CN109860607A - A kind of lithium-ion-power cell - Google Patents
A kind of lithium-ion-power cell Download PDFInfo
- Publication number
- CN109860607A CN109860607A CN201710503381.9A CN201710503381A CN109860607A CN 109860607 A CN109860607 A CN 109860607A CN 201710503381 A CN201710503381 A CN 201710503381A CN 109860607 A CN109860607 A CN 109860607A
- Authority
- CN
- China
- Prior art keywords
- thermally conductive
- collection body
- heat collection
- negative
- conductive heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 claims abstract description 61
- 239000003792 electrolyte Substances 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 21
- 239000006183 anode active material Substances 0.000 claims abstract description 11
- 239000007773 negative electrode material Substances 0.000 claims abstract description 6
- 238000005452 bending Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 11
- 238000003475 lamination Methods 0.000 claims description 7
- 230000003447 ipsilateral effect Effects 0.000 claims description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- 238000004804 winding Methods 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052493 LiFePO4 Inorganic materials 0.000 claims description 2
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 239000011149 active material Substances 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000010406 cathode material Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 239000002826 coolant Substances 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 238000003032 molecular docking Methods 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- -1 transition metal nitride Chemical class 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000005868 electrolysis reaction Methods 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 230000001151 other effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 13
- 238000001816 cooling Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 230000008676 import Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 102100023170 Nuclear receptor subfamily 1 group D member 1 Human genes 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000005183 dynamical system Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
The invention discloses a kind of lithium-ion-power cells, including battery core, metal shell, electrolyte and the top cover being fixedly connected on the metal shell;Battery core includes positive plate, negative electrode tab and diaphragm;Positive pole ear and negative lug are respectively equipped in positive plate and negative electrode tab;Negative electrode tab includes negative current collector and anode active material layer;Positive plate includes plus plate current-collecting body and anode active material layer, it is characterized in that negative electrode tab is provided with thermally conductive heat collection body, the thermally conductive heat collection body is the positive part of negative current collector or/and the collector of reverse side part uncoated negative electrode active material layer, at least more than two panels thermally conductive heat collection body builds up heat sink runner, heat sink runner overlaps or is connected with fluid course component, electrolyte more than needed is arranged at metal shell lower part, and fluid course component immerses electrolyte more than needed.The present invention can effectively solve the problems such as battery temperature is too high or too low, reach temperature control, improve battery life and improve production efficiency and other effects.
Description
(1) technical field
The present invention relates to a kind of lithium ion battery more particularly to a kind of lithium-ion-power cells.
(2) background technique
Traffic brings dual-pressure to energy crisis and environmental pollution, efficient, cleaning that there is an urgent need to Devoting Major Efforts To Developings and research,
The new-energy automobile of safety realizes energy-saving and emission-reduction.Lithium ion battery is due to high, pollution-free, memory-less effect etc. with specific energy
Advantage becomes the optimal candidate of new-energy automobile dynamical system.But lithium ion battery is very sensitive to temperature, in suitable temperature
Battery pack high-efficiency discharge and could keep good performance in range.High temperature can make lithium ion battery aging speed become faster, is hot
Resistance increase becomes faster, cycle-index tails off, service life shortens, or even the problems such as initiation battery thermal runaway;Low temperature can be electrolysed
The conductivity of liquid reduces, and the ability decline of conductive activity ion, impedance increases, capacity decline.
The prior art or the riding position by changing battery core increase the purpose of heat dissipation to reach improvement fluid course;
Or by the improvement to battery case, such as case material is changed to by aluminium alloy by thermoelectric material and the compound system of aluminum material
It is standby, housing side is added into many places heat dissipation convex edge;Or electrode slice extension is extend into electrolyte, by electrolyte by energy
It is transmitted to battery case, then outside batteries etc. are transferred to by battery case.Make although the prior art can play certain heat dissipation
With, but heat still cannot be exported directly to outside batteries from main heating position pole piece, heat conduction and heat radiation effect is poor.Cause
This, studying a kind of Novel lithium ion power battery has been urgent need.
(3) summary of the invention
In view of the deficiencies of the prior art, the present invention provides a kind of lithium-ion-power cell, it can effectively solve battery temperature
The problems such as too high or too low, reaches temperature control, improve battery life and improve production efficiency and other effects.
The technical solution of the present invention is as follows:
Lithium-ion-power cell, metal shell including battery core, for accommodating the battery core are injected into the metal shell
Interior electrolyte and the top cover being fixedly connected on the metal shell;The battery core includes positive plate, negative electrode tab and is interval in
Diaphragm between the positive plate and negative electrode tab, successively battery core is made in lamination or winding in order;The positive plate is equipped with anode
Tab;The negative electrode tab is equipped with negative lug;The top cover is equipped with the Positive Poles being electrically connected with the positive pole ear and institute
State the negative pole of negative lug electrical connection;The negative electrode tab includes negative current collector and coated in negative on negative current collector
Pole active material layer;Positive plate includes plus plate current-collecting body and coated in the anode active material layer on plus plate current-collecting body, feature
It is that negative electrode tab is provided with thermally conductive heat collection body, the thermally conductive heat collection body is the positive part or/and reverse side part of negative current collector
The collector of uncoated negative electrode active material layer, thermally conductive heat collection body builds up thermally conductive thermal-arrest in the same area up and down at least more than two panels
Heat sink runner, constitute the thermal energy disengaging heat sink runner of battery core, heat sink runner overlaps or is connected with fluid course component;Metal-back
Electrolyte more than needed is arranged at body lower part, and fluid course component immerses electrolyte more than needed.In this way, thermally conductive heat collection body and negative electrode tab one at
Type simplifies process, improves production efficiency, thermally conductive heat collection body is overlapped to form heat sink runner in upper and lower the same area, and lead to
It crosses fluid flow path features heat sink runner is heated or cooled, internal temperature of battery can be realized and be raised and lowered, maintain electricity always
Battery working efficiency is improved in suitable operating temperature in pond, extends battery life, eliminates safe hidden trouble.Metal shell lower part has
Electrolyte more than needed, fluid course component immerse electrolyte more than needed, so that electrolyte can also be cooling by fluid course or be added
Heat, and keep internal temperature of battery balanced.
The heat sink runner is thermally conductive heat collection body by being welded and fixed to be formed.In this way, by welding by thermally conductive collection
Hot body overlapping fixation forms heat sink runner, is not only firmly combined, but also advantageously reduce battery quality, it is close to improve the energy content of battery
Degree.
It is described to be welded as supersonic welding, Laser Welding or friction welding (FW).
The heat sink runner is that thermally conductive heat collection body is formed by the way that bolt or riveting are fixed.In this way, by bolt or riveting
Mode overlaps fixed thermally conductive heat collection body and forms heat sink runner, will not damage to diaphragm etc..
The heat sink runner is that thermally conductive heat collection body bending described in multilayer is integrally fixed.In this way, the heat on thermally conductive heat collection body
Amount would be even more beneficial to concentrate on heat sink runner, is conducive to cooling or heats.
The angle of the thermally conductive heat collection body bending and negative electrode tab is 0-90 °.In this way, the heat on thermally conductive heat collection body will more have
Conducive to heat sink runner is concentrated on, is conducive to cooling or heats.
The heat sink runner is that the thermally conductive unidirectional bending of heat collection body described in multilayer is integrally fixed.In this way, heat sink runner was both pacified
It fills more convenient, and is conducive to cooling or heats.
The heat sink runner is that the thermally conductive forward and reverse bending of heat collection body described in multilayer is integrally fixed.In this way, thermally conductive heat collection body
Between contact, heat sink runner is conducive to cooling or heats.
The heat sink runner is that the thermally conductive heat collection body of part multilayer bending is fixed with the straight thermally conductive heat collection body
Integrally.In this way, contacting between thermally conductive heat collection body, heat sink runner is conducive to cool down.
The thermally conductive heat collection body of part multilayer bending is unidirectional bending.In this way, process is fairly simple.
The thermally conductive heat collection body of part multilayer bending is positive, inverse bending.In this way, being contacted between thermally conductive heat collection body, heat
Confluence road is conducive to cooling or heats.
The perforation of some or all of described thermally conductive heat collection body or 3D perforation or 3D are concave-convex.In this way, the surface of thermally conductive heat collection body
Product increases, and is more advantageous to cooling or heating.
Perforation is accompanied between the thermally conductive heat collection body, netted, 3D perforates, the thermally conductive heat-collecting part of 3D bumps.In this way, thermally conductive
The surface area of heat collection body increases, and is more advantageous to cooling or heating.
The perforation of bending is accompanied between the thermally conductive heat collection body, netted, 3D perforates, itself thermally conductive heat collection body of 3D bumps.
In this way, the cooling of thermally conductive heat collection body or heating effect are good.
There are insulating layer, thermal insulation layer or insulating film in the thermally conductive heat collection body surface.This way it is possible to avoid thermally conductive heat collection body
Short circuit occurs for place, eliminates safe hidden trouble.
The heat sink water passage surface has insulating layer or insulating film.This way it is possible to avoid short circuit occurs at heat sink runner, eliminate
Security risk.
The heat sink runner is located at at least side of the ipsilateral of the negative lug, opposite side and sides adjacent.In this way, can be with
According to demand, the position of heat sink runner is set.
The heat sink runner has one or two or three in the side of negative lug.In this way, can be arranged according to demand
The number of heat sink runner, preferably controls battery temperature.
The thermally conductive heat collection body protrudes from negative electrode tab.In this way, being conducive to overlap between thermally conductive heat collection body, be conducive to heat
It imports or/and exports.
The thermally conductive heat collection body of protrusion protrudes into the electrolyte in battery case.In this way, the heat of thermally conductive heat collection body can
It importing in electrolyte, heat reaches rapidly battery surface through electrolyte, it avoids because diaphragm heat transfer property is bad, and heat is caused to exist
Inside battery gathers, and causes dangerous;The heat in electrolyte can also rapidly import pole piece by thermally conductive heat collection body simultaneously, keep away
It is too low to exempt from battery temperature.
Electrolyte heat exchanger is heated or cooled in the electrolyte.In this way, by heat-exchange device to electrolyte
It is heated or cooled, electrolyte is again heated or cooled thermally conductive heat collection body, and battery temperature is made to maintain suitable model
In enclosing.
The thermally conductive heat collection body is depressed in negative electrode tab.In this way, being conducive to reduce battery weight, battery energy density is improved.
The thermally conductive heat collection body is connected position with negative electrode tab with wide.In this way, in the case where not increasing battery weight, it is thermally conductive
Heat collection body and negative electrode tab connecting portion contact area are maximum, and heat-conducting effect is best.
The collector of showing up is parallel to anode active material layer.In this way, production technology is convenient, high production efficiency.
The collector of showing up is complete or collected works' fluid.In this way, good heat conduction effect.
The collector of showing up is in the middle part of ipsilateral covering anode active material layer.
Temperature sensor is provided on the heat sink runner.In this way, the temperature on heat sink runner can be monitored accurately, reach control
The purpose of heating confluence channel temp.
The temperature sensor is film temperature sensor.In this way, not only can accurately monitor temperature, but also small etc. with weight
The energy density of battery can be improved in feature.
The lamination is composite laminate or packed or shred lamination.
The positive electrode active materials are LiFePO4, cobalt acid lithium, LiMn2O4 or ternary material.
The negative electrode active material is carbon negative pole material, tin base cathode material, lithium-containing transition metal nitride negative material
Or alloy type negative material.
The fluid course component flow channel inner wall has at insulating layer or/and fluid course docking and has insulating layer.In this way, can be with
It avoids causing short circuit because of fluid course component, eliminate safe hidden trouble.
The fluid course member outer surface has insulating layer.This way it is possible to avoid short circuit is caused because of fluid course component,
It eliminates safe hidden trouble.
The fluid course component is fluid course pipe fitting or air conditioner coolant pipe fitting or the heat being made of shell and liquid-sucking core
Pipe.In this way, the effect being heated or cooled is relatively good.
There is fin in the fluid course component.In this way, being more advantageous to fluid course pieces conduct heat.
(4) Detailed description of the invention
Fig. 1 is the structural schematic diagram of the embodiment of the present invention 1;
Fig. 2 is the schematic diagram of cell structure in Fig. 1;
Fig. 3 is the schematic diagram of the section structure of battery core in Fig. 1;
Fig. 4 is the schematic diagram of the section structure of battery core;
Fig. 5 is the structural schematic diagram of the embodiment of the present invention 5;
Fig. 6 is the structural schematic diagram of the embodiment of the present invention 6;
Fig. 7 is the structural schematic diagram of the embodiment of the present invention 7;
Fig. 8 is the structural schematic diagram of the embodiment of the present invention 8;
Fig. 9 is the structural schematic diagram of the embodiment of the present invention 9;
Figure 10 is the structural schematic diagram of the embodiment of the present invention 10
Figure 11 is the structural schematic diagram of the embodiment of the present invention 11;
Figure 12 is the structural schematic diagram of the embodiment of the present invention 12;
Figure 13 is the structural schematic diagram of the embodiment of the present invention 13.
(5) specific embodiment
The present invention is described in further detail below in conjunction with the accompanying drawings.
The technical solution of the present invention is as follows: lithium-ion-power cell, including battery core, the metal-back for accommodating the battery core
Body, the top cover for being injected into the intracorporal electrolyte of the metal-back and being fixedly connected on the metal shell;The battery core includes
Positive plate, negative electrode tab and the diaphragm being interval between the positive plate and negative electrode tab, successively electricity is made in lamination or winding in order
Core;The positive plate is equipped with positive pole ear;The negative electrode tab is equipped with negative lug;The top cover is equipped with and the positive pole ear
The Positive Poles of electrical connection, the negative pole being electrically connected with the negative lug;The negative electrode tab include negative current collector and
Coated in the anode active material layer on negative current collector;Positive plate includes plus plate current-collecting body and coated on plus plate current-collecting body
Anode active material layer, it is characterised in that negative electrode tab is provided with thermally conductive heat collection body, and the thermally conductive heat collection body is negative current collector
The collector of positive part or/and reverse side part uncoated negative electrode active material layer, at least more than two panels above and below thermally conductive heat collection body
The heat sink runner of thermally conductive thermal-arrest is built up in the same area, constitutes the thermal energy disengaging heat sink runner of battery core, heat sink runner overlaps or connects
It is connected to fluid course component;Electrolyte more than needed is arranged at metal shell lower part, and fluid course component immerses electrolyte more than needed.
In each attached drawing, 1 is positive pole ear, and 2 be negative lug, and 3 be positive terminal, and 4 be negative terminal, and 5 be thermally conductive thermal-arrest
Body, 6 be fluid course component, and 7 be battery core, and 8 be heat-exchange device, and 9 be metal shell, and 10 top covers, 11 be heat sink runner.
As shown in figure 1, positive and negative tab setting is provided with thermally conductive heat collection body 5 on the same end, positive/negative plate, and is arranged in pole
The positive terminal 3 being arranged on the opposite end of ear, the i.e. bottom end of metal shell 9, positive pole ear 1 and top cover 10 is by being electrically connected in succession
It connects, the negative terminal 4 being arranged in negative lug 1 and top cover 10 is by being electrically connected connection.Fig. 2 is the structural representation of battery core in Fig. 1
Figure, Fig. 3 are the diagrammatic cross-section of Fig. 2, and thermally conductive heat collection body 5 is connect integral with collector in Fig. 2, Fig. 3.It is multiple thermally conductive in Fig. 4
Heat collection body 5 links together, and forms the heat sink runner 11 of thermally conductive thermal-arrest.
As shown in figure 5, positive and negative tab setting is in the same end, thermally conductive heat collection body 5 is arranged between positive/negative plate, multiple thermally conductive
Heat collection body 5 is overlapped into heat sink runner 11, and fluid course component 6 is arranged on heat sink runner 11, and fluid course component 6 is from negative pole end
The intermediate of son 4 enters, and comes out from 3 one end of positive terminal, is reserved with fluid course in the centre of positive terminal 3 and negative terminal 4
The disengaging pore of component 6, another program fluid course component 6 can also enter from positive terminal 3, come out from negative terminal 4,
There are heat-exchange device 8 and fluid course component 6 to constitute a complete energy circulation outside battery case 9.
As shown in fig. 6, positive and negative tab setting is in the same end, thermally conductive heat collection body 5 is arranged between positive/negative plate, multiple thermally conductive
Heat collection body 5 is overlapped into heat sink runner 11, and fluid course component 6 is arranged on heat sink runner 11, and fluid course component 6 is from top cover 10
The side of end face enters, and comes out from the side of 10 end face of top cover, there is heat-exchange device 8 and fluid course portion outside battery case
Part 6 constitutes a complete energy circulation.
As shown in fig. 7, positive and negative tab setting is in the same end, thermally conductive heat collection body 5 is arranged between positive/negative plate, can be set
It on positive plate, also can be set in negative electrode tab, multiple thermally conductive heat collection bodies 5 are overlapped into heat sink runner 11, fluid course component 6
It is arranged on heat sink runner 11, the port that fluid course component 6 is reserved from 10 end face of top cover passes in and out, and inlet and outlet is respectively provided with
In the port, there are heat-exchange device 8 and fluid course component 6 to constitute a complete energy circulation outside battery case.
As shown in figure 8, positive and negative tab is arranged in the same end, the opposite end of positive and negative tab is arranged in thermally conductive heat collection body 5, can be with
It is arranged on positive plate, also can be set in negative electrode tab, multiple thermally conductive heat collection bodies 5 are overlapped into heat sink runner 11, fluid course
Component 6 is arranged on heat sink runner 11, and fluid course component 6 enters from the bottom surface side of metal shell 9, from 9 bottom of metal shell
The other side in face comes out, and has heat-exchange device 8 to constitute a complete energy with fluid course component 6 outside battery case and follows
Ring.
As shown in figure 9, positive and negative tab is arranged in the same end, the opposite end of positive and negative tab is arranged in thermally conductive heat collection body 5, can be with
It is arranged on positive plate, also can be set in negative electrode tab, multiple thermally conductive heat collection bodies 5 are overlapped into heat sink runner 11, fluid course
Component 6 be arranged on heat sink runner 11, fluid course component 6 from the bottom surface of metal shell 9 reserve port pass in and out, import and
Outlet is arranged at the port, has heat-exchange device 8 and fluid course component 6 to constitute a complete energy outside battery case
Amount circulation.
As shown in Figure 10, positive and negative tab setting is in the same end, and thermally conductive heat collection body 5 is arranged between positive/negative plate, thermally conductive collection
Hot body 5 connect integral with negative electrode tab, and multiple thermally conductive heat collection bodies 5 are overlapped into heat sink runner 11, and fluid course component 6 is arranged in heat
Converge on road 11, fluid course component 6 is come in from the pore that the centre of negative terminal 4 is reserved, in positive terminal and negative pole end
The centre of son is reserved with the disengaging pore of fluid course component 6;(thermally conductive heat collection body 5 connects into whole with positive plate in another program
Body, case fluid course component 6 reserve the disengaging pore disengaging of fluid flow path features 6 from positive terminal 3), outside battery case
There are heat-exchange device 8 and fluid course component 6 to constitute a complete energy circulation.
As shown in figure 11, positive and negative tab is arranged in the same end, and the side of battery core 7 is arranged in thermally conductive heat collection body 5, multiple thermally conductive
Heat collection body 5 is overlapped into heat sink runner 11, and fluid course component 6 is arranged on heat sink runner 11, and fluid course component 6 is from metal-back
The reserved port disengaging in the side of body 9, has heat-exchange device 8 and the composition of fluid course component 6 one complete outside battery case
Whole energy circulation.
As shown in figure 12, positive and negative tab is arranged in the same end, and the side of battery core 7, and indent is arranged in thermally conductive heat collection body 5
With pole piece, multiple thermally conductive heat collection bodies 5 are overlapped into heat sink runner 11, and fluid course component 6 is arranged on heat sink runner 11, fluid stream
The port that road component 6 is reserved from the side of metal shell 9 passes in and out, and has heat-exchange device 8 and fluid course outside battery case
Component 6 constitutes a complete energy circulation.
As shown in figure 13, positive and negative tab is arranged in the same end, and the side of battery core 7 is arranged in thermally conductive heat collection body 5, multiple thermally conductive
Heat collection body 5 is overlapped into heat sink runner 11, and fluid course component 6 is arranged on heat sink runner 11, and the entrance of fluid course component 6 is set
It sets in the side of metal shell 9, the different location of the ipsilateral of metal shell 9 is arranged in the outlet of fluid course component 6, in electricity
There are heat-exchange device 8 and fluid course component 6 to constitute a complete energy circulation outside the shell of pond.
Above content is enumerating for specific embodiments of the present invention, for the equipment and structure of wherein not detailed description, is answered
When being interpreted as that the existing common apparatus in this field and universal method is taken to be practiced.
The above embodiment of the present invention is only to illustrate that technical solution of the present invention is used simultaneously, only the column of technical solution of the present invention
It lifts, the technical solution and its protection scope being not intended to restrict the invention.Using equivalent technologies mean, equivalent apparatus etc. to this hair
The improvement of technical solution disclosed in bright claims and specification is considered to be without departing from claims of the present invention
And range disclosed in specification.
