CN109866480B - 一种仿生感知执行一体化柔性致动器及其制备方法 - Google Patents

一种仿生感知执行一体化柔性致动器及其制备方法 Download PDF

Info

Publication number
CN109866480B
CN109866480B CN201910176288.0A CN201910176288A CN109866480B CN 109866480 B CN109866480 B CN 109866480B CN 201910176288 A CN201910176288 A CN 201910176288A CN 109866480 B CN109866480 B CN 109866480B
Authority
CN
China
Prior art keywords
layer
adhesive
bionic
ipmc
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910176288.0A
Other languages
English (en)
Other versions
CN109866480A (zh
Inventor
韩志武
刘林鹏
张俊秋
王大凯
孙涛
王可军
牛士超
侯涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910176288.0A priority Critical patent/CN109866480B/zh
Publication of CN109866480A publication Critical patent/CN109866480A/zh
Priority to PCT/CN2019/113164 priority patent/WO2020181777A1/zh
Application granted granted Critical
Publication of CN109866480B publication Critical patent/CN109866480B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Prostheses (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种仿生感知执行一体化柔性致动器及其制备方法,所述柔性致动器包括:IPMC致动层、设置在所述IPMC致动层上胶粘剂层以及设置在胶粘剂层上的仿生应变传感元件;所述仿生应变传感元件包括:设置在所述IPMC致动层上的柔性基底层,所述柔性基底层上设置有仿生V型槽阵列,设置在所述柔性基底层上的导电层以及设置在所述导电层上的第一电极。当外界振动波传输到仿生应变传感元件上,且仿生应变传感元件的输出电阻达到预设值时,IPMC致动层自动启动并出现致动弯曲,且进一步带动仿生应变传感元件层发生形变。根据输出的电阻值即可间接获知致动器的致动程度,从而实现感知执行一体化且致动智能可控的目的。

Description

一种仿生感知执行一体化柔性致动器及其制备方法
技术领域
本发明涉及致动器领域,尤其涉及的是一种仿生感知执行一体化柔性致动器及其制备方法。
背景技术
近年来,研究者们发展了多种致动器,它们能够被电、热、光或湿度等外界刺激所驱动而产生形变。然而目前所报道的大部分致动器都只是依靠智能材料的本身属性去感知环境信息并且实现致动效果。这种依靠智能材料的本身属性去感知环境信息并且实现致动的致动器不但无法智能识别信号,也无法根据环境信号做出智能可控的执行行为。从仿生角度来看,这也是有悖于生物所采取从感知到执行的方式的。高等生物通过分布在其体表的感受器感知外界的环境信号,如声音、振动、光线等,这些感受器将这些信号进行编码后经神经元传输到中枢神经系统进行信息解码翻译处理,之后传递信息于执行机构进行执行处理。在生物中,鲜有单独利用材料自身的固有特性去实现整个感知与执行的过程,而是大部分通过感受器感知信号,执行机构执行处理的方式实现感知执行的功能。如人的手上分布着各种不同的感受器,如触觉感受器、压觉感受器、痛觉感受器等,这些感受器充当着感知外界信息的媒介,而手上的肌肉纤维等则充当着执行器的角色,两者合为一体,实现了感知执行的一体化。这里的感知是智能的,可高精度、高灵敏分辨的,执行是可控的,可根据具体工况实现不同程度的执行力度的。
因此,现有致动器还有待于提高和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种仿生感知执行一体化柔性致动器及其制备方法,旨在解决现有技术中致动器无法实现感知和执行一体化的问题。
本发明解决技术问题所采用的技术方案如下:
一种仿生感知执行一体化柔性致动器,其中,包括:IPMC致动层、设置在所述IPMC致动层上胶粘剂层以及设置在胶粘剂层上的仿生应变传感元件;所述仿生应变传感元件包括:设置在所述IPMC致动层上的柔性基底层,所述柔性基底层上设置有仿生V型槽阵列,设置在所述柔性基底层上的导电层以及设置在所述导电层上的第一电极。
所述的仿生感知执行一体化柔性致动器,其中,所述IPMC致动层包括:全氟磺酸质子交换膜、设置在所述全氟磺酸质子交换膜上的第二电极。
所述的仿生感知执行一体化柔性致动器,其中,所述柔性基底层采用如下材料制成:环氧树脂、热塑性聚氨酯、聚丙烯酸酯、聚偏氟乙烯、聚苯乙烯、聚酰胺、聚酰亚胺、聚对苯二甲酸乙二醇酯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丙烯-苯乙烯型嵌段共聚物、天然橡胶、丁苯橡胶、顺丁橡胶、异戊橡胶、硅橡胶、氯丁橡胶、丁基橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、聚二甲基硅氧烷、苯乙烯类热塑性弹性体、烯烃类热塑性弹性体、二烯类热塑性弹性体、氯乙烯类热塑性弹性体、聚酰胺类热塑性弹性体或热塑性硫化橡胶中的一种或多种。
所述的仿生感知执行一体化柔性致动器,其中,所述仿生V型槽的深度为150-250nm,宽度为800-1200nm。
所述的仿生感知执行一体化柔性致动器,其中,所述导电层的厚度为40-60nm。
所述的仿生感知执行一体化柔性致动器,其中,所述导电层采用如下材料制成:碳纳米粒子、金纳米粒子、铂纳米粒子、银纳米粒子、铜纳米粒子、铝硼合金、铝铬合金、铁锰合金、铝铬钇合金、银铜钯合金中的一种或多种。
所述的仿生感知执行一体化柔性致动器,其中,所述胶粘剂层为a-氰基丙烯酸酯瞬干胶、厌氧胶、丙烯酸结构胶、乙基丙烯酸酯胶粘剂、环氧丙烯酸酯胶、环氧树脂胶、聚氨酯胶、氨基树脂胶、酚醛树脂胶、丙烯酸树脂胶、呋喃树脂胶、间苯二酚-甲醛树脂胶、二甲苯-甲醛树脂胶、饱聚酯胶、复合型树脂胶、聚酰亚胺胶、脲醛树脂胶、丁腈聚合物胶、聚硫橡胶粘合剂、聚氯乙烯胶粘剂、聚丁二烯胶、氯乙烯胶粘剂中的一种或多种。
一种如上述任意一项所述的仿生感知执行一体化柔性致动器制备方法,其特征在于,包括以下步骤:
制备IPMC致动层和仿生应变传感元件;
将仿生应变传感元件通过胶粘剂层与IPMC致动层粘接。
所述的仿生感知执行一体化柔性致动器的制备方法,其中,所述IPMC致动层采用如下步骤制备:
对全氟磺酸质子交换膜进行预处理;
在全氟磺酸质子交换膜上镀第二电极;
将带有第二电极的全氟磺酸质子交换膜浸泡在氯化锂溶液中进行锂离子置换反应得到IPMC致动层。
所述的仿生感知执行一体化柔性致动器的制备方法,其中,所述仿生应变传感元件采用如下步骤制备:
将装有乙醇的容器上放置聚苯乙烯材质上盖,然后加热乙醇,在上盖上形成V型槽阵列得到V型槽阵列模板;
以V型槽阵列模板制备反结构模板;
在反结构模板上旋涂柔性材料后进行脱泡处理和加热处理,并去除反结构模板得到柔性基底层;
在柔性基底层上溅射导电层后接入第一电极得到仿生应变传感元件。
有益效果:由于当外界振动波传输到仿生应变传感元件上时,超灵敏仿生应变传感元件输出电阻发生改变。当输出电阻达到预设值时,自动启动IPMC致动层,开始给致动器加上合适的电压,致动器实现致动效果。当IPMC致动层出现致动弯曲时,将进一步带动粘接在其表面的仿生应变元件层发生形变,从而改变仿生应变传感元件的输出电阻值,致动程度与输出电阻值呈现一一映射关系。根据输出的电阻值即可间接获知致动器的致动程度,从而达到实现感知执行一体化且致动智能可控的目的。
附图说明
图1是本发明中一种仿生感知执行一体化柔性致动器的第一结构示意图。
图2是本发明中一种仿生感知执行一体化柔性致动器的第二结构示意图。
图3是图2中中A处的放大图。
图4是本发明中仿生V型槽的AFM图。
图5是本发明中仿生V型槽截面图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请同时参阅图1-图5,本发明提供了一种仿生感知执行一体化柔性致动器的一些实施例。
利用感受器感知信号是生物身上独特的感知方式,这些感受器通常是结构与材料耦合而成,结构精细、材料刚柔并济。此外,与现有刺激型响应致动器的响应刺激源不同的是,相当一部分生物是依靠振动信号去感知外界环境的,即振动刺激响应。典型的代表是自然界中有着四亿三千万年进化历史的蝎子。由于环境压力迫使蝎子逐渐演变成夜行性生物,经常在夜间出没的习性导致蝎子的视觉系统已经高度退化。研究发现在其步足上存在一种缝感受器,使得蝎子可以依靠这种感受器实现对周围物体产生的振动进行感知定位,根据振动波的频率、幅值等特征识别振源的基本信息,从而达到替代视觉系统的功能。更需强调的是,由于蝎子生活环境中的介质大多数属于非连续性介质,如沙漠蝎生存在沙子遍布的环境中,雨林蝎生存在落叶层层分布的环境中,再加上所处环境中其它物种多样性所产生的嘈杂信号,使得蝎子的这种通过感受器感知外界信号并甄别有效信号的能力更加灵敏优异。而这种缝感受器具体形态表现为呈放射状扇形分布的缝阵列。
电活性聚合物(Electroactive Polymers/EAP)是一类能够在外电场诱导下,通过材料内部构造改变产生多种形式的力学响应的材料,可以实现电能和机械能的相互转换。离子聚合物金属复合物材料(Ionic Polymer-Metal Composites/IPMC)是电活性聚合物中的一种。目前IPMC被开发的科学应用主要有人-机械界面、飞行器应用、可控制织物、机器人、生物医疗等。可见,IPMC聚合物致动器具有不可估量的应用前景。
利用蝎子优异感知振动的缝感受器,结合IPMC优异的致动性能,开发出一种高度仿生的感知执行一体化柔性致动器是在实现结构仿生与功能仿生有机统一的方向上更进一步。
如图1-图3所示,本发明的一种仿生感知执行一体化柔性致动器,包括:IPMC致动层10、设置在所述IPMC致动层10上胶粘剂层20以及设置在胶粘剂层20上的仿生应变传感元件30;所述仿生应变传感元件30包括:设置在所述IPMC致动层10上的柔性基底层31,所述柔性基底层31上设置有仿生V型槽阵列(即仿蝎子缝结构),设置在所述柔性基底层31上的导电层32以及设置在所述导电层32上的第一电极33。如图4和图5所示,所述仿生V型槽的深度为150-250nm,宽度为800-1200nm。图5中X表示仿生V型槽的宽度。
当外界振动波传输到感知机构(即本发明的仿生应变传感元件)上时,振动波带动柔性传感器发生形变,这种形变具体表现为拉伸或挤压,缝结构两壁之间的距离将发生变化,在缝两壁上分布的导电层32接触状态也将发生变化,从而改变电子的导电通路数目与路径,最终表现为整体仿生应变传感元件的电阻发生改变,输出到电脑端的瞬时电阻信号发生变化。电阻信号的变化程度随着振动源的振动强度改变而随之改变,因此可在信息处理系统的控制程序中设置不同电阻区间,每个电阻区间对应一个电压值。当瞬时电阻位于某个预设的电阻区间时,将自动启动执行机构,即IPMC致动层10,开始给致动器加上相应的电压,开始实现致动效果。当IPMC致动层出现致动弯曲时,将进一步带动粘接在其表面的仿生应变元件层发生形变,从而改变仿生应变传感元件的输出电阻值,致动程度与输出电阻值呈现一一映射关系。根据输出的电阻值即可间接获知致动器的致动程度,从而达到实现感知执行一体化且致动智能可控的目的。
本发明的一个较佳实施例中,所述IPMC致动层10包括:全氟磺酸质子交换膜11、设置在所述全氟磺酸质子交换膜11上的第二电极12。
具体地,所述IPMC致动层10采用如下步骤制备:
步骤S111、对全氟磺酸质子交换膜11进行预处理。
采用厚度为100-300μm的全氟磺酸质子交换膜11,并对其进行裁剪,然后采用超声波清洗全氟磺酸质子交换膜11的表面,并去除有机杂质:浸泡在质量分数为5~10%的过氧化氢溶液中3~6个小时后,再放入去离子水中煮沸一个小时。然后去除无机离子:放入质量分数为3~5%的硫酸溶液中充分浸泡4~8个小时。最后进行溶胀与清洗:放入去离子水中煮沸一个小时。完成对全氟磺酸质子交换膜11的预处理。
步骤S112、在全氟磺酸质子交换膜11上镀第二电极12。
在对全氟磺酸质子交换膜11进行预处理后,采用化学方法在全氟磺酸质子交换膜11表面镀金属电极,即第二电极12。
具体地,(1)将处理后的全氟磺酸质子交换膜11浸泡在质量分数为5~10%的四铵合氯化铂水溶液中24个小时以上。
(2)选用异丙醇助化学镀方法完成全氟磺酸质子交换膜11表面金属电极的制备。将全氟磺酸质子交换膜11被转移至异丙醇与水的混合液的水浴中,异丙醇与水的体积比固定在1:3。全氟磺酸质子交换膜11在异丙醇溶液中充分膨胀后,重复加入5~10ml质量分数为百分之五的硼氢化钠水溶液至少10次进行金属离子的还原,硼氢化钠溶液加入时间间隔约为30分钟。还原过程中,不停地用玻璃棒剧烈搅拌混合溶液,并将温度保持在40℃左右。
(3)重复步骤(1)和(2),以得到表面质量较好的金属电极。
步骤S113、将带有第二电极12的全氟磺酸质子交换膜11浸泡在氯化锂溶液中进行锂离子置换反应得到IPMC致动层10。
具体地,(1)将表面带有第二电极12的全氟磺酸质子交换膜11放入去离子水中洗涤,再干燥。
(2)锂离子置换:将干燥后的全氟磺酸质子交换浸泡在2~4mol/L氯化锂溶液中24小时以上,使溶液移动离子被交换的离子完全为锂离子,完成锂离子置换反应,即得IMPC致动器。
所述仿生应变传感元件30采用如下步骤制备:
S121、将装有乙醇的容器上放置聚苯乙烯制上盖,然后加热乙醇,在上盖上形成V型槽阵列得到V型槽阵列模板;
具体地,乙醇加热温度为80℃,加热时间为8-16h,由于溶剂诱导法与聚苯乙烯线性分子链特性,聚苯乙烯制上盖表面出现规则的V型槽阵列结构,然后采用超声波清洗其表面。
S122、以V型槽阵列模板制备反结构模板。
具体地,本发明中采用环氧树脂AB胶制备反结构模板,将环氧树脂AB胶以3:1的质量比混合均匀后,放入聚苯乙烯制上盖中,并通过真空箱进行真空脱泡,脱泡时间为2h。然后,放入烘箱中进行固化,固化温度为50℃,固化时间为7-9h。环氧树脂AB胶固化后,可以采用机械方式将环氧树脂AB胶固化形成的膜(即反结构模板)与V型槽阵列模板分离,反结构模板具有与V型槽阵列配合的V型凸起。
S123、在反结构模板上旋涂柔性材料后进行脱泡处理和加热处理,并去除反结构模板得到柔性基底层31。
具体地,所述柔性材料为环氧树脂、热塑性聚氨酯、聚丙烯酸酯、聚偏氟乙烯、聚苯乙烯、聚酰胺、聚酰亚胺、聚对苯二甲酸乙二醇酯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丙烯-苯乙烯型嵌段共聚物、天然橡胶、丁苯橡胶、顺丁橡胶、异戊橡胶、硅橡胶、氯丁橡胶、丁基橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、聚二甲基硅氧烷、苯乙烯类热塑性弹性体、烯烃类热塑性弹性体、二烯类热塑性弹性体、氯乙烯类热塑性弹性体、聚酰胺类热塑性弹性体或热塑性硫化橡胶中的一种或多种。
为了加快柔性材料的固化,在柔性材料中加入硬化剂,柔性材料与硬化剂以质量比8-12:1的比例混合后,通过旋涂机旋涂在反结构模板上,具体旋涂在反结构模板上具有V型凸起的一面。然后进行脱泡处理和加热处理,这里采用真空脱泡,加热温度为70-90℃,加热时间为3-5h。最后采用机械方式去除反结构模板,由于反结构模板上有V型凸起,那么柔性材料层具有与V型槽阵列模板一致的V型槽阵列结构。通过控制柔性材料的加入量,可以得到不同厚度的柔性材料层,本实施例中,柔性材料层的厚度为150-250μm。
S124、在柔性基底层31上溅射导电层32后接入第一电极33得到仿生应变传感元件30。
具体地,所述导电层32采用如下材料制成:碳纳米粒子、金纳米粒子、铂纳米粒子、银纳米粒子、铜纳米粒子、铝硼合金、铝铬合金、铁锰合金、铝铬钇合金、银铜钯合金中的一种或多种。导电层32可以增强柔性材料与第一电极33之间的结合力。所述导电层32的厚度为40-60nm,根据经济性考量选择银作为靶材,喷涂约为50nm厚度的银粒子薄膜。
在IPMC致动层10和仿生应变传感元件30制备完后,将仿生应变传感元件30通过胶粘剂层20与IPMC致动层10连接。
所述胶粘剂层20为a-氰基丙烯酸酯瞬干胶、厌氧胶、丙烯酸结构胶、乙基丙烯酸酯胶粘剂、环氧丙烯酸酯胶、环氧树脂胶、聚氨酯胶、氨基树脂胶、酚醛树脂胶、丙烯酸树脂胶、呋喃树脂胶、间苯二酚-甲醛树脂胶、二甲苯-甲醛树脂胶、饱聚酯胶、复合型树脂胶、聚酰亚胺胶、脲醛树脂胶、丁腈聚合物胶、聚硫橡胶粘合剂、聚氯乙烯胶粘剂、聚丁二烯胶、氯乙烯胶粘剂中的一种或多种。
本发明还提供了一种如上述任意一实施例所述仿生的感知执行一体化柔性致动器的制备方法,包括以下步骤:
S100、制备IPMC致动层10和仿生应变传感元件30,具体如上所述。
S200、将仿生应变传感元件30通过胶粘剂层20与IPMC致动层10连接,具体如上所述。
综上所述,本发明所提供的一种仿生的感知执行一体化柔性致动器及其制备方法,所述柔性致动器包括:IPMC致动层、设置在所述IPMC致动层上胶粘剂层以及设置在胶粘剂层上的仿生应变传感元件;所述仿生应变传感元件包括:设置在所述IPMC致动层上的柔性基底层,所述柔性基底层上设置有仿生V型槽阵列,设置在所述柔性基底层上的导电层以及设置在所述导电层上的第一电极。由于当外界振动波传输到仿生应变传感元件上时,仿生应变传感元件的电阻发生改变。相应地,自动启动IPMC致动层,开始给致动器加上相应的电压,开始实现致动效果。当IPMC致动层出现致动弯曲时,将进一步带动仿生应变元件层发生形变,从而改变仿生应变传感元件的输出电阻值,致动程度与输出电阻值呈现一一映射关系,从而达到实现感知执行一体化且致动智能可控的目的。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种仿生感知执行一体化柔性致动器,其特征在于,包括:IPMC致动层、设置在所述IPMC致动层上胶粘剂层以及设置在胶粘剂层上的仿生应变传感元件;
所述仿生应变传感元件包括:设置在所述IPMC致动层上的柔性基底层,所述柔性基底层上设置有仿生V型槽阵列,设置在所述柔性基底层上的导电层以及设置在所述导电层上的第一电极;所述仿生V型槽的深度为150-250nm,宽度为800-1200nm;所述IPMC致动层用于根据所述仿生应变传感元件感应外界振动而进行致动,所述仿生应变传感元件用于感应外界振动和所述IPMC致动层的致动。
