CN109855824A - 一种测试高产油气井完井管柱振动屈曲的实验装置 - Google Patents

一种测试高产油气井完井管柱振动屈曲的实验装置 Download PDF

Info

Publication number
CN109855824A
CN109855824A CN201810212705.8A CN201810212705A CN109855824A CN 109855824 A CN109855824 A CN 109855824A CN 201810212705 A CN201810212705 A CN 201810212705A CN 109855824 A CN109855824 A CN 109855824A
Authority
CN
China
Prior art keywords
tubing string
buckling
tubular column
video camera
completion tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810212705.8A
Other languages
English (en)
Inventor
毛良杰
曾松
刘清友
张洪
王国荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201810212705.8A priority Critical patent/CN109855824A/zh
Publication of CN109855824A publication Critical patent/CN109855824A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

本发明涉及一种测试高产油气井完井管柱振动屈曲的实验装置。本装置包括电脑,空气压缩机,缓冲罐,调压阀,气压表,管柱,固定装置,桁架,旋紧夹持器,摄像机固定杆,摄像机,尾管模型,封隔器,微小压力传感器,水池,水泵,阀门,流速计,电缆,液压杆,三通接头。油气井完井管柱在通过高速流体时剧烈振动,在达到某个临界产量时管柱发生屈曲,在此临界产量基础上,进一步开展高产气井完井管柱振动屈曲实验,通过屈曲实验获得不同产量下完井管柱发生屈曲时与尾管之间的接触力,以进一步研究完井管柱的振动磨损以验证理论模型。本发明的优点在于:装置简单实用,高度还原了高产油气井中管柱的工作状态,研究完井管柱的屈曲磨损机理。

Description

一种测试高产油气井完井管柱振动屈曲的实验装置
技术领域
本发明涉及流体力学和气井安全监测领域,是一种测试高产油气井完井管柱振动屈曲的实验装置。
背景技术
高产气井完井管柱是高速气体流通的通道,由于储层供给,流量及压力变化,高产气井气流激励,频繁的开关井作业,在动载荷作用下,管柱的振动问题是极其重要的研究内容。
发明内容
本发明的目的在于油气井完井管柱在通过高速流体时剧烈振动,在达到某个临界产量时管柱发生屈曲,在此临界产量基础上,进一步开展高产气井完井管柱振动屈曲实验,通过屈曲实验获得不同产量下完井管柱发生屈曲时与尾管之间的接触力,以进一步研究完井管柱的振动屈曲磨损以验证理论模型。
本发明的目的通过以下技术方案来实现:一种测试高产油气井完井管柱振动屈曲的实验装置,包括以下安装步骤:
S1、将空气压缩机(2),缓冲罐(3),合适量程的调压阀(4)连接好。将管柱(6)装入尾管模型(12)中,用在接触尾管模型(11)的地方带有橡胶保护层的旋紧夹持器(13)固定好;
S2、将微小压力传感器(14)按照整个管柱(6)长度分为一共6层,每层6个,相邻两层错位10度,均匀螺旋分布在整个管柱(6)上;
S3、用带螺纹的橡胶封隔器(13)将管柱(6)固定在有机玻璃尾管模型(12)正中,保证管柱(6)和尾管模型(12)之间在通过高速流体时也不会松动错位;
S4、将尾管模型(12)螺旋固定在固定装置(7)上。将液压杆(20)和固定装置(7)铰接,使可以通过液压杆(20)调节井身斜度;
S5、将摄像机固定杆(10)焊接在固定装置(7)上,在预定位置安装好摄像机(11)。
S6、将水泵(16)与水池(15)连接,水泵(16)另一端与管柱(6)连接,管柱(6)环路接到水池(15),构成液态流体回路;
S7、将调压阀(4),气压表(5),阀门(17)安装在气体支路管柱(6)上,将阀门(17),流速计(18)安装在液体支路管柱(6)上,用三通(21)将气体回流支路和液体回流支路的管柱(6)连接;
S8、用电缆(19)将电脑(1),空气压缩机(2),摄像机(11),微小压力传感器(14),水泵(16)连接起来,实现数据传输,指令传送;
S9、调节好摄像机(11)位置使之和管柱(6)上的六层应变片(10)所在的位置对应;
S10、调节好试验环境光源位置,光源光线强弱,使之最有利于摄像机拍摄;
S11、检查整套装置,无遗漏则开机调试,使装置具备采集精确数据的作业状态;
本发明的目的通过以下技术方案来实现:一种测试高产油气井完井管柱振动屈曲的实验装置,进行气态流体对完井管柱振动屈曲影响实验时,它包括以下实验步骤:
S1、开始实验,关闭液态流体回路上的两个阀门(17),打开气态流体回路上的阀门(17)。S2、启动空气压缩机(2),通过调压阀(4)将流速调整至实验设计的流速,待流速稳定后,启动微小压力传感器(14),采集管柱(6)上螺旋均匀分布的36个点的变形数据;
S3、采集10分钟以上的微小压力传感器(14)和摄像机(11)实验数据,关闭微小压力传感器(14),关闭摄像机(11),关闭空气压缩机(2);
S4、清零相关数据。
S5、重复步骤(2),启动空气压缩机(2),通过调压阀(4)将流速调整至实验设计的新一组流速,待流速稳定后,启动微小压力传感器(14),采集管柱(6)上螺旋形分布的36个点的变形数据;依次进行下一组实验;
S6、进行实验数据处理,通过微小压力传感器(14)和摄像机(11)采集的数据可以通过模态分析法得到各个点的振动频率、位移、振幅以及管柱(6)各个点和尾管模型挤压,摩擦力的大小等。
进行液态流体对完井管柱振动屈曲影响实验时,它包括以下实验步骤:
S1、则打开液态流体回路上的两个阀门(17),关闭气态流体回路上的阀门(17)。
S2、启动水泵(16),调节阀门(17),观察流速计(18),将流速调整至实验设计的流速,待流速稳定后,启动微小压力传感器(14),采集管柱(6)上螺旋均匀分布的36个点的变形数据;
S3、采集10分钟以上的微小压力传感器(14)和摄像机(11)实验数据,关闭微小压力传感器(14),关闭摄像机(11),关闭空气压缩机(2);
S4、、清零相关数据。
S5、重复步骤S2~S4,依次进行下一组实验;
若需要将井身斜度因素加入实验时,调节液压杆(20),使装置管道部分呈设定角度,然后分别重复液态流体和气态流体对完井管柱振动屈曲影响实验的步骤,得到井斜与流速的正交实验数据。进行实验数据处理,通过微小压力传感器(14)和摄像机(11)采集的数据可以通过模态分析法得到各个点的振动频率、位移、振幅以及管柱(6)各个点和尾管模型挤压,摩擦力的大小等。
所述管柱(6)有两条回路,通过开关阀门(17),将管柱(6)系统分为气态流体回路和液态流体回路。
所述液压杆(20)能使装置管道部分呈设定角度,得到井斜与流速的多组正交实验数据。
所述微小压力传感器(14)按照整个管柱(6)长度分为一共6层,每层6个,相邻两层错位10度,均匀螺旋分布在整个管柱(6)上。
所述固定装置(7)与摄像机固定杆(10)为焊接固定。
所述尾管模型(12)两端为镶合金端,焊接在固定装置(7)上;
本发明具有以下优点:
1、采用液压杆(20)能使装置管道部分呈设定角度,得到井斜与流速的多组正交实验数据,节省空间,便于安装。
2、管柱(6)有两条回路,通过开关阀门(17),将管柱(6)系统分为气态流体回路和液态流体回路,巧妙实用。
3、微小压力传感器(14)按照整个管柱(6)长度分为一共6层,每层6个,相邻两层错位10度,均匀螺旋分布在整个管柱(6)上,管柱(5)振动屈曲时,数据采集更充分更全面。
附图说明
图1-装置整体结构图;
图2-管柱剖视图;
图3-管柱俯视图;
图4-管柱二维线框正视图;
图5-出口端细节图;
图6-尾管模型固定细节图;
图中:1-电脑,2-空气压缩机,3-缓冲罐,4-调压阀,5-气压表,6-管柱,7-固定装置,8-桁架,9-旋紧夹持器,10-摄像机固定杆,11-摄像机,12-尾管模型,13-封隔器,14-微小压力传感器,15-水池,16-水泵,17-阀门,18-流速计,19-电缆,20-液压杆,21-三通。
具体实施方式
下面结合附图对本发明做进一步的描述,本发明的保护范围不局限于以下所述:
如图1~5所示,一种测试高产油气井完井管柱振动屈曲的实验装置,包括电脑(1),空气压缩机(2),缓冲罐(3),调压阀(4),气压表(5),管柱(6),固定装置(7),桁架(8),旋紧夹持器(9),摄像机固定杆(10),摄像机(11),尾管模型(12),封隔器(13),微小压力传感器(14),水池(15),水泵(16),阀门(17),流速计(18),电缆(19),液压杆(20),三通(21)。空气压缩机(2)连接缓冲罐(3),调压阀(4),气压表(5),以及阀门(17),流速计(18)安装在管柱(6)上。固定装置(7)和桁架(8)为一体结构,桁架(8)上有旋紧夹持器(9),用以固定尾管模型(12)。摄像机固定杆(10)上安装摄像机(11),摄像机固定杆(10)焊接在固定装置(7)上。将带螺纹的橡胶封隔器(13)将管柱(6)固定在有机玻璃尾管模型(12)正中,保证管柱(6)和尾管模型(12)之间在通过高速气流时也不会松动错位。微小压力传感器(14),螺旋形分布在管柱(6)上。水池(15),水泵(16),阀门(17),流速计(18),管柱(6)组成液态流体回路。电缆(19)传输数据以及发出指令。液压杆(20)调节井身斜度。
如图1所示,一种测试高产油气井完井管柱振动屈曲的实验装置,进行气态流体对完井管柱振动屈曲影响实验时,它包括以下实验步骤:
S1、开始实验,关闭液态流体回路上的两个阀门(17),打开气态流体回路上的阀门(17)。S2、启动空气压缩机(2),通过调压阀(4)将流速调整至实验设计的流速,待流速稳定后,启动微小压力传感器(14),采集管柱(6)上螺旋均匀分布的36个点的变形数据;
S3、采集10分钟以上的微小压力传感器(14)和摄像机(11)实验数据,关闭微小压力传感器(14),关闭摄像机(11),关闭空气压缩机(2);
S4、清零相关数据。
S5、重复步骤S2~S4,启动空气压缩机(2),通过调压阀(4)将流速调整至实验设计的新一组流速,待流速稳定后,启动微小压力传感器(14),采集管柱(6)上螺旋形分布的36个点的变形数据;依次进行下一组实验;
S6、打开液态流体回路上的两个阀门(17),关闭气态流体回路上的阀门(17)。
S7、启动水泵(16),调节阀门(17),观察流速计(18),将流速调整至实验设计的流速,待流速稳定后,启动微小压力传感器(14),采集管柱(6)上螺旋均匀分布的36个点的变形数据;
S8、采集10分钟以上的微小压力传感器(14)和摄像机(11)实验数据,关闭微小压力传感器(14),关闭摄像机(11),关闭空气压缩机(2);
S9、清零相关数据。
S10、重复步骤S1,依次进行下一组实验;
S11、进行实验数据处理,通过微小压力传感器(14)和摄像机(11)采集的数据可以通过模态分析法得到各个点的振动频率、位移、振幅以及管柱(6)各个点和尾管模型挤压,摩擦力的大小等。
进行液态流体对完井管柱振动屈曲影响实验时,它包括以下实验步骤:
S1、则打开液态流体回路上的两个阀门(17),关闭气态流体回路上的阀门(17)。
S2、启动水泵(16),调节阀门(17),观察流速计(18),将流速调整至实验设计的流速,待流速稳定后,启动微小压力传感器(14),采集管柱(6)上螺旋均匀分布的36个点的变形数据;
S3、采集10分钟以上的微小压力传感器(14)和摄像机(11)实验数据,关闭微小压力传感器(14),关闭摄像机(11),关闭空气压缩机(2);
S4、、清零相关数据。
S5、重复步骤S2~S4,依次进行下一组实验;
S11、进行实验数据处理,通过微小压力传感器(14)和摄像机(11)采集的数据可以通过模态分析法得到各个点的振动频率、位移、振幅以及管柱(6)各个点和尾管模型挤压,摩擦力的大小等。
当需要将井身斜度因素加入实验时,调节液压杆(20),使装置管道部分呈设定角度,然后分别重复液态流体和气态流体对完井管柱振动屈曲影响实验的步骤,得到多组井斜与流速的正交实验数据。
如图2图3图4所示,微小压力传感器(14)按照整个管柱(6)长度分为一共6层,每层6个,相邻两层错位10度,均匀螺旋分布在整个管柱(6)上,数据采集更充分。
如图5所示,管柱(6)系统分为气态流体回路和液态流体回路,进行气态流体对完井管柱振动屈曲影响实验时,关闭液态流体回路上的两个阀门(17),打开气态流体回路上的阀门(17),进行液态流体对完井管柱振动屈曲影响实验时,打开液态流体回路上的两个阀门(17),关闭气态流体回路上的阀门(17)。
如图6所示,桁架(8)与尾管模型(12)用与尾管模型(12)接触部分为橡胶的旋紧夹持器固定。

Claims (10)

1.一种测试高产油气井完井管柱振动屈曲的实验装置,其特征在于:包括电脑(1),空气压缩机(2),缓冲罐(3),调压阀(4),气压表(5),管柱(6),固定装置(7),桁架(8),旋紧夹持器(9),摄像机固定杆(10),摄像机(11),尾管模型(12),封隔器(13),微小压力传感器(14),水池(15),水泵(16),阀门(17),流速计(18),电缆(19),液压杆(20),三通(21),空气压缩机(2)连接缓冲罐(3),调压阀(4),气压表(5),以及阀门(17),流速计(18)安装在管柱(6)上,固定装置(7)和桁架(8)为一体结构,桁架(8)上有旋紧夹持器(9),用以固定尾管模型(12),摄像机固定杆(10)上安装摄像机(11),摄像机固定杆(10)焊接在固定装置(7)上,将带螺纹的橡胶封隔器(13)将管柱(6)固定在有机玻璃尾管模型(12)正中,保证管柱(6)和尾管模型(12)之间在通过高速气流时也不会松动错位,微小压力传感器(14),螺旋形分布在管柱(6)上,水池(15),水泵(16),阀门(17),流速计(18),管柱(6)组成液态流体回路,电缆(19)传输数据以及发出指令,液压杆(20)调节井身斜度。
2.根据权利要求1,所述一种测试高产油气井完井管柱振动屈曲的实验装置,其特征在于:所述管柱(6)有两条回路,通过开关阀门(17),将管柱(6)系统分为气态流体回路和液态流体回路。
3.根据权利要求1,所述一种测试高产油气井完井管柱振动屈曲的实验装置,其特征在于:所述液压杆(20)能使装置管道部分呈设定角度,得到井斜与流速的多组正交实验数据。
4.根据权利要求1,所述一种测试高产油气井完井管柱振动屈曲的实验装置,其特征在于:所述微小压力传感器(14)按照整个管柱(6)长度分为一共6层,每层6个,相邻两层错位10度,均匀螺旋分布在整个管柱(6)上。
5.根据权利要求1,所述一种测试高产油气井完井管柱振动屈曲的实验装置,其特征在于:所述固定装置(7)与摄像机固定杆(10)为焊接固定。
6.根据权利要求1,所述一种测试高产油气井完井管柱振动屈曲的实验装置,其特征在于:所述尾管模型(12)两端为镶合金端,焊接在固定装置(7)上。
7.根据权利要求1,所述一种测试高产油气井完井管柱振动屈曲的实验装置,其特征在于:它包括以下安装步骤:
S1、将空气压缩机(2),缓冲罐(3),合适量程的调压阀(4)连接好,将管柱(6)装入尾管模型(12)中,用在接触尾管模型(11)的地方带有橡胶保护层的旋紧夹持器(13)固定好;
S2、将微小压力传感器(14)按照整个管柱(6)长度分为一共6层,每层6个,相邻两层错位10度,均匀螺旋分布在整个管柱(6)上;
S3、用带螺纹的橡胶封隔器(13)将管柱(6)固定在有机玻璃尾管模型(12)正中,保证管柱(6)和尾管模型(12)之间在通过高速流体时也不会松动错位;
S4、将尾管模型(12)螺旋固定在固定装置(7)上,将液压杆(20)和固定装置(7)铰接,使可以通过液压杆(20)调节井身斜度;
S5、将摄像机固定杆(10)焊接在固定装置(7)上,在预定位置安装好摄像机(11);
S6、将水泵(16)与水池(15)连接,水泵(16)另一端与管柱(6)连接,管柱(6)环路接到水池(15),构成液态流体回路;
S7、将调压阀(4),气压表(5),阀门(17)安装在气体支路管柱(6)上,将阀门(17),流速计(18)安装在液体支路管柱(6)上,用三通(21)将气体回流支路和液体回流支路的管柱(6)连接;
S8、用电缆(19)将电脑(1),空气压缩机(2),摄像机(11),微小压力传感器(14),水泵(16)连接起来,实现数据传输,指令传送;
S9、调节好摄像机(11)位置使之和管柱(6)上的六层应变片(10)所在的位置对应;
S10、调节好试验环境光源位置,光源光线强弱,使之最有利于摄像机拍摄;
S11、检查整套装置,无遗漏则开机调试,使装置具备采集精确数据的作业状态。
8.根据权利要求1,所述一种测试高产油气井完井管柱振动屈曲的实验装置,其特征在于:在进行气态流体对完井管柱振动屈曲影响实验时,它包括以下实验步骤:
S1、开始实验,关闭液态流体回路上的两个阀门(17),打开气态流体回路上的阀门(17);
S2、启动空气压缩机(2),通过调压阀(4)将流速调整至实验设计的流速,待流速稳定后,启动微小压力传感器(14),采集管柱(6)上螺旋均匀分布的36个点的变形数据;
S3、采集10分钟以上的微小压力传感器(14)和摄像机(11)实验数据,关闭微小压力传感器(14),关闭摄像机(11),关闭空气压缩机(2);
S4、清零相关数据;
S5、重复步骤(2),启动空气压缩机(2),通过调压阀(4)将流速调整至实验设计的新一组流速,待流速稳定后,启动微小压力传感器(14),采集管柱(6)上螺旋形分布的36个点的变形数据;依次进行下一组实验;
S6、进行实验数据处理,通过微小压力传感器(14)和摄像机(11)采集的数据可以通过模态分析法得到各个点的振动频率、位移、振幅以及管柱(6)各个点和尾管模型挤压,摩擦力的大小等。
9.根据权利要求1,所述一种测试高产油气井完井管柱振动屈曲的实验装置,其特征在于:在进行液态流体对完井管柱振动屈曲影响实验时,它包括以下实验步骤:
S1、则打开液态流体回路上的两个阀门(17),关闭气态流体回路上的阀门(17),
S2、启动水泵(16),调节阀门(17),观察流速计(18),将流速调整至实验设计的流速,待流速稳定后,启动微小压力传感器(14),采集管柱(6)上螺旋均匀分布的36个点的变形数据;
S3、采集10分钟以上的微小压力传感器(14)和摄像机(11)实验数据,关闭微小压力传感器(14),关闭摄像机(11),关闭空气压缩机(2);
S4、清零相关数据;
S5、重复步骤S2~S4,依次进行下一组实验。
10.根据权利要求1,所述一种测试高产油气井完井管柱振动屈曲的实验装置,其特征在于:若需要将井身斜度因素加入实验时,调节液压杆(20),使装置管道部分呈设定角度,然后分别重复液态流体和气态流体对完井管柱振动屈曲影响实验的步骤,得到井斜与流速的正交实验数据,进行实验数据处理,通过微小压力传感器(14)和摄像机(11)采集的数据可以通过模态分析法得到各个点的振动频率、位移、振幅以及管柱(6)各个点和尾管模型挤压,摩擦力的大小等。
CN201810212705.8A 2018-03-15 2018-03-15 一种测试高产油气井完井管柱振动屈曲的实验装置 Pending CN109855824A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810212705.8A CN109855824A (zh) 2018-03-15 2018-03-15 一种测试高产油气井完井管柱振动屈曲的实验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810212705.8A CN109855824A (zh) 2018-03-15 2018-03-15 一种测试高产油气井完井管柱振动屈曲的实验装置

Publications (1)

Publication Number Publication Date
CN109855824A true CN109855824A (zh) 2019-06-07

Family

ID=66889634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810212705.8A Pending CN109855824A (zh) 2018-03-15 2018-03-15 一种测试高产油气井完井管柱振动屈曲的实验装置

Country Status (1)

Country Link
CN (1) CN109855824A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380711A (zh) * 2020-04-05 2020-07-07 新疆正通石油天然气股份有限公司 一种变径井眼中屈曲管柱钻进评价方法
CN114577335A (zh) * 2022-03-04 2022-06-03 西安热工研究院有限公司 一种管道振动智能监测控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007118892A (ru) * 2007-05-21 2008-11-27 Олег Марсович Гарипов (RU) Способ одновременно-раздельной и поочередной эксплуатации и освоения нескольких пластов одной скважиной
RU2441975C1 (ru) * 2010-06-28 2012-02-10 Открытое акционерное общество "Газпром" Способ глушения в осложненных условиях газовых и газоконденсатных скважин
CN104655377A (zh) * 2015-02-10 2015-05-27 中国石油大学(华东) 石油钻井管柱轴向振动减摩阻特性室内实验装置
CN106351614A (zh) * 2016-10-19 2017-01-25 西南石油大学 一种优选管柱排水采气模拟装置及实验方法
CN106768765A (zh) * 2017-01-19 2017-05-31 中国石油大学(华东) 一种用于研究立管系统流固耦合振动特性的实验装置
CN107290233A (zh) * 2017-07-27 2017-10-24 中国海洋石油总公司 一种油气井爆炸射孔管柱力学实验装置及实验方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007118892A (ru) * 2007-05-21 2008-11-27 Олег Марсович Гарипов (RU) Способ одновременно-раздельной и поочередной эксплуатации и освоения нескольких пластов одной скважиной
RU2441975C1 (ru) * 2010-06-28 2012-02-10 Открытое акционерное общество "Газпром" Способ глушения в осложненных условиях газовых и газоконденсатных скважин
CN104655377A (zh) * 2015-02-10 2015-05-27 中国石油大学(华东) 石油钻井管柱轴向振动减摩阻特性室内实验装置
CN106351614A (zh) * 2016-10-19 2017-01-25 西南石油大学 一种优选管柱排水采气模拟装置及实验方法
CN106768765A (zh) * 2017-01-19 2017-05-31 中国石油大学(华东) 一种用于研究立管系统流固耦合振动特性的实验装置
CN107290233A (zh) * 2017-07-27 2017-10-24 中国海洋石油总公司 一种油气井爆炸射孔管柱力学实验装置及实验方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380711A (zh) * 2020-04-05 2020-07-07 新疆正通石油天然气股份有限公司 一种变径井眼中屈曲管柱钻进评价方法
CN114577335A (zh) * 2022-03-04 2022-06-03 西安热工研究院有限公司 一种管道振动智能监测控制系统

Similar Documents

Publication Publication Date Title
CN100494943C (zh) 横置于拖曳水池中柔性管件模型的涡激振动试验装置
CN104596905B (zh) 一种测定岩石破裂过程中渗透率的装置及其方法
CN104879348A (zh) 液压管路振动测试模拟实验平台
CN109855824A (zh) 一种测试高产油气井完井管柱振动屈曲的实验装置
CN103487326B (zh) 多周期交变应力盖层模拟实验装置
CN103696759B (zh) 电动直读测试验封工具
CN103471923A (zh) 一种多直径岩芯液压致裂抗拉强度快速试验机
CN106442133A (zh) 一种海洋工程柔顺性管缆拉弯组合实验装置及实验方法
CN109296352B (zh) 一种实况下完井管柱振动变形的实验装置和实验方法
CN109211517A (zh) 一种深水测试管柱动力学行为的实验装置
CN203688254U (zh) 液压脉动试验装置
CN202153205U (zh) 一种油管接头实物循环应力下腐蚀试验设施
CN109115135B (zh) 倾斜弯曲气井生产管柱振动变形的实验装置和实验方法
CN110470569A (zh) 一种毛细管路气阻测量装置及测量方法
CN111965008A (zh) 一种模拟巷道开挖的岩体内部卸荷试验装置
CN205550327U (zh) 一种多功能精馏实验装置
CN107655809A (zh) 一种考虑裂隙变化的含瓦斯煤渗流试验装置
CN108645582B (zh) 一种浅海钻井高产气井生产管柱振动变形实验装置和方法
CN107314952B (zh) 一种测量极低毛细数下动态接触角的方法及系统
CN107355214B (zh) 潜油直线电机往复泵闭环控制系统
CN112254662B (zh) 一种适用于深部破碎岩体的三维应变测量装置及方法
CN106840915A (zh) 一种管片接头的抗弯试验装置及方法
CN108534972A (zh) 一种测试高产气井完井管柱振动的实验装置和实验方法
CN207248938U (zh) 一种ic测试探针
CN203417276U (zh) 心脏瓣膜检测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190607