最后在55℃下干燥过夜得PPy@ZIF-8/GAs成品。
为了比较,在步骤(1)中不添加吡咯(Py),采用步骤(1)相同的方法合成石墨烯气凝 胶(GAs),将制得的石墨烯气凝胶(GAs)替代步骤(2)中的PPy/GAs并采用步骤(2)相 同的方法合成GAs@ZIF-8;
为了比较,步骤(2)中不添加PPy/GAs,采用步骤(2)相同的方法合成了ZIF-8。
本发明所制得PPy@ZIF-8/GAs应用于电化学生物传感器中,电化学生物传感器包括和电 化学工作站连接的工作电极、参比电极(Ag|AgCl|Cl-)、对电极(铂电极),工作电极为玻 碳电极(GCE),GCE在修饰之前,用0.05μm氧化铝浆料在绒面革上依次抛光裸GCE,并用乙醇和水超声洗涤,分别在60℃干燥2h;
本发明所制得的PPy@ZIF-8/GAs纳米复合材料应用于电化学生物传感器对Dcp检测时, 对玻碳电极表面修饰:滴加5mLPPy@ZIF-8/GAs纳米复合材料水溶液以形成 PPy@ZIF-8/GAs/GCE电极,并在室温下干燥2h以确保材料的有效固定,干燥后采用0.1MPBS 缓冲液彻底冲洗PPy@ZIF-8/GAs/GCE电极,并在室温下自然干燥,干燥后将 PPy@ZIF-8/GAs/GCE电极置于含Dcp的电解液(0.1MPBS缓冲液,pH=7.0)中,在电化学 工作站的检测下,根据电化学生物传感器循环伏安法(CV)和方波伏安法(SWV)的信号变化对 Dcp活性进行检测。
如图1所示,基于PPy@ZIF-8/GAs复合材料的电化学生物传感建立了一个新的平台用于 Dcp的超灵敏检测:其中,PPy最初在GAs上进行修饰,然后通过PPy链中Zn2+与氨基(-NH-) 基团之间的配位相互作用,在PPy/GAs表面有序生长ZIF-8纳米晶体。这种混合3D结构为 电解质输送和改善电极与催化剂之间的电子转移提供了开放通道,其被用作电化学传感平台, 用于检测剧毒的二氯苯酚(Dcp);受益于PPy,GAs和ZIF-8之间的协同效应,PPy@ZIF-8/GAs 电极对Dcp检测显示出高灵敏度,实现对Dcp的检测;
如图2所示,图2A显示了GAs,PPy/GAs,ZIF-8和PPy@ZIF-8/GAs的晶体结构,对于GA,2θ=22.5°(002)处的宽峰表示GAs的特征衍射峰;在PPy/GAs的图案中也观察到类似 的宽衍射峰,表明涂覆在GA上的PPy层不影响GA的结构;至于ZIF-8,强衍射峰分别归因 于(110),(200),(211),(220),(310),(222),(321)和(330)晶面,这 证明了ZIF-8晶体的成功形成;在PPy@ZIF-8/GAs纳米复合材料的XRD图谱中,发现ZIF-8 和PPy/GAs的特征峰保留,表明ZIF-8在PPy/GAs上的负载不影响其晶体结构;结果证实 PPy@ZIF-8/GAs材料的成功制备;图2B给出了GAs,PPy/GAs,ZIF-8和PPy@ZIF-8/GAs 的FT-IR光谱;如图所示,GA在3420cm-1处显示出弱峰,这可能是由于少量残留的未还原 的-OH和吸附的水分子;对于PPy/GAs,1550cm-1(C=C伸缩振动),1220cm-1(CN拉伸振 动)和922cm-1(CH面外振动)的特征峰表明PPy成功涂在GA上;在ZIF-8光谱中,700-1350cm-1和1450cm-1区域有明显的特征峰,代表了咪唑环的振动模式;423cm-1处的条带是由于N-Zn 的拉伸模式,证明了ZIF-8的形成;对于PPy@ZIF-8/GAs,其特征峰结合了PPy/GAs和ZIF-8 的特征峰,表明三元复合物的成功合成;
如图3所示,通过SEM图像研究了GAs,PPy/GAs和PPy@ZIF-8/GAs的形态;GAs显 示出由随机排列和蓬松的石墨烯片组成的3D多孔互连结构(图3A),这有利于电子转移和传质;对于PPy/GAs(图3B),在GA的表面上观察到PPy微球的均匀分布,形成3D交联网 络结构;PPy颗粒的尺寸在100nm~200nm的范围内;在PPY/GAs上原位生长ZIF-8后,SEM 结果(图3C)显示ZIF-8晶体均匀附着在3DPPy/GAs框架上;ZIF-8的高度分散性起源于PPy 链中Zn2+和-NH-基团之间的强配位能力;在PPy@ZIF-8/GAs的高倍放大SEM图像中,ZIF-8 晶体看起来是规则的多边形形状,平均尺寸为约150nm(图3D);
如图4所示,XPS通常用于识别元素组成和化学状态;如图4A所示,显示了 PPy@ZIF-8/GAs异质结构的X射线光电子能谱(XPS)测量光谱,其显示出四个不同的峰, 分别对应于C1s,N1s,O1s和Zn2p;对于Zn2p光谱(图4B),1021.5eV和1051.44eV处 的两个峰分别对应于Zn2p3/2和Zn2p1/2,表明复合物中存在ZIF-8;N1s的高分辨率光谱(图 4C)被去卷积为三个峰;398.2eV和398.8eV的峰与吡咯单元的-NH-和-N+H-基团相关;398.6eV 的峰值归因于PPy的C=N缺陷和N-Zn的配位;C1s光谱(图4D)被解卷积成三个峰:284.7eV 处的C-C键,285.7eV处的C=O键和来自2-甲基咪唑的286.3eV处的C-N键;
如图5所示,为了进一步研究逐步制造过程,还通过CV方法研究了Dcp(6.0μM)在不同修饰电极上的电化学行为;如图所示,在裸GCE(a)处观察到小的宽峰,而在ZIF-8/GCE(b),意味着ZIF-8具有良好的催化活性;对于PPy/GAs/GCE(c),在0.36V时获得了明 显的峰,这是因为PPy/GAs的良好电导率和独特的3D结构加速了电子转移并为Dcp提供了 丰富的电催化氧化活性位点;此外,在PPy@ZIF-8/GAs/GCE(d)处出现尖锐且明确的峰; 这种显着的增强可归因于由大的比表面积和PPy/GAs的显着导电性以及ZIF-8的良好吸附性 和优异的电催化性能所产生的协同效应;还可以发现PPy@ZIF-8/GAs(d)的响应电流大约 是GAs@ZIF-8(e)的响应电流的两倍,这可能与PPy链的协同作用的帮助下,更多ZIF-8 纳米晶体固定在PPy/GAs上有关;
如图6A所示,通过SWV测试研究了修饰体积对6.0μMDcp的电流响应的影响;当复合物的体积从1μL变为5μL时,峰值电流增加,这可能是由于电极表面上的活性位点的增加;在将修饰体积从5μL进一步增加至11μL后,峰值电流减小,这是因为修饰电极上复合膜的厚度影响界面电子转移;因此,选择5μL作为最佳修饰体积;图6B显示累积时间对电流响 应对6.0μMDcp的影响;显然,随着富集时间的增加,电流响应逐渐增加并在120s达到平台, 这意味着电极表面已经达到饱和吸附;因此,选择120s作为最佳富集时间并用于进一步检测;
如图7所示,SWV用于在最佳条件下对Dcp进行定量分析;图7A显示通过向0.1M的PBS(pH7.0)中加入不同浓度的Dcp在PPyZIF-8/GAs/GCE上获得的SWV曲线;随着Dcp 的逐渐增加,氧化峰信号线性增加;图7B显示峰电流和Dcp浓度(5×10-11至1×10-5M)之间 的拟合线性函数,其可表示为I(μA)=1.937c+2.493(R2=0.998);检测限(LOD)估计为 1.6×10- 11M(S/N=3),远低于β-CD/MWCNTs/GCE(1.4×10-8M);得到的结果表明 PPy@ZIF-8/GAs/GCE可成功用于电化学测定Dcp;这种优异的性能主要是由于 PPy@ZIF-8/GAs中各组分的协同作用;首先,独特的3D互连结构增加了表面积并确保了快 速的物质扩散;其次,PPy/GAs的优异导电性促进了电子传输;第三,复合材料上的大量ZIF-8 为Dcp氧化提供了丰富的催化活性位点;如图7C所示,PPy@ZIF-8/GAs/GCE的稳定性通过 使用PPyZIF-8/GAs/GCE(a)记录6个6.0μMDcp的连续SWV响应来确定; PPy@ZIF-8/GAs/GCE(a)的15个电流响应的相对标准偏差(RSD)为3.29%,低于 GAs@ZIF-8/GCE/的8.34%(b);结果证明,PPy的加入增强了GAs与ZIF-8之间的结合相 互作用,从而有效地增强了Dcp的电化学传感;图7D考虑到干扰物质对检测Dcp的影响, 1mM无机离子(K+,Zn2+,Cu2+,Mg2+,Cl-,NO3-和SO4 2-)和10.0μM普通酚(氢醌(HQ), 儿茶酚(CC)将双酚A(BPA)加入到10.0ΜmDcp中用于SWV检测。
Claims (9)
1.一种聚吡咯@ZIF-8/石墨烯纳米复合材料的制备方法,其特征在于:包括以下步骤:
(1)将氧化石墨烯水溶液与吡咯液体混合得混合液,将混合液置于FeCl3·6H2O水溶液搅拌形成聚吡咯/氧化石墨烯水凝胶,将聚吡咯/氧化石墨烯水凝胶转移至高压釜中进行水热反应,水热反应后冷却、洗涤、冷冻干燥得聚吡咯/石墨烯气凝胶;
(2)将Zn(NO3)·6H2O和步骤(1)中制得的聚吡咯/石墨烯气凝胶投入CH3OH中混合并用超声处理得悬浮液,在搅拌条件下将悬浮液加入到含有2-甲基咪唑的CH3OH溶液中,静置沉降后离心收集粗产物,粗产物用甲醇洗涤后干燥过夜得聚吡咯@ZIF-8/石墨烯纳米复合材料成品。
2.根据权利要求1所述的聚吡咯@ZIF-8/石墨烯纳米复合材料的制备方法,其特征在于:步骤(1)中高温反应的工艺条件为:水热反应温度为175-185℃,反应时间为11-13h,步骤(1)中冷冻干燥时间为23-25h。
3.根据权利要求1所述的聚吡咯@ZIF-8/石墨烯纳米复合材料的制备方法,其特征在于:步骤(1)中氧化石墨烯水溶液的浓度为1.8-2.2mg/mL,FeCl3·6H2O水溶液的浓度为4.145-4.182mol/L。
4.根据权利要求1所述的聚吡咯@ZIF-8/石墨烯纳米复合材料的制备方法,其特征在于:步骤(1)中制得的聚吡咯/石墨烯气凝胶的浓度为2.9-3.1mg/mL。
5.根据权利要求1所述的聚吡咯@ZIF-8/石墨烯纳米复合材料的制备方法,其特征在于:步骤(2)中悬浮液中Zn(NO3)·6H2O的浓度为0.048-0.055mol/L,2-甲基咪唑的CH3OH溶液的浓度为0.73-0.85mol/L。
6.根据权利要求1所述的聚吡咯@ZIF-8/石墨烯纳米复合材料的制备方法,其特征在于:步骤(2)中聚吡咯/石墨烯气凝胶与Zn(NO3)·6H2O的质量比为1:5。
7.一种权利要求1-6任一所制得的聚吡咯@ZIF-8/石墨烯纳米复合材料的应用,其特征在于:应用于电化学生物传感器中对二氯苯酚进行灵敏检测。
8.根据权利要求7所述的聚吡咯@ZIF-8/石墨烯纳米复合材料的应用,其特征在于:电化学生物传感器的工作电极上修饰有聚吡咯@ZIF-8/石墨烯纳米复合材料。
9.根据权利要求8所述的聚吡咯@ZIF-8/石墨烯纳米复合材料的应用,其特征在于:修饰的方法为:在工作电极表面滴加聚吡咯@ZIF-8/石墨烯纳米复合材料溶液,室温干燥后采用PBS缓冲液冲洗。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910098098.1A CN109880363B (zh) | 2019-01-31 | 2019-01-31 | 聚吡咯@zif-8/石墨烯纳米复合材料的制备方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910098098.1A CN109880363B (zh) | 2019-01-31 | 2019-01-31 | 聚吡咯@zif-8/石墨烯纳米复合材料的制备方法及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109880363A true CN109880363A (zh) | 2019-06-14 |
CN109880363B CN109880363B (zh) | 2021-03-30 |
Family
ID=66927586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910098098.1A Active CN109880363B (zh) | 2019-01-31 | 2019-01-31 | 聚吡咯@zif-8/石墨烯纳米复合材料的制备方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109880363B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110412096A (zh) * | 2019-07-29 | 2019-11-05 | 青岛科技大学 | 还原的氧化石墨烯@zif-8复合材料修饰电极及其制备方法和检测应用 |
CN110726754A (zh) * | 2019-10-22 | 2020-01-24 | 南京信息工程大学 | 一种器件表面原位组装石墨烯气凝胶的制备方法及气敏应用 |
CN111793435A (zh) * | 2020-07-07 | 2020-10-20 | 苏州康丽达精密电子有限公司 | Emi屏蔽优化涂层及制备方法 |
CN114591671A (zh) * | 2022-03-28 | 2022-06-07 | 福建师范大学 | 一种聚吡咯@zif-8改性环氧树脂防腐涂料的制备方法及应用 |
CN115524383A (zh) * | 2022-10-25 | 2022-12-27 | 河南科技学院 | 一种多菌灵高灵敏检测的电化学传感器及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103454333A (zh) * | 2013-09-06 | 2013-12-18 | 南京理工大学 | 基于PPy/RGO修饰玻碳电极对农药吡虫啉的电化学检测方法 |
CN107381727A (zh) * | 2017-09-15 | 2017-11-24 | 华北电力大学 | 一种同时去除水中重金属和有机物电催化装置 |
US20180090751A1 (en) * | 2016-09-29 | 2018-03-29 | Uchicago Argonne, Llc | Selenium-doped sulfur cathodes for rechargeable batteries |
CN109270140A (zh) * | 2018-11-01 | 2019-01-25 | 安阳师范学院 | 高分散石墨烯/Zn基金属有机骨架复合材料的电化学传感器的制备方法及应用 |
-
2019
- 2019-01-31 CN CN201910098098.1A patent/CN109880363B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103454333A (zh) * | 2013-09-06 | 2013-12-18 | 南京理工大学 | 基于PPy/RGO修饰玻碳电极对农药吡虫啉的电化学检测方法 |
US20180090751A1 (en) * | 2016-09-29 | 2018-03-29 | Uchicago Argonne, Llc | Selenium-doped sulfur cathodes for rechargeable batteries |
CN107381727A (zh) * | 2017-09-15 | 2017-11-24 | 华北电力大学 | 一种同时去除水中重金属和有机物电催化装置 |
CN109270140A (zh) * | 2018-11-01 | 2019-01-25 | 安阳师范学院 | 高分散石墨烯/Zn基金属有机骨架复合材料的电化学传感器的制备方法及应用 |
Non-Patent Citations (3)
Title |
---|
JIE LI ET AL: "Decoration of ZIF-8 on polypyrrole nanotubes for highly efficient and selective capture of U(VI)", 《JOURNAL OF CLEANER PRODUCTION》 * |
MIN-YEONG KIM ET AL: "Detection of nitric oxide from living cells using polymeric zinc organic framework-derived zinc oxide composite with conducting polymer", 《SMALL》 * |
YIMEI ZHANG ET AL: "Diversified applications of polypyrrole/graphene aerogel in supercapacitors and three-dimensional electrode system", 《MATERIALS LETTERS》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110412096A (zh) * | 2019-07-29 | 2019-11-05 | 青岛科技大学 | 还原的氧化石墨烯@zif-8复合材料修饰电极及其制备方法和检测应用 |
CN110726754A (zh) * | 2019-10-22 | 2020-01-24 | 南京信息工程大学 | 一种器件表面原位组装石墨烯气凝胶的制备方法及气敏应用 |
CN110726754B (zh) * | 2019-10-22 | 2021-11-02 | 南京信息工程大学 | 一种器件表面原位组装石墨烯气凝胶的制备方法及气敏应用 |
CN111793435A (zh) * | 2020-07-07 | 2020-10-20 | 苏州康丽达精密电子有限公司 | Emi屏蔽优化涂层及制备方法 |
CN114591671A (zh) * | 2022-03-28 | 2022-06-07 | 福建师范大学 | 一种聚吡咯@zif-8改性环氧树脂防腐涂料的制备方法及应用 |
CN114591671B (zh) * | 2022-03-28 | 2023-09-12 | 福建师范大学 | 一种聚吡咯@zif-8改性环氧树脂防腐涂料的制备方法及应用 |
CN115524383A (zh) * | 2022-10-25 | 2022-12-27 | 河南科技学院 | 一种多菌灵高灵敏检测的电化学传感器及其制备方法 |
CN115524383B (zh) * | 2022-10-25 | 2024-08-02 | 河南科技学院 | 一种多菌灵高灵敏检测的电化学传感器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109880363B (zh) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109880363A (zh) | 聚吡咯@zif-8/石墨烯纳米复合材料的制备方法及应用 | |
Lou et al. | 3-Dimensional graphene/Cu/Fe3O4 composites: immobilized laccase electrodes for detecting bisphenol A | |
Feng et al. | Au@ Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite | |
Cui et al. | Synthesis of bismuth‐nanoparticle‐enriched nanoporous carbon on graphene for efficient electrochemical analysis of heavy‐metal ions | |
Ma et al. | Non-enzymatic electrochemical hydrogen peroxide sensing using a nanocomposite prepared from silver nanoparticles and copper (II)-porphyrin derived metal-organic framework nanosheets | |
Wang et al. | Magnetic Fe 3 O 4@ MOFs decorated graphene nanocomposites as novel electrochemical sensor for ultrasensitive detection of dopamine | |
Rao et al. | Enhanced amperometric sensing using a NiCo 2 O 4/nitrogen-doped reduced graphene oxide/ionic liquid ternary composite for enzyme-free detection of glucose | |
Zhang et al. | In situ formation of N-doped carbon film-immobilized Au nanoparticles-coated ZnO jungle on indium tin oxide electrode for excellent high-performance detection of hydrazine | |
Feng et al. | Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor for zeranoldetection | |
Sun et al. | In-situ reducing platinum nanoparticles on covalent organic framework as a sensitive electrochemical sensor for simultaneous detection of catechol, hydroquinone and resorcinol | |
CN113004309B (zh) | 一种金属酞菁铜共价-有机骨架材料及其制备方法,电化学传感器及应用 | |
Liu et al. | An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition | |
Tan et al. | Control assembly of Au nanoparticles on macrocyclic host molecule cationic pillar [5] arene functionalized MoS2 surface for enhanced sensing activity towards p-dinitrobenzene | |
Wei et al. | Mesoporous ZnS–NiS nanocomposites for nonenzymatic electrochemical glucose sensors | |
Liao et al. | Electrochemical sensor based on Ni/N-doped graphene oxide for the determination of hydroquinone and catechol | |
Sun et al. | A highly sensitive electrochemical biosensor for the detection of hydroquinone based on a magnetic covalent organic framework and enzyme for signal amplification | |
Abbasi et al. | Non-enzymatic electroanalytical sensing of glucose based on nano nickel-coordination polymers-modified glassy carbon electrode | |
Fazli et al. | A glassy carbon electrode modified with a nanocomposite prepared from Pd/Al layered double hydroxide and carboxymethyl cellulose for voltammetric sensing of hydrogen peroxide | |
Shen et al. | Ultrafine copper decorated polypyrrole nanotube electrode for nitrite detection | |
Polat et al. | ZnO@ Polypyrrole-P (VSANa) on flexible and wearable carbon felt as electrodes for nonenzymatic H2O2 sensor and supercapacitor applications | |
Baikeli et al. | Ultrasensitive and simultaneous determination of p-Nitrophenol and p-Nitrobenzoic acid by a modified glassy carbon electrode with N-rich nanoporous carbon derived from ZIF-8 | |
Quan et al. | Electrochemical sensor using cobalt oxide-modified porous carbon for uric acid determination | |
Wang et al. | Ultrasensitive and specific photoelectrochemical sensor for hydrogen peroxide detection based on pillar [5] arene-functionalized Au nanoparticles and MWNTs hybrid BiOBr heterojunction | |
Li et al. | A novel electrochemical sensor based on carbon nanoparticle composite films for the determination of nitrite and hydrogen peroxide | |
Feng et al. | Synthesis of polyaniline/Au composite nanotubes and their high performance in the detection of NADH |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240206 Address after: 201500 1st floor, No. 3, Lane 900, Haili Road, Shanyang Town, Jinshan District, Shanghai Patentee after: SHANGHAI LANOU CHEMICAL INDUSTRY TECHNOLOGY Co.,Ltd. Country or region after: China Address before: 273165 Jingxuan West Road, Qufu City, Jining, Shandong Province, No. 57 Patentee before: QUFU NORMAL University Country or region before: China |
|
TR01 | Transfer of patent right |