Claims (5)
1. lithium-ion-power cell, metal shell including battery core, for accommodating the battery core is injected into the metal shell
Electrolyte and the top cover that is fixedly connected on the metal shell;The battery core includes positive plate, negative electrode tab and is interval in institute
The diaphragm between positive plate and negative electrode tab is stated, successively battery core is made in lamination or winding in order;The positive plate is equipped with positive pole
Ear;The negative electrode tab is equipped with negative lug;The top cover be equipped be electrically connected with the positive pole ear Positive Poles, with it is described
The negative pole of negative lug electrical connection;The negative electrode tab includes negative current collector and coated in the cathode on negative current collector
Active material layer;Positive plate includes plus plate current-collecting body and coated in the anode active material layer on plus plate current-collecting body, and feature exists
Negative electrode tab is provided with thermally conductive heat collection body, the positive part or/and reverse side part that the thermally conductive heat collection body is negative current collector are not
The collector for coating anode active material layer, thermally conductive heat collection body builds up thermally conductive thermal-arrest in the same area up and down at least more than two panels
Heat sink runner, constitutes the thermal energy disengaging heat sink runner of battery core, and heat sink runner overlaps or be connected with fluid course component;Metal shell
Electrolyte more than needed is arranged at lower part, and fluid course component immerses electrolyte more than needed.
2. lithium-ion-power cell as described in claim 1, it is characterised in that the heat sink runner is that thermally conductive heat collection body passes through
It is welded and fixed to be formed;Or the heat sink runner is that thermally conductive heat collection body is formed by the way that bolt or riveting are fixed;Or the heat sink
Runner is that thermally conductive heat collection body bending described in multilayer is integrally fixed;Or the heat sink runner is that the described of part multilayer bending is led
Hot heat collection body is integrally fixed with the straight thermally conductive heat collection body;Or the perforation of some or all of thermally conductive heat collection body or 3D are worn
Hole or 3D are concave-convex;Or accompanied between thermally conductive heat collection body perforation, netted, 3D perforation, 3D bumps thermally conductive heat-collecting part;Or it leads
The perforation of bending is accompanied between hot heat collection body, netted, 3D perforates, itself thermally conductive heat collection body of 3D bumps;Or thermally conductive heat collection body
There are insulating layer, thermal insulation layer or insulating film in surface;Or the heat sink water passage surface has insulating layer or insulating film;Or it is described
Heat sink runner is located at at least side of the ipsilateral of the negative lug, opposite side and sides adjacent;Or the heat sink runner is negative
There are one or two or three in the side of pole tab;Or thermally conductive heat collection body protrudes from negative electrode tab;Or thermally conductive heat collection body recess
In negative electrode tab;Or thermally conductive heat collection body is connected position with negative electrode tab with wide;Or collector of showing up is parallel to negative electrode active material
Layer;Or collector of showing up is complete or collected works' fluid;Or collector of showing up is in the middle part of ipsilateral covering anode active material layer;Or heat
Confluence is provided with temperature sensor on road;Or the lamination is composite laminate or packed or shred lamination;Or the anode
Active material is LiFePO4, cobalt acid lithium, LiMn2O4 or ternary material;Or the negative electrode active material be carbon negative pole material,
Tin base cathode material, lithium-containing transition metal nitride negative material or alloy type negative material.
3. lithium-ion-power cell as claimed in claim 2, it is characterised in that described to be welded as supersonic welding, Laser Welding or rub
Wipe weldering;Or the angle of the thermally conductive heat collection body bending and negative electrode tab is 0-90 °;Or the heat sink runner is to lead described in multilayer
The hot unidirectional bending of heat collection body is integrally fixed;Or the heat sink runner is that the thermally conductive forward and reverse bending of heat collection body described in multilayer is solid
It is fixed integral;Or the thermally conductive heat collection body of part multilayer bending is unidirectional bending;Or the described of part multilayer bending is led
Hot heat collection body is positive, inverse bending;Or the thermally conductive heat collection body of protrusion protrudes into the electrolyte in battery case;Or institute
Stating temperature sensor is film temperature sensor.
4. lithium-ion-power cell as claimed in claim 3, it is characterised in that electrolysis is heated or cooled in the electrolyte
Liquid heat exchanger.
5. lithium-ion-power cell as described in claim 1, it is characterised in that the fluid course component flow channel inner wall has absolutely
There is insulating layer at edge layer or/and fluid course docking;Or the fluid course member outer surface has insulating layer;Or the stream
Body flow path features are fluid course pipe fitting or air conditioner coolant pipe fitting or the heat pipe being made of shell and liquid-sucking core;Or the fluid
There is fin in flow path features.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710503381.9A CN109860607A (en) | 2017-06-28 | 2017-06-28 | A kind of lithium-ion-power cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710503381.9A CN109860607A (en) | 2017-06-28 | 2017-06-28 | A kind of lithium-ion-power cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109860607A true CN109860607A (en) | 2019-06-07 |
Family
ID=66887288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710503381.9A Pending CN109860607A (en) | 2017-06-28 | 2017-06-28 | A kind of lithium-ion-power cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109860607A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102593509A (en) * | 2012-02-28 | 2012-07-18 | 浙江南博电源科技有限公司 | High-capacity square lithium ion battery |
CN103165952A (en) * | 2011-12-09 | 2013-06-19 | 乐荣工业股份有限公司 | Lithium battery core capable of radiating heat by directly conducting heat from internal to external |
CN103730625A (en) * | 2013-12-31 | 2014-04-16 | 张晓红 | Lithium-ion battery with high rate discharge performance |
CN204991880U (en) * | 2015-09-24 | 2016-01-20 | 中信国安盟固利动力科技有限公司 | Lithium ion battery cell of control temperature rise |
-
2017
- 2017-06-28 CN CN201710503381.9A patent/CN109860607A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103165952A (en) * | 2011-12-09 | 2013-06-19 | 乐荣工业股份有限公司 | Lithium battery core capable of radiating heat by directly conducting heat from internal to external |
CN102593509A (en) * | 2012-02-28 | 2012-07-18 | 浙江南博电源科技有限公司 | High-capacity square lithium ion battery |
CN103730625A (en) * | 2013-12-31 | 2014-04-16 | 张晓红 | Lithium-ion battery with high rate discharge performance |
CN204991880U (en) * | 2015-09-24 | 2016-01-20 | 中信国安盟固利动力科技有限公司 | Lithium ion battery cell of control temperature rise |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109860607A (en) | A kind of lithium-ion-power cell | |
CN109935935A (en) | A kind of lithium-ion-power cell | |
CN109860807A (en) | A kind of lithium-ion-power cell | |
CN109860765A (en) | A kind of lithium-ion-power cell | |
CN110112498A (en) | A kind of lithium-ion-power cell | |
CN109860780A (en) | A kind of lithium-ion-power cell | |
CN109860784A (en) | A kind of lithium-ion-power cell | |
CN109921026A (en) | A kind of lithium-ion-power cell | |
CN109860771A (en) | A kind of lithium-ion-power cell | |
CN110021756A (en) | A kind of lithium-ion-power cell | |
CN109860779A (en) | A kind of lithium-ion-power cell | |
CN110137598A (en) | A kind of lithium-ion-power cell | |
CN109860796A (en) | A kind of lithium-ion-power cell | |
CN109860782A (en) | A kind of lithium-ion-power cell | |
CN109860809A (en) | A kind of lithium-ion-power cell | |
CN109860689A (en) | A kind of lithium-ion-power cell | |
CN109860840A (en) | A kind of lithium-ion-power cell | |
CN109873169A (en) | A kind of lithium-ion-power cell | |
CN109860767A (en) | A kind of lithium-ion-power cell | |
CN109860772A (en) | A kind of lithium-ion-power cell | |
CN109860810A (en) | A kind of lithium-ion-power cell | |
CN109873234A (en) | A kind of lithium-ion-power cell | |
CN109935924A (en) | A kind of lithium-ion-power cell | |
CN109860812A (en) | A kind of lithium-ion-power cell | |
CN109935838A (en) | A kind of lithium-ion-power cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210121 Address after: Room 702, superstar entrepreneurial base, No.8 Lujing Road, Changsha high tech Development Zone, Changsha City, Hunan Province, 410205 Applicant after: Changsha Juneng new energy Co.,Ltd. Address before: Room 706, superstar entrepreneurial base, No.8 Lujing Road, high tech Development Zone, Changsha City, Hunan Province, 410205 Applicant before: HUNAN MELSEN CAR POWER Co.,Ltd. |
|
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190607 |