CN109856368B - 一种历史时期土壤侵蚀碳库流失量计算的方法 - Google Patents

一种历史时期土壤侵蚀碳库流失量计算的方法 Download PDF

Info

Publication number
CN109856368B
CN109856368B CN201910241839.7A CN201910241839A CN109856368B CN 109856368 B CN109856368 B CN 109856368B CN 201910241839 A CN201910241839 A CN 201910241839A CN 109856368 B CN109856368 B CN 109856368B
Authority
CN
China
Prior art keywords
soil
age
erosion
carbon
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910241839.7A
Other languages
English (en)
Other versions
CN109856368A (zh
Inventor
王凯博
时伟宇
邓蕾
上官周平
陈怡平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Earth Environment of CAS
Original Assignee
Institute of Earth Environment of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Earth Environment of CAS filed Critical Institute of Earth Environment of CAS
Priority to CN201910241839.7A priority Critical patent/CN109856368B/zh
Publication of CN109856368A publication Critical patent/CN109856368A/zh
Application granted granted Critical
Publication of CN109856368B publication Critical patent/CN109856368B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

本发明公开了一种历史时期土壤侵蚀碳库流失量计算的方法,涉及环境科学领域,主要包括以下步骤:S1:未侵蚀土壤剖面深度‑年龄关系函数的建立;S2:侵蚀区土壤剖面分层采样与土壤年龄测定;S3:侵蚀区土壤侵蚀量的计算;S4:侵蚀区土壤侵蚀碳库流失量计算。本发明利用14C测年技术和土壤沉积理论,将土壤侵蚀量与土壤碳库流失量估算相结合,提供了一种黄土高原不同立地条件下土壤侵蚀碳库流失量的计算方法,弥补了历史时期土壤侵蚀碳库流失量的计算方法的缺失。

Description

一种历史时期土壤侵蚀碳库流失量计算的方法
技术领域
本发明涉及环境科学领域,具体为一种历史时期土壤侵蚀碳库流失量计算的方法。
背景技术
土壤是陆地生态系统最大的碳库,土壤碳库源汇格局的变化会对大气CO2浓度产生重要影响,进而影响全球气候变化。一方面,土壤具有巨大的碳汇潜力,通过合适的生态系统管理措施,全球土壤固碳潜力高达0.4-1.2Pg C yr-1,大约能够抵消全球每年化石燃料排放CO2的5-15%。另一方面,如果对土壤碳库管理不当,土壤可能成为巨大的CO2排放源。自然生态系统转化为农业生态系统会导致温带地区土壤碳库下降60%左右,而在热带地区土壤有机碳库的损失可能超过75%。因此,土壤碳库的有效管理对于增加土壤碳汇,降低大气CO2浓度,缓解全球气候变暖等方面具有重要意义。
土壤侵蚀导致的有机碳和无机碳的流失是土壤碳库损失的重要途径。侵蚀作用在对土壤进行剥蚀,分解,迁移和沉积的过程中,土壤碳库也随之发生变化。研究土壤侵蚀环境下土壤碳库的变化及其稳定性机制是当前世界研究的热点问题,对进一步厘清侵蚀作用的土壤碳库源汇效应,深入认识陆地生态系统碳循环过程和准确估算区域碳平衡都有着重要意义。由于土质疏松、暴雨集中、植被破坏严重等原因,黄土高原是我国乃至世界上水土流失最为严重的区域之一,其入黄泥沙量曾高达16亿吨。尽管历史时期的土壤碳库损失量巨大,但当前全球碳循环研究中对土壤侵蚀损失碳库的研究十分薄弱,在全球碳循环模型中较少包括土壤侵蚀碳库模块,亟需加强该方面的研究。
当前,对历史时期土壤侵蚀量的估算方法主要有两种:(1)基于流域沟谷体积变化进行外推的方法;(2)利用河流下游三角洲的沉积量进行计算。然而,上述方法主要用于流域和区域尺度土壤侵蚀量和侵蚀碳库损失量的估算,无法进行立地尺度的土壤侵蚀及碳库损失量的估算。为此,本发明提供了一种历史时期土壤侵蚀碳库流失量的计算方法,用于计算黄土高原地区不同立地条件下的历史时期土壤侵蚀及碳库损失量。
发明内容
本发明的目的在于提供一种历史时期土壤侵蚀碳库流失量计算的方法,其特征在于,该历史时期土壤侵蚀碳库流失量计算的方法包含以下步骤:
S1:未侵蚀土壤剖面深度-年龄关系函数的建立:选择土壤剖面保存完好,未发生明显侵蚀的黄土高原典型塬区作为参照位点,进行土壤剖面开挖和样品采集;在开挖剖面分层进行高分辨率土壤样品采集,利用14C测年技术,测定不同土层对应土壤年龄,然后利用不同土层14C测年结果,建立土壤剖面深度-年龄关系函数;
其中,所述土壤深度-土壤年龄关系曲线,拟合二者关系模型的计算公式为:
f(x)=ax+b (1)
式中:x为土层深度,f(x)为对应土层年龄,a和b为模型拟合系数,斜率a表示参考位点土壤沉积速率,该值为无侵蚀发生情况下研究区土壤理论沉积速率
S2:侵蚀区土壤剖面分层采样与14C年龄测定:选择拟开展研究区域进行土壤剖面开挖和样品采集,分层采集土壤样品,将采集的样品分层混合均匀后进行14C测年,所测样品年龄代表该土层范围内土壤样品平均年龄;根据采样土层厚度,利用参考位点的土壤深度-年龄关系函数,计算获得不同土层厚度土壤年龄范围;
其中,所述土壤年龄范围计算公式如下:
A=Am±Td×(Di/2) (2)
式中:A表示某一土层土壤年龄的上限和下限值,Am表示该土层实测平均年龄值,Td表示单位土壤沉积速率,为S1计算获得,Di表示第i层土壤采样厚度
S3:侵蚀区土壤侵蚀量的计算:对比不同土层土壤年龄,确认整个剖面土壤年龄是否连续,若相邻土层之间土壤年龄不连续,则认为该段时期有土壤侵蚀发生;根据相邻土层间土壤年龄,计算土壤剖面年代缺失,并根据沉积速率,进一步计算缺失土壤厚度,即土壤侵蚀量;
S4:侵蚀区土壤侵蚀碳库流失量计算:首先,采用环刀法测定不同土层土壤容重,其次,对采集的不同土层土壤样品进行有机碳和无机碳含量测定;最后,计算出土壤侵蚀的有机碳、无机碳和总碳库量的流失量;
其中,所述土壤侵蚀的有机碳、无机碳和总碳库量的流失量的计算公式为:
SOCDe=De×BDm×SOCm/10 (3)
SICDe=De×BDm×SICm/10 (4)
STCDe=SOCDe+SICDe (5)
式中:SOCDe和SICDe分别表示单位面积侵蚀的土壤有机碳和无机碳库量,STCDe表示单位面积土壤侵蚀总碳库量,De表示侵蚀土层总厚度,BDm表示土壤剖面加权平均容重,SOCm和SICm表示土壤剖面加权平均有机碳和无机碳含量,10表示单位换算系数。
2.根据权利要求1所述的一种历史时期土壤侵蚀碳库流失量计算的方法,其特征在于,所述S1的未侵蚀土壤剖面位于黄土高原典型塬区。
3.根据权利要求1所述的一种历史时期土壤侵蚀碳库流失量的计算方法,其特征在于,所述S1要求未侵蚀区土壤剖面深度不小于2m,土壤剖面分层采样厚度不大于5cm,土壤年龄为土壤有机碳14C测年获得,通过高分辨率采样以保证足够的样点进行土壤深度-年龄关系模型拟合。
与现有技术相比,本发明的有益效果是:本发明提供了一种利用放射性14C同位素测年技术和土壤沉积理论估算历史时期土壤侵蚀碳库损失量的计算方法,该方法通过在黄土高原典型塬区建立高分辨率土壤深度-土壤年龄函数关系,计算该区非侵蚀条件下土壤沉积速率和单位厚度土壤沉积时间,外推由侵蚀导致的研究区土壤剖面年代缺失和对应侵蚀量,进而估算不同立地条件下侵蚀地区土壤侵蚀量和碳库损失量,该方法从立地尺度上计算黄土高原地区不同立地条件下的历史时期土壤侵蚀及碳库损失量。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
一种历史时期土壤侵蚀碳库流失量计算的方法,该历史时期土壤侵蚀碳库流失量计算的方法包含以下步骤:
S1:未侵蚀土壤剖面深度-年龄关系函数的建立。选择土壤剖面保存完好,未发生明显侵蚀的黄土高原典型塬区作为参照位点,进行土壤剖面开挖和样品采集;在开挖剖面分层进行高分辨率土壤样品采集,利用14C测年技术,测定各不同土层对应土壤年龄,然后利用不同土层14C测年结果,建立土壤剖面深度-年龄关系函数;
S2:侵蚀区土壤剖面分层采样与14C年龄测定。选择拟开展研究区域进行土壤剖面开挖和样品采集,分层采集土壤样品,将采集的样品分层混合均匀后进行14C测年,所测样品年龄代表该土层范围内土壤样品平均年龄;根据采样土层厚度,利用参考位点的土壤深度-年龄关系函数,计算获得不同土层厚度土壤年龄范围;
S3:侵蚀区土壤侵蚀量的计算。对比不同土层土壤年龄,确认整个剖面土壤年龄是否连续,若相邻土层之间土壤年龄不连续,则认为该段时期有土壤侵蚀发生;根据相邻土层间土壤年龄,计算土壤剖面年代缺失,并根据沉积速率,进一步计算缺失土壤厚度,即土壤侵蚀量。
S4:侵蚀区土壤侵蚀碳库流失量计算。首先,采用环刀法测定不同土层土壤容重,其次,对采集的不同土层土壤样品进行有机碳和无机碳含量测定;最后,根据公式计算土壤侵蚀的有机碳、无机碳和总碳库量的流失量。
所述S1的未侵蚀土壤剖面位于黄土高原典型塬区。
所述S1要求未侵蚀区土壤剖面深度不小于2m,土壤剖面分层采样厚度不大于5cm,土壤年龄为土壤有机碳14C测年获得,通过高分辨率采样以保证足够的样点进行土壤深度-年龄关系模型拟合。
S1中所述土壤深度-土壤年龄关系曲线,拟合二者关系模型的计算公式为:
f(x)=ax+b (1)
式中:x为土层深度(cm),f(x)为对应土层年龄(year),a和b为模型拟合系数,斜率a表示参考位点土壤沉积速率,该值为无侵蚀发生情况下研究区土壤理论沉积速率。
S2中所述土壤年龄范围计算公式如下:
A=Am±Td×(Di/2) (2)
式中:A(年)表示某一土层土壤年龄的上限和下限值,Am(年)表示该土层实测平均年龄值,Td(年)表示单位土壤沉积速率(S1计算获得),Di(cm)表示第i层土壤采样厚度(cm)。
S4中所述土壤侵蚀的有机碳、无机碳和总碳库量的流失量的计算公式为:
SOCDe=De×BDm×SOCm/10 (3)
SICDe=De×BDm×SICm/10 (4)
STCDe=SOCDe+SICDe (5)
式中:SOCDe和SICDe分别表示单位面积侵蚀的土壤有机碳和无机碳库量(Mg ha-1),STCDe表示单位面积土壤侵蚀总碳库量(Mg ha-1),De表示侵蚀土层总厚度(cm),BDm表示土壤剖面加权平均容重(g cm-3),SOCm和SICm表示土壤剖面加权平均有机碳和无机碳含量(g kg-1),10表示单位换算系数。
(一)未侵蚀土壤剖面深度-年龄关系函数的建立:
参照区的选择:以黄土高原洛川塬为参照区域。
①选择该区域土壤剖面保存完好,未发生明显侵蚀的黄土高原典型塬区作为参照位点,进行土壤剖面开挖和样品采集;
②在开挖剖面分层进行高分辨率土壤样品采集,利用14C测年技术,测定各不同土层对应土壤年龄(要求:剖面深度不小于2m,同时对土壤剖面进行高分辨率采样以保证足够的样点进行土壤深度-年龄关系模型拟合);
③利用不同土层14C测年结果,建立土壤深度-土壤年龄关系曲线;
④根据土壤深度-土壤年龄关系曲线,拟合二者关系模型:f(x)=ax+b,式中x为土层深度,f(x)为对应土层年龄,a和b为模型拟合系数,斜率a表示参考位点土壤沉积速率,该值为无侵蚀发生情况下研究区土壤理论沉积速率;
⑤根据参照区土壤沉积速率计算沉积单位厚度土壤所需时间(Td);
利用该区已建立的高分辨率(200cm剖面,每5cm分层采样)土壤深度-土壤年龄关系模型(D=0.0179×Ad,D为土壤深度,Ad为对应土层土壤年龄),确定黄土高原土壤理论沉积速率为1.79cm/100a,即每沉积1cm土壤大约需要时间为56a(刘刚,2009,陕北黄土高原全新世气候影响下的黄土沉积速率,中国科学院研究生院博士学位论文)。
(二)侵蚀区土壤剖面分层采样与14C年龄测定:
实施地概况:研究区位于甘肃省合水县连家砭林场(36°02’-36°05’N,108°31’-108°32’E),该区多年平均降雨量为587mm,年平均气温为10℃。采样点海拔高度为1443m,植被类型为辽东栎次生林,立地类型为梁坡,土壤类型为森林灰褐土。在辽东栎林样地内设置10m×10m的样方,在样方中心位置挖掘1m深土壤剖面进行样品分层采集,采样深度分别0-10cm,10-20cm,20-30cm,30-50cm,50-70cm和70-100cm。用环刀法测定剖面各层土壤容重。将采集的土壤样品带回实验室,剔除动植物残体,自然风干后研磨过筛进行土壤有机碳14C年龄测定、有机碳和无机碳含量测定等。
①选择该区域进行土壤剖面开挖和样品采集;
②分层采集土壤样品,将采集的样品分层混合均匀后进行14C测年,所测样品年龄代表该土层范围内土壤样品平均年龄(表1);
表1辽东栎林各土层14C年龄、土壤有机碳(SOC)、无机碳(SIC)含量和土壤容重(BD)
Figure GDA0003062325380000071
(三)侵蚀区土壤侵蚀量的计算:
根据采样土层厚度,利用参考位点的土壤深度-年龄曲线,计算获得不同土层土壤年龄范围,计算公式如下:
A=Am±Td×(Di/2)
式中:A(年)表示某一土层土壤年龄的上限和下限值,Am表示该土层实测平均年龄值,Td表示单位土壤沉积速率,此处为56a/cm,Di(cm)表示第i层土壤采样厚度(cm)。以辽东栎林10-20cm土层为例,其土壤年龄上下限值为A=313±56×(10/2),即10-20cm土层对应年龄范围为33-593年,除表层土层起始年龄为0年外,其他土层依次类推(表1)。对比不同土层土壤年龄,确认整个剖面土壤年龄是否连续,若相邻土层之间土壤年龄不连续,则认为该段时期有土壤侵蚀发生;根据相邻土层间土壤年龄,计算土壤剖面年代缺失,并根据沉积速率,进一步计算缺失土壤厚度,即土壤侵蚀量。从表1可以看出,辽东栎林土层10-20cm与20-30cm,20-30cm与30-50cm,50-70cm和70-100cm之间出现了年代缺失,缺失年代分别为1451年,3918年和239年,累计缺失年代5608年,结合未侵蚀剖面土壤沉积速率0.0179cm/a计算可知辽东栎林位点历史时期土壤侵蚀量为100.4cm。
侵蚀区土壤侵蚀碳库流失量计算:
首先,对采集的不同土层土壤样品进行有机碳和无机碳含量测定,其次,采用环刀法测定不同土层土壤容重;最后,根据下列公式计算土壤侵蚀的有机碳、无机碳和总碳库量的流失量(表2)。
SOCDe=De×BDm×SOCm/10
SICDe=De×BDm×SICm/10
STCDe=SOCDe+SICDe
式中,SOCDe和SICDe分别表示单位面积侵蚀的土壤有机碳和无机碳库量(Mg ha-1),STCDe表示单位面积土壤侵蚀总碳库量(Mg ha-1),De表示侵蚀土层总厚度(cm),BDi表示土壤剖面加权平均容重(g cm-3),SOC和SICm表示土壤剖面加权平均有机碳和无机碳含量(gkg-1),10表示单位换算系数。
表2辽东栎林土壤侵蚀量和土壤有机碳库(SOCDe)、无机碳库(SICDe)和总碳库(STCDe)流失量
Figure GDA0003062325380000091
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (3)

1.一种历史时期土壤侵蚀碳库流失量计算的方法,其特征在于,该历史时期土壤侵蚀碳库流失量计算的方法包含以下步骤:
S1:未侵蚀土壤剖面深度-年龄关系函数的建立:选择土壤剖面保存完好,未发生明显侵蚀的黄土高原典型塬区作为参照位点,进行土壤剖面开挖和样品采集;在开挖剖面分层进行高分辨率土壤样品采集,利用14C测年技术,测定不同土层对应土壤年龄,然后利用不同土层14C测年结果,建立土壤剖面深度-年龄关系函数;
其中,所述土壤深度-土壤年龄关系曲线,拟合二者关系模型的计算公式为:
f(x)=ax+b (1)
式中:x为土层深度,f(x)为对应土层年龄,a和b为模型拟合系数,斜率a表示参考位点土壤沉积速率,该值为无侵蚀发生情况下研究区土壤理论沉积速率
S2:侵蚀区土壤剖面分层采样与14C年龄测定:选择拟开展研究区域进行土壤剖面开挖和样品采集,分层采集土壤样品,将采集的样品分层混合均匀后进行14C测年,所测样品年龄代表该土层范围内土壤样品平均年龄;根据采样土层厚度,利用参考位点的土壤深度-年龄关系函数,计算获得不同土层厚度土壤年龄范围;
其中,所述土壤年龄范围计算公式如下:
A=Am±Td×(Di/2) (2)
式中:A表示某一土层土壤年龄的上限和下限值,Am表示该土层实测平均年龄值,Td表示单位土壤沉积速率,为S1计算获得,Di表示第i层土壤采样厚度
S3:侵蚀区土壤侵蚀量的计算:对比不同土层土壤年龄,确认整个剖面土壤年龄是否连续,若相邻土层之间土壤年龄不连续,则认为该段时期有土壤侵蚀发生;根据相邻土层间土壤年龄,计算土壤剖面年代缺失,并根据沉积速率,进一步计算缺失土壤厚度,即土壤侵蚀量;
S4:侵蚀区土壤侵蚀碳库流失量计算:首先,采用环刀法测定不同土层土壤容重,其次,对采集的不同土层土壤样品进行有机碳和无机碳含量测定;最后,计算出土壤侵蚀的有机碳、无机碳和总碳库量的流失量;
其中,所述土壤侵蚀的有机碳、无机碳和总碳库量的流失量的计算公式为:
SOCDe=De×BDm×SOCm/10 (3)
SICDe=De×BDm×SICm/10 (4)
STCDe=SOCDe+SICDe (5)
式中:SOCDe和SICDe分别表示单位面积侵蚀的土壤有机碳和无机碳库量,STCDe表示单位面积土壤侵蚀总碳库量,De表示侵蚀土层总厚度,BDm表示土壤剖面加权平均容重,SOCm和SICm表示土壤剖面加权平均有机碳和无机碳含量,10表示单位换算系数。
2.根据权利要求1所述的一种历史时期土壤侵蚀碳库流失量计算的方法,其特征在于,所述S1的未侵蚀土壤剖面位于黄土高原典型塬区。
3.根据权利要求1所述的一种历史时期土壤侵蚀碳库流失量的计算方法,其特征在于,所述S1要求未侵蚀区土壤剖面深度不小于2m,土壤剖面分层采样厚度不大于5cm,土壤年龄为土壤有机碳14C测年获得,通过高分辨率采样以保证足够的样点进行土壤深度-年龄关系模型拟合。
CN201910241839.7A 2019-03-28 2019-03-28 一种历史时期土壤侵蚀碳库流失量计算的方法 Active CN109856368B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910241839.7A CN109856368B (zh) 2019-03-28 2019-03-28 一种历史时期土壤侵蚀碳库流失量计算的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910241839.7A CN109856368B (zh) 2019-03-28 2019-03-28 一种历史时期土壤侵蚀碳库流失量计算的方法

Publications (2)

Publication Number Publication Date
CN109856368A CN109856368A (zh) 2019-06-07
CN109856368B true CN109856368B (zh) 2021-06-25

Family

ID=66902302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910241839.7A Active CN109856368B (zh) 2019-03-28 2019-03-28 一种历史时期土壤侵蚀碳库流失量计算的方法

Country Status (1)

Country Link
CN (1) CN109856368B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113240291B (zh) * 2021-05-18 2023-04-18 中国科学院、水利部成都山地灾害与环境研究所 一种基于210Pbex退耕地土壤侵蚀速率评估方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216481A (zh) * 2008-01-04 2008-07-09 广东省生态环境与土壤研究所 一种反映区域土壤自然侵蚀程度的方法
CN103235103A (zh) * 2013-04-09 2013-08-07 中国科学院亚热带农业生态研究所 一种喀斯特地区土壤养分储量取样与计算方法
CN105699624A (zh) * 2016-03-07 2016-06-22 中国科学院南京土壤研究所 一种基于土壤发生层厚度预测的土壤有机碳储量估算方法
CN107766692A (zh) * 2017-09-29 2018-03-06 云南大学 一种基于pi模型的容许土壤流失量计算方法
CN108279183A (zh) * 2017-11-29 2018-07-13 贵州师范大学 一种河成石灰华中提取水土流失信息的方法
CN109033459A (zh) * 2018-08-30 2018-12-18 中国科学院地理科学与资源研究所 一种土壤容重数据空间格网化构建方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216481A (zh) * 2008-01-04 2008-07-09 广东省生态环境与土壤研究所 一种反映区域土壤自然侵蚀程度的方法
CN103235103A (zh) * 2013-04-09 2013-08-07 中国科学院亚热带农业生态研究所 一种喀斯特地区土壤养分储量取样与计算方法
CN105699624A (zh) * 2016-03-07 2016-06-22 中国科学院南京土壤研究所 一种基于土壤发生层厚度预测的土壤有机碳储量估算方法
CN107766692A (zh) * 2017-09-29 2018-03-06 云南大学 一种基于pi模型的容许土壤流失量计算方法
CN108279183A (zh) * 2017-11-29 2018-07-13 贵州师范大学 一种河成石灰华中提取水土流失信息的方法
CN109033459A (zh) * 2018-08-30 2018-12-18 中国科学院地理科学与资源研究所 一种土壤容重数据空间格网化构建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Deep soil carbon dynamics are driven more by soil type;JORDANE A. MATHIEU,et al;《Global Change Biology》;20151231(第21期);第4278–4292页 *
黄土丘陵区土壤侵蚀对土壤有机碳流失的影响研究;贾松伟 等;《水土保持研究》;20041231;第11卷(第4期);第88-90页 *

Also Published As

Publication number Publication date
CN109856368A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
Erkens et al. Double trouble: subsidence and CO2 respiration due to 1,000 years of Dutch coastal peatlands cultivation
Holden et al. Infiltration, runoff and sediment production in blanket peat catchments: implications of field rainfall simulation experiments
Kuhn et al. Agricultural soil erosion and global carbon cycle: controversy over?
Ahmad et al. Sustainable use of groundwater for irrigation: a numerical analysis of the subsoil water fluxes
Hooijer et al. Subsidence and carbon loss in drained tropical peatlands
Ramos et al. Nutrient losses from a vineyard soil in Northeastern Spain caused by an extraordinary rainfall event
Ketcheson et al. The impact of peatland restoration on the site hydrology of an abandoned block-cut bog
Moore et al. Landslide behaviour and climate change: predictable consequences for the Ventnor Undercliff, Isle of Wight
Xia et al. Soil hydro-physical characteristics and water retention function of typical shrubbery stands in the Yellow River Delta of China
Hansen et al. Downscaled surface mass balance in Antarctica: impacts of subsurface processes and large-scale atmospheric circulation
Ran et al. Numerical modelling shows an old check‐dam still attenuates flooding and sediment transport
Chen et al. Soil moisture ecological characteristics of typical shrub and grass vegetation on Shell Island in the Yellow River Delta, China
Ma et al. Effects of tillage-induced soil surface roughness on the generation of surface–subsurface flow and soil loss in the red soil sloping farmland of southern China
CN109856368B (zh) 一种历史时期土壤侵蚀碳库流失量计算的方法
Yandong et al. Formation and movement of groundwater in the thick loess-palaeosol sequences of the Chinese Loess Plateau
Lv et al. The change process of soil hydrological properties in the permafrost active layer of the Qinghai–Tibet Plateau
Burke et al. Subsurface lateral flow generation in aspen and conifer‐dominated hillslopes of a first order catchment in northern Utah
Zhang et al. Effects of land use change on hydrological cycle from forest to upland field in a catchment, Japan
Xia et al. Variations of soil hydraulic properties along granitic slopes in Benggang erosion areas
Zhu et al. Progress and prospect of studies of Benggang erosion in southern China
Whitfield et al. Improving hydrological predictions in peatlands
Wang et al. New strategy for evaluating the spatiotemporal distribution of groundwater resource quantity under seasonal freeze/thaw in mountainous areas
Yu et al. Towards a precise timing of groundwater use in the lower Yellow River area during the late Bronze age: Bayesian inference from the radiocarbon ages of ancient water wells at the Liang'ercun site, north China
Sana et al. Feasibility study of using treated wastewater to mitigate seawater intrusion along northern coast of Oman
Sharkh Estimation of runoff for small watershed using watershed modeling system (WMS) and GIS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant