CN109873449A - 一种户用微网中光储容量优化配置方法 - Google Patents

一种户用微网中光储容量优化配置方法 Download PDF

Info

Publication number
CN109873449A
CN109873449A CN201910165900.4A CN201910165900A CN109873449A CN 109873449 A CN109873449 A CN 109873449A CN 201910165900 A CN201910165900 A CN 201910165900A CN 109873449 A CN109873449 A CN 109873449A
Authority
CN
China
Prior art keywords
power
energy
photovoltaic
family
microgrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910165900.4A
Other languages
English (en)
Inventor
朱永强
张泉
张璐
刘康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201910165900.4A priority Critical patent/CN109873449A/zh
Publication of CN109873449A publication Critical patent/CN109873449A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种户用微网中光储容量优化配置方法。本发明以包含光伏和储能系统的户用微网为对象,提出一种解决户用微网中光储容量配置问题的方法。首先提出了一种能量调度策略,在该调度策略的基础上计及用户买电成本、卖电收益和光储系统的成本,建立了以投资益本比最大为目标的储光储容量优化配置模型,采用遗传算法进行求解,确定最优的光储容量。在当今光伏电池板和储能价格仍然较高的情况下,对户用微网中光储容量进行优化,有利于家庭光伏的大量推广。

Description

一种户用微网中光储容量优化配置方法
技术领域
本发明涉及家庭光伏和储能容量配置,特别设计一种户用微网中光储容量优化配置方法。
背景技术
光伏发电是太阳能利用的发展趋势,除大型光伏电站外,户用光伏发电是光伏发电发展的一个重要方向,在国家政策的鼓励下,越来越多的家庭安装户用光伏系统,但由于现阶段光伏电池板和储能系统的成本仍较高,其费用对于户用微网的经济性有很大影响,因此储能和光伏容量的选取问题至关重要。
发明内容
本发明提出一种户用微网中光储容量优化配置方法,基于提出的户用微网能量基本调度策略,综合考虑储能参与调度带来的效益、储能成本和光伏成本,选取投资益本比S作为优化目标,以功率平衡和储能系统工作条件作为约束,采用遗传算法求解户用微网中最佳的光伏容量、储能容量和功率。
所述的户用微网能量基本调度策略为:当光伏出力P pv(t)大于负荷P load(t)时,负荷全部由光伏出力承担,剩余光伏出力为储能充电,储能系统电量已满后的光伏剩余电量采用余电上网形式卖于电网;当光伏出力P pv(t)小于负荷P load(t)时,光伏出力全部供给负荷,若此时为峰时段,由储能供给剩余负荷部分,不足部分由电网提供,若此时为谷时段,由电网为负荷供电。
所述的投资益本比S为:
其中,
式中,B subB sellB buy分别为户用微网的补贴收益、售电收益和购电收益;C EC PC PV分别为储能的容量成本、功率成本和光伏成本;C 0C 1C 2C 3分别为光伏的补贴电价、购电的峰时电价、购电的谷时电价和光伏上网电价;c ec pc pv分别为储能系统的单位容量成本、单位功率成本和光伏单位功率成本;E eP eP pv分别为储能系统的额定容量、额定功率和光伏额定功率;T 1T 2分别为峰谷分时电价的峰时段和谷时段;T为考察时间;P sess(t)为t时刻储能系统功率,P sess(t)>0表示储能系统放电,P sess(t)<0表示储能系统充电。
所述功率平衡约束条件为,当光伏发电功率不小于负荷功率时,P g(t)表示户用微网系统输入电网的电量,此时约束条件为
P pv (t)+P sess (t)-P g(t)=P load(t)
当光伏发电功率小于负荷功率时,P g(t)表示户用微网系统从电网所购买的电量,此时约束条件为
P pv (t)+P sess (t)+P g(t)=P load(t)
所述储能系统工作条件约束为,储能系统充放电功率不超过功率限值,即
-P eP sess(t)≤P e
为提高电池储能系统寿命年限,避免过充过放,通常对储能的荷电状态SOC 进行约束为
SOCmin≤SOC(t)≤SOCmax。
采用遗传算法求解户用微网中最佳的光伏容量、储能容量和功率,具体步骤如下:
1)输入户用微网的负荷P load(t)和系统参数;
2)初始化种群,在约束条件空间中随机生成N个个体,每个个体由储能系统额定容量、额定功率和光伏容量组成;
3)根据生成的储能容量、功率、光伏容量和负荷数据,按照户用微网能量调度策略计算储能系统充放电功率、电网与户用微网之间的能量流动;
4)计算所有个体的适应度值,保存最优值,判断是否达到终止条件,如果满足终止条件输出个体值,如果不满足终止条件,进行个体的选择;
5)不满足终止条件,对个体进行选择、交叉、变异操作,转到步骤3)继续进行计算。
附图说明
下面结合附图对本发明进一步说明。
图1是户用微网能量调度策略图。
图2是求解流程图。
具体实施方式
本发明提出一种户用微网中光储容量优化配置方法,基于提出的户用微网能量基本调度策略,综合考虑储能参与调度带来的效益、储能成本和光伏成本,选取投资益本比S作为优化目标,以功率平衡和储能系统工作条件作为约束,采用遗传算法求解户用微网中最佳的光伏容量、储能容量和功率。
所述的户用微网能量基本调度策略为:当光伏出力P pv(t)大于负荷P load(t)时,负荷全部由光伏出力承担,剩余光伏出力为储能充电,储能系统电量已满后的光伏剩余电量采用余电上网形式卖于电网;当光伏出力P pv(t)小于负荷P load(t)时,光伏出力全部供给负荷,若此时为峰时段,由储能供给剩余负荷部分,不足部分由电网提供,若此时为谷时段,由电网为负荷供电。
所述的投资益本比S为:
其中,
式中,B subB sellB buy分别为户用微网的补贴收益、售电收益和购电收益;C EC PC PV分别为储能的容量成本、功率成本和光伏成本;C 0C 1C 2C 3分别为光伏的补贴电价、购电的峰时电价、购电的谷时电价和光伏上网电价;c ec pc pv分别为储能系统的单位容量成本、单位功率成本和光伏单位功率成本;E eP eP pv分别为储能系统的额定容量、额定功率和光伏额定功率;T 1T 2分别为峰谷分时电价的峰时段和谷时段;T为考察时间;P sess(t)为t时刻储能系统功率,P sess(t)>0表示储能系统放电,P sess(t)<0表示储能系统充电。
所述功率平衡约束条件为,当光伏发电功率不小于负荷功率时,P g(t)表示户用微网系统输入电网的电量,此时约束条件为
P pv (t)+P sess (t)-P g(t)=P load(t)
当光伏发电功率小于负荷功率时,P g(t)表示户用微网系统从电网所购买的电量,此时约束条件为
P pv (t)+P sess (t)+P g(t)=P load(t)
所述储能系统工作条件约束为,储能系统充放电功率不超过功率限值,即
-P eP sess(t)≤P e
为提高电池储能系统寿命年限,避免过充过放,通常对储能的荷电状态SOC 进行约束为
SOCmin≤SOC(t)≤SOCmax。
采用遗传算法求解户用微网中最佳的光伏容量、储能容量和功率,具体步骤如下:
1)输入户用微网的负荷P load(t)和系统参数;
2)初始化种群,在约束条件空间中随机生成N个个体,每个个体由储能系统额定容量、额定功率和光伏容量组成;
3)根据生成的储能容量、功率、光伏容量和负荷数据,按照户用微网能量调度策略计算储能系统充放电功率、电网与户用微网之间的能量流动;
4)计算所有个体的适应度值,保存最优值,判断是否达到终止条件,如果满足终止条件输出个体值,如果不满足终止条件,进行个体的选择;
5)不满足终止条件,对个体进行选择、交叉、变异操作,转到步骤3)继续进行计算。
最后,以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (5)

1.一种户用微网中光储容量优化配置方法,其特征是:基于提出的户用微网能量基本调度策略,综合考虑储能参与调度带来的效益、储能成本和光伏成本,选取投资益本比S作为优化目标,以功率平衡和储能系统工作条件作为约束,采用遗传算法求解户用微网中最佳的光伏容量、储能容量和功率。
2.根据权利要求1所述的一种户用微网中光储容量优化配置方法,其特征是:所述的户用微网能量基本调度策略为:当光伏出力P pv(t)大于负荷P load(t)时,负荷全部由光伏出力承担,剩余光伏出力为储能充电,储能系统电量已满后的光伏剩余电量采用余电上网形式卖于电网;当光伏出力P pv(t)小于负荷P load(t)时,光伏出力全部供给负荷,若此时为峰时段,由储能供给剩余负荷部分,不足部分由电网提供,若此时为谷时段,由电网为负荷供电。
3.根据权利要求1所述的一种户用微网中光储容量优化配置方法,其特征是:所述的投资益本比S为:
其中,
式中,B subB sellB buy分别为户用微网的补贴收益、售电收益和购电收益;C EC PC PV分别为储能的容量成本、功率成本和光伏成本;C 0C 1C 2C 3分别为光伏的补贴电价、购电的峰时电价、购电的谷时电价和光伏上网电价;c ec pc pv分别为储能系统的单位容量成本、单位功率成本和光伏单位功率成本;E eP eP pv分别为储能系统的额定容量、额定功率和光伏额定功率;T 1T 2分别为峰谷分时电价的峰时段和谷时段;T为考察时间;P sess(t)为t时刻储能系统功率,P sess(t)>0表示储能系统放电,P sess(t)<0表示储能系统充电。
4.根据权利要求1所述的一种户用微网中光储容量优化配置方法,其特征是:所述功率平衡约束条件为,当光伏发电功率不小于负荷功率时,P g(t)表示户用微网系统输入电网的电量,此时约束条件为
P pv (t)+ P sess (t)- P g(t)= P load(t)
当光伏发电功率小于负荷功率时,P g(t)表示户用微网系统从电网所购买的电量,此时约束条件为
P pv (t)+ P sess (t)+ P g(t)= P load(t)
所述储能系统工作条件约束为,储能系统充放电功率不超过功率限值,即
-P eP sess(t)≤P e
为提高电池储能系统寿命年限,避免过充过放,通常对储能的荷电状态SOC 进行约束为
SOCmin≤SOC(t)≤SOCmax 。
5.根据权利要求1所述的一种户用微网中光储容量优化配置方法,其特征是:采用遗传算法求解户用微网中最佳的光伏容量、储能容量和功率,具体步骤如下:
输入户用微网的负荷P load(t)和系统参数;
初始化种群,在约束条件空间中随机生成N个个体,每个个体由储能系统额定容量、额定功率和光伏容量组成;
根据生成的储能容量、功率、光伏容量和负荷数据,按照户用微网能量调度策略计算储能系统充放电功率、电网与户用微网之间的能量流动;
计算所有个体的适应度值,保存最优值,判断是否达到终止条件,如果满足终止条件输出个体值,如果不满足终止条件,进行个体的选择;
5)不满足终止条件,对个体进行选择、交叉、变异操作,转到步骤3)继续进行计算。
CN201910165900.4A 2019-03-06 2019-03-06 一种户用微网中光储容量优化配置方法 Pending CN109873449A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910165900.4A CN109873449A (zh) 2019-03-06 2019-03-06 一种户用微网中光储容量优化配置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910165900.4A CN109873449A (zh) 2019-03-06 2019-03-06 一种户用微网中光储容量优化配置方法

Publications (1)

Publication Number Publication Date
CN109873449A true CN109873449A (zh) 2019-06-11

Family

ID=66919870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910165900.4A Pending CN109873449A (zh) 2019-03-06 2019-03-06 一种户用微网中光储容量优化配置方法

Country Status (1)

Country Link
CN (1) CN109873449A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247431A (zh) * 2019-07-02 2019-09-17 中安瑞材(北京)科技有限公司 一种产能建筑系统及其容量配置方法
CN110797892A (zh) * 2019-09-20 2020-02-14 苏州腾晖光伏技术有限公司 一种家庭光伏储能系统的容量配置方法
CN110880759A (zh) * 2019-11-25 2020-03-13 合肥阳光新能源科技有限公司 一种基于实时电价机制的光储微网的能量管理方法和系统
CN110932338A (zh) * 2019-12-06 2020-03-27 国网江苏省电力有限公司淮安供电分公司 一种基于储能成本的新能源并网优化调度方法
CN111311031A (zh) * 2020-03-27 2020-06-19 天合光能股份有限公司 一种户用光伏储能供电系统的能量管理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964098A (zh) * 2018-06-13 2018-12-07 燕山大学 一种独立微电网系统容量优化配置方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964098A (zh) * 2018-06-13 2018-12-07 燕山大学 一种独立微电网系统容量优化配置方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴峰等: ""用户光伏发电储能优化配置研究"", 《智慧电力》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247431A (zh) * 2019-07-02 2019-09-17 中安瑞材(北京)科技有限公司 一种产能建筑系统及其容量配置方法
CN110247431B (zh) * 2019-07-02 2021-07-09 中安瑞材(北京)科技有限公司 一种产能建筑系统及其容量配置方法
CN110797892A (zh) * 2019-09-20 2020-02-14 苏州腾晖光伏技术有限公司 一种家庭光伏储能系统的容量配置方法
CN110797892B (zh) * 2019-09-20 2023-10-27 苏州腾晖光伏技术有限公司 一种家庭光伏储能系统的容量配置方法
CN110880759A (zh) * 2019-11-25 2020-03-13 合肥阳光新能源科技有限公司 一种基于实时电价机制的光储微网的能量管理方法和系统
CN110932338A (zh) * 2019-12-06 2020-03-27 国网江苏省电力有限公司淮安供电分公司 一种基于储能成本的新能源并网优化调度方法
CN111311031A (zh) * 2020-03-27 2020-06-19 天合光能股份有限公司 一种户用光伏储能供电系统的能量管理方法

Similar Documents

Publication Publication Date Title
Liu et al. Optimal sizing of a wind-energy storage system considering battery life
CN109873449A (zh) 一种户用微网中光储容量优化配置方法
Nikmehr et al. Reliability evaluation of multi-microgrids considering optimal operation of small scale energy zones under load-generation uncertainties
CN105262129B (zh) 一种含复合储能微电网的多目标优化系统及方法
Kavousi-Fard et al. Reliability-oriented reconfiguration of vehicle-to-grid networks
CN109787261B (zh) 电网侧及用户侧储能系统容量优化配置方法
CN109066750B (zh) 基于需求侧响应的光伏-电池微电网混合能量调度管理方法
CN109713673B (zh) 售电环境下并网型微电网系统配置及优化运行的方法
CN110165663B (zh) 基于Stackelberg博弈的含充换储一体化电站微电网能量优化调度方法
CN112651105B (zh) 一种基于博弈论的微网容量配置优化方法
CN103248064A (zh) 一种复合型能源充电储能系统及其方法
CN109217290A (zh) 计及电动汽车充放电的微网能量优化管理方法
CN107425534A (zh) 一种基于优化蓄电池充放电策略的微电网调度方法
CN107404129A (zh) 风‑储混合电站运行策略及短期计划出力优化方法
Long et al. Impact of EV load uncertainty on optimal planning for electric vehicle charging station
CN112671022A (zh) 光储充电站容量优化配置方法、系统、终端及存储介质
Xie et al. Optimal capacity configuration of hybrid energy storage for an isolated microgrid based on QPSO algorithm
CN108512238A (zh) 基于需求侧响应的智能家居两阶段优化调度方法
Li et al. Double-layer optimized configuration of distributed energy storage and transformer capacity in distribution network
CN117639105A (zh) 一种考虑火电机组爬坡影响的微电网容量优化配置方法
Han et al. Energy storage frequency response control considering battery aging of electric vehicle
CN109119988B (zh) 基于动态批发市价的光伏-电池微电网能量调度管理方法
CN114142517B (zh) 光蓄充一体化系统与电网并网运行的控制方法
CN113410900B (zh) 基于自适应差分鲸鱼优化的微电网hess优化配置方法及系统
CN112928755A (zh) 光伏储能系统的控制方法、装置及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190611

WD01 Invention patent application deemed withdrawn after publication