2.根据权利要求1所述的仿生感知执行一体化柔性致动器,其特征在于,所述IPMC致动层包括:全氟磺酸质子交换膜、设置在所述全氟磺酸质子交换膜上的第二电极。
3.根据权利要求1所述的仿生感知执行一体化柔性致动器,其特征在于,所述柔性基底层采用如下材料制成:环氧树脂、热塑性聚氨酯、聚丙烯酸酯、聚偏氟乙烯、聚苯乙烯、聚酰胺、聚酰亚胺、聚对苯二甲酸乙二醇酯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丙烯-苯乙烯型嵌段共聚物、天然橡胶、丁苯橡胶、顺丁橡胶、异戊橡胶、硅橡胶、氯丁橡胶、丁基橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、聚二甲基硅氧烷、苯乙烯类热塑性弹性体、烯烃类热塑性弹性体、氯乙烯类热塑性弹性体、聚酰胺类热塑性弹性体或热塑性硫化橡胶中的一种或多种。
4.根据权利要求3所述的仿生感知执行一体化柔性致动器,其特征在于,所述烯烃类热塑性弹性体为二烯类热塑性弹性体。
5.根据权利要求1所述的仿生感知执行一体化柔性致动器,其特征在于,所述导电层的厚度为40-60nm。
6.根据权利要求1所述的仿生感知执行一体化柔性致动器,其特征在于,所述导电层采用如下材料制成:碳纳米粒子、金纳米粒子、铂纳米粒子、银纳米粒子、铜纳米粒子、铝硼合金、铝铬合金、铁锰合金、铝铬钇合金、银铜钯合金中的一种或多种。
7.根据权利要求1所述的仿生感知执行一体化柔性致动器,其特征在于,所述胶粘剂层为a-氰基丙烯酸酯瞬干胶、厌氧胶、丙烯酸结构胶、乙基丙烯酸酯胶粘剂、环氧丙烯酸酯胶、环氧树脂胶、聚氨酯胶、氨基树脂胶、酚醛树脂胶、丙烯酸树脂胶、呋喃树脂胶、间苯二酚-甲醛树脂胶、二甲苯-甲醛树脂胶、饱聚酯胶、复合型树脂胶、聚酰亚胺胶、脲醛树脂胶、丁腈聚合物胶、聚硫橡胶粘合剂、聚氯乙烯胶粘剂、聚丁二烯胶、氯乙烯胶粘剂中的一种或多种。
8.一种如权利要求1-7任意一项所述的仿生感知执行一体化柔性致动器的制备方法,其特征在于,包括以下步骤:
制备IPMC致动层和仿生应变传感元件;
将仿生应变传感元件通过胶粘剂层与IPMC致动层粘接。
9.根据权利要求8所述的仿生感知执行一体化柔性致动器的制备方法,其特征在于,所述IPMC致动层采用如下步骤制备:
对全氟磺酸质子交换膜进行预处理;
在全氟磺酸质子交换膜上镀第二电极;
将带有第二电极的全氟磺酸质子交换膜浸泡在氯化锂溶液中进行锂离子置换反应得到IPMC致动层。
10.根据权利要求8所述的仿生感知执行一体化柔性致动器的制备方法,其特征在于,所述仿生应变传感元件采用如下步骤制备:
将装有乙醇的容器上放置聚苯乙烯制上盖,然后加热乙醇,在上盖上形成V型槽阵列得到V型槽阵列模板;
以V型槽阵列模板制备反结构模板;
在反结构模板上旋涂柔性材料后进行脱泡处理和加热处理,并去除反结构模板得到柔性基底层;
在柔性基底层上溅射导电层后接入第一电极得到仿生应变传感元件。
CN201910176288.0A 2019-03-08 2019-03-08 一种仿生感知执行一体化柔性致动器及其制备方法 Active CN109866480B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910176288.0A CN109866480B (zh) 2019-03-08 2019-03-08 一种仿生感知执行一体化柔性致动器及其制备方法
PCT/CN2019/113164 WO2020181777A1 (zh) 2019-03-08 2019-10-25 一种仿生感知执行一体化柔性致动器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910176288.0A CN109866480B (zh) 2019-03-08 2019-03-08 一种仿生感知执行一体化柔性致动器及其制备方法

Publications (2)

Publication Number Publication Date
CN109866480A CN109866480A (zh) 2019-06-11
CN109866480B true CN109866480B (zh) 2020-03-10

Family

ID=66920068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910176288.0A Active CN109866480B (zh) 2019-03-08 2019-03-08 一种仿生感知执行一体化柔性致动器及其制备方法

Country Status (2)

Country Link
CN (1) CN109866480B (zh)
WO (1) WO2020181777A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109866480B (zh) * 2019-03-08 2020-03-10 吉林大学 一种仿生感知执行一体化柔性致动器及其制备方法
CN111307107B (zh) * 2020-02-27 2021-05-07 吉林大学 一种效果可视化的仿生超敏应变传感器及其制备方法
CN113391696B (zh) * 2020-03-11 2024-03-22 氪见(南京)科技有限公司 体感触觉装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625497B2 (en) * 2003-11-21 2009-12-01 Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Reno Materials and methods for the preparation of anisotropically-ordered solids
JP2018530048A (ja) * 2015-08-20 2018-10-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 層配列および入力/出力装置
CN106959071B (zh) * 2017-01-19 2019-04-26 吉林大学 一种仿生应变感知结构及其形成方法
CN109866480B (zh) * 2019-03-08 2020-03-10 吉林大学 一种仿生感知执行一体化柔性致动器及其制备方法

Also Published As

Publication number Publication date
WO2020181777A1 (zh) 2020-09-17
CN109866480A (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
CN109866480B (zh) 一种仿生感知执行一体化柔性致动器及其制备方法
Ilami et al. Materials, actuators, and sensors for soft bioinspired robots
Kang et al. Fingerprint‐inspired conducting hierarchical wrinkles for energy‐harvesting E‐skin
Zhang et al. Piezoresistive sensor with high elasticity based on 3D hybrid network of sponge@ CNTs@ Ag NPs
US9013092B2 (en) Energy harvesting devices using carbon nanotube (CNT)-based electrodes
Zhang et al. Biomimetic porifera skeletal structure of lead-free piezocomposite energy harvesters
Zhang et al. Flexible triboelectric tactile sensor based on a robust MXene/leather film for human–machine interaction
KR100678987B1 (ko) 생체모방 종이 작동기, 생체모방 종이의 작동방법 및 생체 모방 종이의 제조방법
Chen et al. A biomimetic interface with high adhesion, tailorable modulus for on-skin sensors, and low-power actuators
Veeramuthu et al. Human skin-inspired electrospun patterned robust strain-insensitive pressure sensors and wearable flexible light-emitting diodes
He et al. Intrinsically stretchable sheath-core ionic sensory fibers with well-regulated conformal and reprogrammable buckling
GB2494530A (en) Composite material comprising a layer of polymeric piezoelectric material matched with a textile substrate and method for making such a composite material
Dong et al. Development of ionic liquid-based electroactive polymer composites using nanotechnology
Dai et al. Highly stretchable, ultra-sensitive, and self-healable multifunctional flexible conductive hydrogel sensor for motion detection and information transmission
CN108688252A (zh) 一种多重刺激响应性驱动器薄膜的制备方法
Li et al. High-sensitivity multiresponses cellulose-based actuators with configurable amplitude
CN111378190A (zh) 一种柔性纳米复合材料薄膜及其制备方法
CN104979467A (zh) 一种复合结构机电换能材料的制备方法
Zheng et al. Electrodeposited superhydrophilic‐superhydrophobic composites for untethered multi‐stimuli‐responsive soft millirobots
Lan et al. Multichannel gradient piezoelectric transducer assisted with deep learning for broadband acoustic sensing
Jiang et al. Grab and heat: highly responsive and shape adaptive soft robotic heaters for effective heating of objects of three-dimensional curvilinear surfaces
Yang et al. Transparent, stretchable, and adhesive conductive ionic hydrogel-based self-powered sensors for smart elderly care systems
Dong et al. Perception-Actuation Integrated Artificial Muscle Fibers: From Structural Design to Applications
Li et al. Endowing actuators with sensing capability: Recent progress on perceptive soft actuators
Wang et al. Flexible wearable electronic fabrics with dual functions of efficient EMI shielding and electric heating for triboelectric nanogenerators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant