CN109850025A - 一种墙面跳跃的单腿机器人机构及控制方法 - Google Patents

一种墙面跳跃的单腿机器人机构及控制方法 Download PDF

Info

Publication number
CN109850025A
CN109850025A CN201910143144.5A CN201910143144A CN109850025A CN 109850025 A CN109850025 A CN 109850025A CN 201910143144 A CN201910143144 A CN 201910143144A CN 109850025 A CN109850025 A CN 109850025A
Authority
CN
China
Prior art keywords
metope
robot
rotor
foot
leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910143144.5A
Other languages
English (en)
Other versions
CN109850025B (zh
Inventor
朱秋国
赵逸栋
吴俊�
熊蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910143144.5A priority Critical patent/CN109850025B/zh
Publication of CN109850025A publication Critical patent/CN109850025A/zh
Priority to JP2020528273A priority patent/JP7025830B2/ja
Priority to US16/965,001 priority patent/US20210380186A1/en
Priority to PCT/CN2019/110519 priority patent/WO2020173098A1/zh
Application granted granted Critical
Publication of CN109850025B publication Critical patent/CN109850025B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/04Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track having other than ground-engaging propulsion means, e.g. having propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/001Devices not provided for in the groups B64C25/02 - B64C25/68
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/001Devices not provided for in the groups B64C25/02 - B64C25/68
    • B64C2025/008Comprising means for modifying their length, e.g. for kneeling, for jumping, or for leveling the aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种墙面跳跃的单腿机器人机构及控制方法,包括机器人腿部,所述机器人腿部的机身上固接有多个旋翼,多个旋翼相对于机身呈镜像分布,且多个旋翼的工作面相互平行。本发明附带有旋翼机构,能够主动控制机器人在空中的质心轨迹与身体姿态;结合本发明公开的控制方法,能够实现在垂直墙面进行连续跳跃的技术效果,提升了机器人的应用场合与运动能力。

Description

一种墙面跳跃的单腿机器人机构及控制方法
技术领域
本发明涉及机器人技术领域,具体涉及一种墙面跳跃的单腿机器人机构及控制方法。
背景技术
随着科技的进步,机器人时代正在向我们走来。腿足机器人是目前机器人领域的主要研究热点之一,如何实现腿足机器人的快速跑跳等已经成为机器人技术领域的研究重点。人体腿部能够实现行走和跳跃等运动,对腿足机器人提升其运动性能有重要的借鉴意义。目前,世界上对腿足机器人的研究主要集中在平面上的步行、跑跳和爬行等功能,尚未对腿足机器人翻越垂直的墙面等障碍有深入的研究。然后,这种机器人在特殊的场合却有着重要的应用价值。
单腿机器人是腿式机器人中结构最简单的机器人,具有动力学模型简单、干扰较少、研究成本低和周期短的优点。通过设计单腿机器人机构,可以更好地了解腿式机器人的结构特点和运动特性。
如授权公告号为CN106005079A的专利文献公开的一种带主动脚踝关节与仿生足部的单腿机器人跳跃机构,解决了现有技术对机器人跳跃中蓄能能力弱,不能实现髋膝协同工作,以及无法保护踝关节电机免受跳跃中冲击的问题。但该单腿机器人没有在空中调整质心轨迹的功能,因此保持运动的平衡性具备一定难度,且难以实现复杂地面的越障功能。
如授权公告号为CN103879470B的专利文献公开的一种连杆传动的单腿机器人跳跃机构,由于方向驱动装置能够驱动大腿旋转,实现方向控制;跳跃驱动装置和方向驱动装置靠近机身,这降低了大腿相对于机身的转动惯量,能减少第一驱动电机的能耗,提高机器人运动的稳定性和敏捷性;通过平衡飞轮,增加了机器人的稳定性;通过设置的弹性储能件和平衡件,既能储能又能缓冲。但该机器人没有踝关节及足底,不能利用踝关节运动提高机器人的跳跃能力,在高强度跳跃运动中对减缓地面对机器人膝关节与髋关节冲击的能力也较为有限。
论文“Fearing.Robotic vertical jumping agility via series-elasticpower modulation”中公开的一种具备极强力量的跳跃机器人技术方案,其腿部设计加入了铰链和八条杠杆,当电机向其中一条施加扭矩时,其他的杠杆也会跟着转动,这时腿部会产生很大能量并向下方发出推力,机器就能更好跳跃起来。虽然该机器人从实现了从地面跳跃到墙上,再从墙上跳开的连续跳跃动作,但本质上还是依靠地面发力的弹跳机器人技术方案,不具备在垂直墙面连续跳跃的能力,无法跳过较高的障碍物。
论文“Precision jumping limits from flight-phase control in Salto-1P”公开了一种带螺旋桨控制的单腿机器人技术方案,螺旋桨推进器能够控制该机器人在空中的航向和横滚,再加上原本旋转惯性尾巴在垂直方向上的仰俯控制能力,使得该技术方案实现了在空中调整姿态的功能。但该机器人的螺旋桨动力较小,在滞空状态下螺旋桨对机身质心施加的加速度较小,不能在空中有效控制弹跳过程中触地受到的较大冲击力,因此不能实现机器人在墙面的连续跳跃。
发明内容
针对上述问题,本发明提供了一种墙面跳跃的单腿机器人机构及控制方法,实现了单腿机器人在复杂环境下的平衡运动功能,且具备墙面跳跃运动的能力。
为了达到上述目的,本发明采取的技术方案如下:一种墙面跳跃的单腿机器人机构,包括机器人腿部,所述机器人腿部的机身上固接有多个旋翼,多个旋翼相对于机身呈镜像分布,且多个旋翼的工作面相互平行。
进一步的,所述机身内部安装有控制器与陀螺仪,陀螺仪和多个旋翼均与控制器相连。
进一步的,所述机身内部安装有用于检测机器人身体姿态的陀螺仪,与控制器相连。
进一步的,多个旋翼的数量为四个,分别即为左上旋翼、右上旋翼、左下旋翼、右下旋翼。
进一步的,所述机器人腿部包括依次铰接的机身、大腿、小腿和足部,所述机身与大腿的铰接处设有驱动大腿旋转的髋关节,所述大腿上设有驱动小腿转动的膝关节,所述小腿上设有驱动足部转动的踝关节,所述髋关节、膝关节和踝关节均与控制器相连。
进一步的,所述足部底部安装有摩擦因数大于0.5的材料。
本发明的另一目的是提供一种墙面跳跃的单腿机器人机构的控制方法,该方法分为发力阶段、滞空阶段、收缩阶段三个过程。
在墙面跳跃过程中,发力阶段是机器人足部蹬踏墙面,髋关节、膝关节与踝关节主动工作的阶段。发力阶段中,机器人通过给墙面压力以及借助足部与墙面的摩擦力,给机器人提供向上以及远离墙面的推力,此阶段中旋翼的工作目的是通过上下旋翼不同的转速来提供对身体的扭矩,以平衡因足部蹬踏对身体产生的扰动扭矩,维持身体的平衡。发力阶段中,安装在机器人身体中的陀螺仪监控机器人的姿态与速度信息,进而通过调整足部蹬踏墙面以及旋翼的转速维持身体平衡。当足部离开墙面,进入滞空阶段。
滞空阶段是机器人足部不接触墙面,机器人整体滞空的阶段。滞空阶段中,根据陀螺仪反馈机器人的身体姿态,同时左上旋翼、右上旋翼、左下旋翼、右下旋翼配合对机器人施加向墙面的推力,使质心获得向墙面的加速度。如果机器人身体前倾则左下旋翼、右下旋翼旋转较快,左上旋翼、右上旋翼旋转较慢,给机器人一个仰扭矩;如果机器人身体后仰则左上旋翼、右上旋翼旋转较快,左下旋翼、右下旋翼旋转较慢,给机器人一个俯扭矩,以此保证机器人在滞空阶段的姿态稳定。同时,机器人的髋关节、膝关节、踝关节协同运动,一方面需要克服重力矩的影响,另一方面需根据垂直速度选择合适的落脚点位置。当足部接触墙面开始,进入收缩阶段。
收缩阶段是机器人足部再次接触墙面之后,髋关节、膝关节与踝关节触墙被动收缩,机器人质心在水平方向上减速的过程。收缩阶段中,当足部接触墙面之后,根据陀螺仪的数据反馈机器人的身体姿态,同时左上旋翼、右上旋翼、左下旋翼、右下旋翼调整转速,以平衡墙面对足部冲击带来的对机器人质心造成的扭矩,保持身体的平衡,直到腿部被压缩到设定的极限点,进入发力阶段。如此循环,可实现机器人在墙面的连续跳跃功能。
本发明与背景技术相比,具有的有益效果是:本发明附带有旋翼机构,能够主动控制机器人在空中的质心轨迹与身体姿态;结合本发明公开的控制方法,能够实现在垂直墙面进行连续跳跃的技术效果,提升了机器人的应用场合与运动能力。
附图说明
图1是本发明墙面跳跃单腿机器人机构的结构立体图;
图2是本发明墙面跳跃单腿机器人机构侧视图;
图3是本发明墙面跳跃单腿机器人机构的墙面跳跃发力阶段的动力学模型示意图;
图4是本发明墙面跳跃单腿机器人机构的墙面跳跃滞空阶段的动力学模型示意图;
图5是本发明墙面跳跃单腿机器人机构的墙面跳跃收缩阶段的动力学模型示意图;
图6是本发明墙面跳跃单腿机器人的算法控制框图。
图中,1.机身、2.髋关节、3.大腿、4.膝关节、5.小腿、6.踝关节、7.足部、8.左上旋翼、9.右上旋翼、10.左下旋翼、11.右下旋翼。
具体实施方式
下面结合附图和实例对本发明作进一步的说明。
如图1-2所示,一种墙面跳跃的单腿机器人机构,包括机器人腿部,所述机器人腿部的机身1上固接有多个旋翼,多个旋翼相对于机身呈镜像分布,且多个旋翼的工作面相互平行。
所述机身1内部安装有控制器与陀螺仪,陀螺仪和多个旋翼均与控制器相连。
本实施例中多个旋翼的数量为四个,分别即为左上旋翼8、右上旋翼9、左下旋翼10、右下旋翼11;所述旋翼可采用无人机的旋翼,但不限于此。
进一步的,所述机器人腿部包括依次铰接的机身1、大腿3、小腿5和足部7,所述机身1与大腿3的铰接处设有驱动大腿旋转的髋关节2,所述大腿3上设有驱动小腿5转动的膝关节4,所述小腿5上设有驱动足部7转动的踝关节6,所述髋关节2、膝关节4和踝关节6均与控制器相连。本发明的机器人腿部的技术方案可以采用授权公告号为CN106005079A的专利文献公开的技术内容,但不限于此。
进一步的,所述足部底部安装有橡胶等大摩擦因数的材料,这些材料摩擦因数要大于0.5。
本发明的工作过程如图3-6所示,分为发力阶段、滞空阶段、收缩阶段三个过程。说明如下:
图3所示为发力阶段的机器人姿态及其受力情况。发力阶段是单腿机器人机构足部7蹬踏墙面,髋关节2、膝关节4与踝关节6主动工作的阶段。发力阶段中,单腿机器人机构通过给墙面压力以及借助足部7与墙面的摩擦力,给机器人提供向上以及远离墙面的推力,此阶段中旋翼的主要工作是平衡因足部7蹬踏带来的扭矩。
如图3所示,列出发力阶段的动力学方程,水平方向:
N-N||=ma||
竖直方向:
f+N-mg=ma
扭矩:
T-T′=I·β
其中,N为腿部蹬踏墙面产生的机器人质心受到的水平力,N||为旋翼工作对单腿机器人机构质心产生的水平力,m为机器人的质量,a||为单腿机器人机构水平方向的加速度;f为腿部蹬踏墙面产生的单腿机器人机构质心受到的摩擦力,N为旋翼工作对单腿机器人机构质心产生的竖直力,g为重力加速度,a为机器人竖直方向的加速度;T为单腿机器人机构因足部蹬踏墙面产生的扭矩,T′为旋翼工作产生的扭矩,I为机器人的转动惯量,β为单腿机器人机构的角加速度。
发力阶段中,安装在身体1中的陀螺仪需要实时读取机身俯仰角度以及a||、a的值,进而通过调整足部7蹬踏墙面以及旋翼的转速调整N||、N与T′的大小,使单腿机器人机构的质心获得较大的竖直向加速度a以及较小的水平向加速度a||,并且保持单腿机器人机构的身体的扭矩平衡。当大腿3、小腿5处于一直线时,机身1持续向上向外运动,足部7将离开墙面,足部7中的传感器检测不到触墙信息,此时进入滞空阶段。
图4所示为滞空阶段的单腿机器人机构姿态及其受力情况。滞空阶段是足部7不接触墙面,机器人整体滞空的阶段。滞空阶段中,根据陀螺仪反馈单腿机器人机构的身体姿态,同时左上旋翼8、右上旋翼9、左下旋翼10、右下旋翼11配合对机器人施加向墙面的推力,以及平衡身体的姿态。如果身体1前倾则左下旋翼10、右下旋翼11旋转较快,左上旋翼8、右上旋翼9旋转较慢,给单腿机器人机构一个仰扭矩;如果身体1后仰则左上旋翼8、右上旋翼9旋转较快,左下旋翼10、右下旋翼11旋转较慢,给单腿机器人机构一个俯扭矩。
如图4所示,列出滞空阶段的动力学方程,水平方向:
N||=ma||
竖直方向:
N-mg=ma
扭矩:
T′=I·β
滞空阶段中,安装在身体1中的陀螺仪需要实时读取机身俯仰角度以及a||、a的值,进而通过调整旋翼的转速调整T′的大小,使单腿机器人机构的质心获得较大的向墙面的水平向加速度a||,并且保持单腿机器人机构的身体的扭矩平衡。在滞空阶段,髋关节2、膝关节4、踝关节6协同运动,一方面需要克服重力矩的影响,另一方面需根据垂直速度选择合适的落脚点位置。当左上旋翼8、右上旋翼9、左下旋翼10、右下旋翼11配合施加的向墙推力使单腿机器人机构向墙运动,足部7接触墙面开始,进入收缩阶段。
图5所示,为收缩阶段的单腿机器人机构姿态及其受力情况。收缩阶段是足部7再次接触墙面之后,髋关节2、膝关节4与踝关节6处于零力矩状态中收缩的过程。收缩阶段中,当足部7接触墙面之后,根据陀螺仪的数据反馈单腿机器人机构的身体姿态,同时左上旋翼8、右上旋翼9、左下旋翼10、右下旋翼11调整转速,以平衡墙面对足部7冲击带来的对单腿机器人机构质心造成的扭矩,保持身体1的平衡。
如图5所示,列出收缩阶段的动力学方程,水平方向:
N-N||=ma||
竖直方向:
N-mg=ma
扭矩:
T-T′=I·β
收缩阶段中,机器人通过旋翼的工作以保持单腿机器人机构身体的姿态平衡,收缩阶段与发力阶段的动力学方程类似,主要的区别在于收缩阶段中髋关节2、膝关节4与踝关节6是被动运动,直到腿部被压缩到设定的极限点,进入发力阶段,如此循环,实现在垂直墙面跳跃的功能。

Claims (6)

1.一种墙面跳跃的单腿机器人机构,其特征在于,包括机器人腿部等,所述机器人腿部的机身上固接有多个旋翼,多个旋翼相对于机身呈镜像分布,且多个旋翼的工作面相互平行。
2.根据权利要1所述的一种墙面跳跃的单腿机器人机构,其特征在于,所述机身内部安装有控制器与陀螺仪,陀螺仪和多个旋翼均与控制器相连。
3.根据权利要1所述的一种墙面跳跃的单腿机器人机构,其特征在于,多个旋翼的数量为四个,分别即为左上旋翼、右上旋翼、左下旋翼、右下旋翼。
4.根据权利要3所述的一种墙面跳跃的单腿机器人机构,其特征在于,所述机器人腿部包括依次铰接的机身、大腿、小腿和足部,所述机身与大腿的铰接处设有驱动大腿旋转的髋关节,所述大腿上设有驱动小腿转动的膝关节,所述小腿上设有驱动足部转动的踝关节,所述髋关节、膝关节和踝关节均与控制器相连。
5.根据权利要4所述的一种墙面跳跃的单腿机器人机构,其特征在于,所述足部底部安装有摩擦因数大于0.5的材料。
6.根据权利要求5所述的一种墙面跳跃的单腿机器人机构的控制方法,其特征在于,该方法包括发力阶段、滞空阶段、收缩阶段三个过程;
在墙面跳跃过程中,发力阶段是足部蹬踏墙面,髋关节、膝关节与踝关节主动工作的阶段;发力阶段中,单腿机器人机构通过给墙面压力以及借助足部与墙面的摩擦力,给单腿机器人机构提供向上以及远离墙面的推力,此阶段中通过上下旋翼不同的转速来提供对身体的扭矩,以平衡因足部蹬踏对身体产生的扰动扭矩,维持身体的平衡;发力阶段中,安装在身体中的陀螺仪监控机器人的姿态与速度信息,进而通过调整足部蹬踏墙面以及旋翼的转速维持身体平衡;
滞空阶段是机器人足部不接触墙面,机器人整体滞空的阶段;滞空阶段中,根据陀螺仪反馈身体姿态,同时左上旋翼、右上旋翼、左下旋翼、右下旋翼配合对单腿机器人机构施加向墙面的推力,使质心获得向墙面的加速度;同时,髋关节、膝关节、踝关节协同运动,一方面需要克服重力矩的影响,另一方面需根据垂直速度选择合适的落脚点位置;
收缩阶段是足部再次接触墙面之后,髋关节、膝关节与踝关节触墙被动收缩,单腿机器人机构的质心在水平方向上减速的过程;收缩阶段中,当足部接触墙面之后,根据陀螺仪的数据反馈机器人的身体姿态,同时左上旋翼、右上旋翼、左下旋翼、右下旋翼调整转速,以平衡墙面对足部冲击带来的对单腿机器人机构质心造成的扭矩,保持身体的平衡,直到腿部被压缩到设定的极限点,进入发力阶段;
如此循环,可实现单腿机器人机构在墙面的连续跳跃。
CN201910143144.5A 2019-02-26 2019-02-26 一种墙面跳跃的单腿机器人机构及控制方法 Active CN109850025B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910143144.5A CN109850025B (zh) 2019-02-26 2019-02-26 一种墙面跳跃的单腿机器人机构及控制方法
JP2020528273A JP7025830B2 (ja) 2019-02-26 2019-10-11 壁面でジャンプする片脚型ロボット機構及び制御方法
US16/965,001 US20210380186A1 (en) 2019-02-26 2019-10-11 Single-leg robot mechanism for jumping on a wall and method for controlling the same
PCT/CN2019/110519 WO2020173098A1 (zh) 2019-02-26 2019-10-11 一种墙面跳跃的单腿机器人机构及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910143144.5A CN109850025B (zh) 2019-02-26 2019-02-26 一种墙面跳跃的单腿机器人机构及控制方法

Publications (2)

Publication Number Publication Date
CN109850025A true CN109850025A (zh) 2019-06-07
CN109850025B CN109850025B (zh) 2020-09-04

Family

ID=66898952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910143144.5A Active CN109850025B (zh) 2019-02-26 2019-02-26 一种墙面跳跃的单腿机器人机构及控制方法

Country Status (4)

Country Link
US (1) US20210380186A1 (zh)
JP (1) JP7025830B2 (zh)
CN (1) CN109850025B (zh)
WO (1) WO2020173098A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111003075A (zh) * 2019-12-16 2020-04-14 湖北第二师范学院 一种高弹跳复合型多足机器人
WO2020173098A1 (zh) * 2019-02-26 2020-09-03 浙江大学 一种墙面跳跃的单腿机器人机构及控制方法
CN114368254A (zh) * 2020-10-14 2022-04-19 中南大学 一种可实现跳跃和飞行运动的多栖机器人
CN114572323A (zh) * 2022-03-28 2022-06-03 武汉科技大学 一种扭簧蓄能式八连杆微型弹跳机器人
CN115257997A (zh) * 2022-09-05 2022-11-01 北京理工大学 一种仿生越障的双足跳跃机械装置
CN116001937A (zh) * 2023-03-28 2023-04-25 北京理工大学 一种快速越障车辆及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112110391A (zh) * 2019-06-20 2020-12-22 杭州孚亚科技有限公司 一种作业系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101491898A (zh) * 2009-03-09 2009-07-29 北京航空航天大学 一种多旋翼腿轮式多功能空中机器人及其运动规划方法
CN101734299A (zh) * 2009-12-18 2010-06-16 东南大学 可自主跳跃式起飞的滑翔机器人
CN103264733A (zh) * 2013-04-24 2013-08-28 浙江大学 一种动力储能的单腿机器人原地跳跃机构
CN103879470A (zh) * 2014-03-21 2014-06-25 浙江大学 一种连杆传动的单腿机器人跳跃机构
US20160184721A1 (en) * 2014-12-29 2016-06-30 Parrot Rolling and jumping robot with an increased obstacle passing ability
RU2653977C1 (ru) * 2017-07-31 2018-05-15 Александр Поликарпович Лялин Внедорожное транспортное средство - робот
US20180312023A1 (en) * 2015-06-01 2018-11-01 Imperial Innovations Limited Robotic Vehicle

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2312160Y (zh) * 1997-07-11 1999-03-31 清华大学 能效型步行腿机构
JP4279425B2 (ja) * 1999-11-05 2009-06-17 本田技研工業株式会社 脚式歩行ロボットの足部構造
IL138695A (en) * 2000-09-26 2004-08-31 Rafael Armament Dev Authority Unmanned mobile device
ES2209617B1 (es) * 2002-05-24 2005-10-01 Consejo Sup. Investig. Cientificas Robot saltador y procedimiento para su control.
US7168513B2 (en) * 2004-02-27 2007-01-30 The Regents Of The University Of California Dynamic legged robot
US7263955B1 (en) * 2006-06-20 2007-09-04 Sandra Corporation Combustion powered linear actuator
JP4679527B2 (ja) 2007-01-25 2011-04-27 大成建設株式会社 2足歩行ロボット
US7971664B2 (en) * 2008-03-18 2011-07-05 Bossa Nova Robotics Ip, Inc. Efficient actuation and selective engaging and locking clutch mechanisms for reconfiguration and multiple-behavior locomotion of an at least two-appendage robot
CN201784421U (zh) * 2010-07-30 2011-04-06 南京航空航天大学 多运动模态机器人
CN102815349B (zh) * 2012-08-22 2015-08-12 北京交通大学 一种对称离心力动力单腿跳跃机器
US9623556B1 (en) * 2014-09-03 2017-04-18 X Development Llc Robotic sole joint
US9592908B2 (en) * 2015-03-18 2017-03-14 Amazon Technologies, Inc. Adjustable landing gear assembly for unmanned aerial vehicles
CN106184453B (zh) * 2016-08-31 2018-02-09 王照涵 一种可翻越法向面的四旋翼爬墙机器人
CN109693236B (zh) * 2017-10-23 2021-03-02 深圳市优必选科技有限公司 足式机器人着地控制方法及装置
US10974830B2 (en) * 2017-12-28 2021-04-13 Auror Flight Scienes Corporation Manipulation system and method for an aircraft
JP7120509B2 (ja) * 2018-03-09 2022-08-17 Thk株式会社 飛行ロボット
CN108731736B (zh) * 2018-06-04 2019-06-14 山东大学 用于桥隧结构病害无损检测诊断的自动爬墙式雷达光电机器人系统
CN109850025B (zh) * 2019-02-26 2020-09-04 浙江大学 一种墙面跳跃的单腿机器人机构及控制方法
US11191411B2 (en) * 2020-04-29 2021-12-07 France Vezina Vertical surface cleaning autonomous device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101491898A (zh) * 2009-03-09 2009-07-29 北京航空航天大学 一种多旋翼腿轮式多功能空中机器人及其运动规划方法
CN101491898B (zh) * 2009-03-09 2011-01-05 北京航空航天大学 一种多旋翼腿轮式多功能空中机器人及其运动规划方法
CN101734299A (zh) * 2009-12-18 2010-06-16 东南大学 可自主跳跃式起飞的滑翔机器人
CN103264733A (zh) * 2013-04-24 2013-08-28 浙江大学 一种动力储能的单腿机器人原地跳跃机构
CN103879470A (zh) * 2014-03-21 2014-06-25 浙江大学 一种连杆传动的单腿机器人跳跃机构
US20160184721A1 (en) * 2014-12-29 2016-06-30 Parrot Rolling and jumping robot with an increased obstacle passing ability
US20180312023A1 (en) * 2015-06-01 2018-11-01 Imperial Innovations Limited Robotic Vehicle
RU2653977C1 (ru) * 2017-07-31 2018-05-15 Александр Поликарпович Лялин Внедорожное транспортное средство - робот

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020173098A1 (zh) * 2019-02-26 2020-09-03 浙江大学 一种墙面跳跃的单腿机器人机构及控制方法
CN111003075A (zh) * 2019-12-16 2020-04-14 湖北第二师范学院 一种高弹跳复合型多足机器人
CN114368254A (zh) * 2020-10-14 2022-04-19 中南大学 一种可实现跳跃和飞行运动的多栖机器人
CN114368254B (zh) * 2020-10-14 2024-03-15 中南大学 一种可实现跳跃和飞行运动的多栖机器人
CN114572323A (zh) * 2022-03-28 2022-06-03 武汉科技大学 一种扭簧蓄能式八连杆微型弹跳机器人
CN115257997A (zh) * 2022-09-05 2022-11-01 北京理工大学 一种仿生越障的双足跳跃机械装置
CN115257997B (zh) * 2022-09-05 2023-10-27 北京理工大学 一种仿生越障的双足跳跃机械装置
CN116001937A (zh) * 2023-03-28 2023-04-25 北京理工大学 一种快速越障车辆及其控制方法
CN116001937B (zh) * 2023-03-28 2023-08-01 北京理工大学 一种快速越障车辆及其控制方法

Also Published As

Publication number Publication date
US20210380186A1 (en) 2021-12-09
CN109850025B (zh) 2020-09-04
JP7025830B2 (ja) 2022-02-25
WO2020173098A1 (zh) 2020-09-03
JP2021516639A (ja) 2021-07-08

Similar Documents

Publication Publication Date Title
CN109850025A (zh) 一种墙面跳跃的单腿机器人机构及控制方法
WO2010122705A1 (ja) ロボット制御装置、ロボット制御方法、及び脚式ロボット
KR101633362B1 (ko) 인간형 로봇 및 그 보행 제어방법
JP5991857B2 (ja) ロボットの均衡制御装置及びその制御方法
KR102044437B1 (ko) 로봇의 균형 제어 장치 및 그 제어 방법
EP2574527A2 (en) Robot and control method thereof
KR101778027B1 (ko) 보행 로봇 및 그 자세 제어 방법
KR101875510B1 (ko) 이족 보행 로봇의 안정된 보행 제어를 위해 단순화된 로봇의 모델링 방법
CN102672719B (zh) 一种仿人机器人手臂作业动态稳定控制方法
JP3901694B2 (ja) 歩行式ロボット及びその位置移動方法
JP2001150371A (ja) ロボット、及びロボット用の関節装置
KR20130068694A (ko) 보행 로봇 및 그 제어 방법
Cho et al. Controllers for running in the humanoid robot, HUBO
CN109606753A (zh) 一种空间双臂机器人协同抓捕目标的控制方法
US20110172824A1 (en) Walking robot and method of controlling the same
CN112987769B (zh) 四足机器人在变刚度地形稳定过渡的腿部主动调节方法
CN103612687A (zh) 利用轴径向反力驱动的自平衡摇摆行走机器人
CN113348129A (zh) 陀螺稳定腿式机器人
Wu et al. Highly robust running of articulated bipeds in unobserved terrain
Cherouvim et al. Control of hopping speed and height over unknown rough terrain using a single actuator
CN203612099U (zh) 利用轴径向反力驱动的自平衡摇摆行走机器人
Konosu et al. Radial movements and lower limb joint kinematics during the takeoff phase of kicking pullovers
Li et al. Jet-HR2: A flying bipedal robot based on thrust vector control
JP6407409B2 (ja) 脚型機構体、歩行ロボット、姿勢制御方法及びプログラム
CN109159123A (zh) 一种基于能量最优的机器人翻身控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant