CN109840874A - A kind of digital watermarking authentication method and device - Google Patents
A kind of digital watermarking authentication method and device Download PDFInfo
- Publication number
- CN109840874A CN109840874A CN201910089286.8A CN201910089286A CN109840874A CN 109840874 A CN109840874 A CN 109840874A CN 201910089286 A CN201910089286 A CN 201910089286A CN 109840874 A CN109840874 A CN 109840874A
- Authority
- CN
- China
- Prior art keywords
- phase function
- image
- digital hologram
- watermark information
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000000605 extraction Methods 0.000 claims abstract description 27
- 239000011159 matrix material Substances 0.000 claims description 24
- 238000009826 distribution Methods 0.000 claims description 18
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- 230000006870 function Effects 0.000 description 87
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Holo Graphy (AREA)
- Image Processing (AREA)
- Editing Of Facsimile Originals (AREA)
Abstract
本发明公开了一种数字水印认证方法及装置,包括:生成嵌入水印信息图像的载体图像,包括:根据水印信息图像,生成数字全息图;以原始载体图像为透镜前焦面的输入物光函数的振幅,以数字全息图为后焦面的输出物光函数,建立包括原始载体图像、数字全息图、相位函数的约束条件方程,利用分数维傅里叶变换计算求解满足约束条件方程的相位函数,根据满足约束条件方程的相位函数,得到嵌入水印信息图像的载体图像;还包括确定用于提取数字全息图的提取密码,根据原始载体图像及提取密码,提取数字全息图,基于数字全息图,重建水印信息图像。本发明提供了一种具有良好抗打印性能的数字水印认证方法及装置。
The invention discloses a digital watermark authentication method and device, comprising: generating a carrier image embedded with a watermark information image, comprising: generating a digital hologram according to the watermark information image; taking the original carrier image as an input object light function of the front focal plane of a lens Taking the digital hologram as the output object light function of the back focal plane, establish the constraint equation including the original carrier image, digital hologram, and phase function, and use the fractal Fourier transform to calculate and solve the phase function that satisfies the constraint equation. , obtain the carrier image embedded in the watermark information image according to the phase function satisfying the constraint equation; it also includes determining the extraction password for extracting the digital hologram, extracting the digital hologram according to the original carrier image and the extraction password, and based on the digital hologram, Reconstruct the watermark information image. The invention provides a digital watermark authentication method and device with good anti-print performance.
Description
技术领域technical field
本发明涉及信息安全技术领域,特别是指一种数字水印认证方法及装置。The invention relates to the technical field of information security, in particular to a digital watermark authentication method and device.
背景技术Background technique
数字水印技术是将水印信息直接嵌入载体信息中或是间接表示,不影响载体信息的使用价值,也不容易被探知和再次修改。数字水印技术在多媒体信息安全研究领域得到了重要应用。目前,在印刷领域,嵌入水印信息的图像载体信息在打印、扫描后,存在水印信息丢失的问题。近年来,信息光学全息技术因其具有多维、大容量、高设计自由度、高鲁棒性、难撕裂性、天然的并行性、难以破解等诸多优势,将其应用于信息隐藏与数字水印领域具有广泛的应用前景。Digital watermarking technology directly embeds the watermark information in the carrier information or expresses it indirectly, which does not affect the use value of the carrier information, and is not easy to be detected and modified again. Digital watermarking technology has been applied in the field of multimedia information security research. At present, in the field of printing, after the image carrier information embedded with the watermark information is printed and scanned, there is a problem that the watermark information is lost. In recent years, information optical holography technology has been applied to information hiding and digital watermarking due to its multi-dimensional, large capacity, high design freedom, high robustness, hard to tear, natural parallelism, and hard to crack. The field has broad application prospects.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于提出一种数字水印认证方法及装置,具有良好的抗打印性能。In view of this, the purpose of the present invention is to provide a digital watermark authentication method and device, which have good anti-printing performance.
基于上述目的,本发明提供了一种数字水印认证方法,包括:Based on the above purpose, the present invention provides a digital watermark authentication method, comprising:
生成嵌入水印信息图像的载体图像,包括:Generate carrier images with embedded watermark information images, including:
根据所述水印信息图像,生成数字全息图;generating a digital hologram according to the watermark information image;
以原始载体图像为透镜前焦面的输入物光函数的振幅,以所述数字全息图为后焦面的输出物光函数,建立约束条件方程:Taking the original carrier image as the amplitude of the input object light function of the front focal plane of the lens, and taking the digital hologram as the output object light function of the back focal plane, the constraint equation is established:
|FP{f(x,y)exp[jφ(x,y)]}|=g(ξ,η)|F P {f(x,y)exp[jφ(x,y)]}|=g(ξ,η)
其中,f(x,y)为原始载体图像,g(ξ,η)为所述数字全息图,φ(x,y)为待求解的满足所述约束条件方程的相位函数,j为单位虚数;Wherein, f(x, y) is the original carrier image, g(ξ, η) is the digital hologram, φ(x, y) is the phase function to be solved that satisfies the constraint equation, and j is a unit imaginary number ;
利用分数维傅里叶变换计算求解满足所述约束条件方程的相位函数;Use fractal Fourier transform to calculate and solve the phase function that satisfies the constraint equation;
根据所述满足约束条件方程的相位函数,得到所述嵌入水印信息图像的载体图像I(x,y):According to the phase function satisfying the constraint equation, the carrier image I(x, y) of the embedded watermark information image is obtained:
I(x,y)=f(x,y)exp[jφ(x,y)(n)]I(x, y)=f(x, y) exp[jφ(x, y) (n) ]
其中,φ(x,y)(n)为满足所述约束条件方程的相位函数。Wherein, φ(x, y) (n) is the phase function satisfying the constraint equation.
可选的,所述方法还包括:Optionally, the method further includes:
确定用于提取所述数字全息图的提取密码,包括:Determine an extraction password for extracting the digital hologram, including:
对所述满足约束条件方程的相位函数进行奇异值分解,得到奇异值矩阵D及两个酉矩阵U和V,基于对称加密算法,利用对称密钥对所述奇异值矩阵D进行加密,得到加密处理结果D`,将D`作为所述提取密码。Perform singular value decomposition on the phase function satisfying the constraint equation to obtain a singular value matrix D and two unitary matrices U and V, and encrypt the singular value matrix D with a symmetric key based on a symmetric encryption algorithm to obtain an encrypted The result D' is processed, and D' is used as the extraction password.
可选的,所述方法还包括:Optionally, the method further includes:
根据所述原始载体图像及提取密码,提取所述数字全息图,包括:Extracting the digital hologram according to the original carrier image and the extraction password, including:
基于所述对称加密算法利用所述对称密钥对所述提取密码进行解密,生成所述奇异值矩阵D;Decrypt the extracted password by using the symmetric key based on the symmetric encryption algorithm to generate the singular value matrix D;
利用所述奇异值矩阵D及两个酉矩阵U和V,重构得到所述满足约束条件方程的相位函数;Using the singular value matrix D and the two unitary matrices U and V, reconstruct the phase function that satisfies the constraint equation;
利用所述原始载体图像和满足约束条件方程的相位函数,计算得到所述数字全息图g(ξ,η):Using the original carrier image and the phase function satisfying the constraint equation, the digital hologram g(ξ, η) is obtained by calculation:
g(ξ,η)=Fp{f(x,y)exp[jφ(x,y)(n)]}g(ξ, η)=F p {f(x, y)exp[jφ(x, y) (n) ]}
可选的,所述方法还包括:Optionally, the method further includes:
基于所述数字全息图,重建所述水印信息图像,reconstructing the watermark information image based on the digital hologram,
其中,IFn表示菲涅尔衍射积分逆变换,O(x,y)为重建出的水印信息图像,O(ξ,η)为水印信息图像在观测平面上的光场分布,x、y分别为O(x,y)在物平面的像素点的坐标,ξ,η分别为O(ξ,η)在观测平面的像素点的坐标,z为物平面与观测平面之间的距离,λ为光的波长,k=2π/λ为波数。Among them, IFn represents the inverse Fresnel diffraction integral transform, O(x, y) is the reconstructed watermark information image, O(ξ, η) is the light field distribution of the watermark information image on the observation plane, x and y are respectively The coordinates of the pixels of O(x, y) on the object plane, ξ, η are the coordinates of the pixels of O(ξ, η) on the observation plane, z is the distance between the object plane and the observation plane, λ is the light The wavelength of , k=2π/λ is the wave number.
可选的,所述利用分数维傅里叶变换计算求解满足所述约束条件方程的相位函数的方法,包括:Optionally, the method for calculating and solving the phase function satisfying the constraint equation by using fractal Fourier transform includes:
以所述原始载体图像为输入物光函数的振幅,计算中间输出物光函数Q(n)(ξ,η),Q(n)(ξ,η)的振幅为|Q(n)(ξ,η)|,观测平面的中间相位函数为φ(ξ,η)(n),Taking the original carrier image as the amplitude of the input object light function, calculate the intermediate output object light function Q (n) (ξ, η), and the amplitude of Q (n) (ξ, η) is |Q (n) (ξ, η, η)|, the intermediate phase function of the observation plane is φ(ξ, η) (n) ,
Q(n)(ξ,η)=|Q(n)((ξ,η)|exp[jφ(ξ,η)(n)]=FP{f(x,y))exp[jφ(x,y)(n-1)]}(8)Q (n) (ξ, η)=|Q (n) ((ξ, η)|exp[jφ(ξ, η) (n) ]=F P {f(x, y))exp[jφ(x , y) (n-1) ]}(8)
以所述数字全息图像为输出物光函数的振幅,以所述观测平面的中间相位函数φ(ξ,η)(n)为相位函数,进行逆分数维傅里叶变换,得到物平面的中间相位函数φ(x,y)(n),Taking the digital holographic image as the amplitude of the output object light function, and taking the intermediate phase function φ(ξ, η) (n) of the observation plane as the phase function, perform inverse fractal Fourier transform to obtain the middle of the object plane. Phase function φ(x, y) (n) ,
T(n)(x,y)=|T(n)(x,y)|exp[jφ(x,y)(n)]=IFP{g(ξ,η)exp[jφ(ξ,η)(n)]} (9)T (n) (x, y)=|T (n) (x, y)|exp[jφ(x, y) (n) ]=IF P {g(ξ, η)exp[jφ(ξ, η ) (n) ]} (9)
计算所述中间输出物光函数的振幅|Q(n)(ξ,η)|与所述数字全息图的均方根误差MSE:Calculate the amplitude |Q (n) (ξ,η)| of the intermediate output object light function and the root mean square error MSE of the digital hologram:
其中,Nx、Ny分别为数字全息图/原始载体图像在x、y方向的像素点的个数,1≤i≤Nx,1≤k≤Ny;Wherein, N x and N y are the number of pixels in the x and y directions of the digital hologram/original carrier image, respectively, 1≤i≤N x , 1≤k≤N y ;
根据所述均方根误差,判断所述均方根误差是否小于预设的误差阈值,若是,所述中间相位函数φ(x,y)(n)满足所述约束条件方程,若否,按照公式(8)-(10),重新计算中间相位函数,并判断该中间相位函数是否满足所述约束条件方程。According to the root mean square error, it is judged whether the root mean square error is smaller than a preset error threshold, if so, the intermediate phase function φ(x, y) (n) satisfies the constraint equation, if not, according to Formulas (8)-(10), recalculate the intermediate phase function, and determine whether the intermediate phase function satisfies the constraint condition equation.
本发明实施例还提供一种数字水印认证装置,包括:The embodiment of the present invention also provides a digital watermark authentication device, including:
图像嵌入模块,用于生成嵌入水印信息图像的载体图像,所述图像嵌入模块包括:An image embedding module for generating a carrier image embedded with a watermark information image, and the image embedding module includes:
数字全息图生成模块,用于根据所述水印信息图像,生成数字全息图;a digital hologram generation module, configured to generate a digital hologram according to the watermark information image;
图像合成模块,用于根据所述数字全息图和原始载体图像,处理生成所述嵌入水印信息图像的载体图像,包括:An image synthesis module, configured to process and generate the carrier image embedded in the watermark information image according to the digital hologram and the original carrier image, including:
以原始载体图像为透镜前焦面的输入物光函数的振幅,以所述数字全息图为后焦面的输出物光函数,建立约束条件方程:Taking the original carrier image as the amplitude of the input object light function of the front focal plane of the lens, and taking the digital hologram as the output object light function of the back focal plane, the constraint equation is established:
|FP{f(x,y)exp[jφ(x,y)]}|=g(ξ,η)|F P {f(x,y)exp[jφ(x,y)]}|=g(ξ,η)
其中,f(x,y)为原始载体图像,g(ξ,η)为所述数字全息图,φ(x,y)为待求解的满足所述约束条件方程的相位函数,j为单位虚数;Wherein, f(x, y) is the original carrier image, g(ξ, η) is the digital hologram, φ(x, y) is the phase function to be solved that satisfies the constraint equation, and j is a unit imaginary number ;
利用分数维傅里叶变换计算求解满足所述约束条件方程的相位函数;Use fractal Fourier transform to calculate and solve the phase function that satisfies the constraint equation;
根据所述满足约束条件方程的相位函数,得到所述嵌入水印信息图像的载体图像I(x,y):According to the phase function satisfying the constraint equation, the carrier image I(x, y) of the embedded watermark information image is obtained:
I(x,y)=f(x,y)exp[jφ(x,y)(n)]I(x, y)=f(x, y) exp[jφ(x, y) (n) ]
其中,φ(x,y)(n)为满足所述约束条件方程的相位函数。Wherein, φ(x, y) (n) is the phase function satisfying the constraint equation.
可选的,所述装置还包括:Optionally, the device further includes:
密码确定模块:用于确定用于提取所述数字全息图的提取密码,包括:Password determination module: used to determine the extraction password for extracting the digital hologram, including:
对所述满足约束条件方程的相位函数进行奇异值分解,得到奇异值矩阵D及两个酉矩阵U和V,基于对称加密算法,利用对称密钥对所述奇异值矩阵D进行加密,得到加密处理结果D`,将D`作为所述提取密码。Perform singular value decomposition on the phase function satisfying the constraint equation to obtain a singular value matrix D and two unitary matrices U and V, and encrypt the singular value matrix D with a symmetric key based on a symmetric encryption algorithm to obtain an encrypted The result D' is processed, and D' is used as the extraction password.
可选的,所述装置还包括:Optionally, the device further includes:
图像提取模块,用于根据所述原始载体图像及提取密码,提取所述数字全息图,包括:An image extraction module for extracting the digital hologram according to the original carrier image and the extraction password, including:
基于所述对称加密算法利用所述对称密钥对所述提取密码进行解密,生成所述奇异值矩阵D;Decrypt the extracted password by using the symmetric key based on the symmetric encryption algorithm to generate the singular value matrix D;
利用所述奇异值矩阵D及两个酉矩阵U和V,重构得到所述满足约束条件方程的相位函数;Using the singular value matrix D and the two unitary matrices U and V, reconstruct the phase function that satisfies the constraint equation;
利用所述原始载体图像和满足约束条件方程的相位函数,计算得到所述数字全息图g(ξ,η):Using the original carrier image and the phase function satisfying the constraint equation, the digital hologram g(ξ, η) is obtained by calculation:
g(ξ,η)=Fp{f(x,y)exp[jφ(x,y)(n)]}g(ξ, η)=F p {f(x, y)exp[jφ(x, y) (n) ]}
可选的,所述装置还包括:Optionally, the device further includes:
水印重建模块,用于基于提取出的数字全息图,重建水印信息图像,包括:The watermark reconstruction module is used to reconstruct the watermark information image based on the extracted digital hologram, including:
其中,IFn表示菲涅尔衍射积分逆变换,O(x,y)为重建出的水印信息图像,O(ξ,η)为水印信息图像在观测平面上的光场分布,x、y分别为O(x,y)在物平面的像素点的坐标,ξ,η分别为O(ξ,η)在观测平面的像素点的坐标,z为物平面与观测平面之间的距离,λ为光的波长,k=2π/λ为波数。Among them, IFn represents the inverse Fresnel diffraction integral transform, O(x, y) is the reconstructed watermark information image, O(ξ, η) is the light field distribution of the watermark information image on the observation plane, x and y are respectively The coordinates of the pixels of O(x, y) on the object plane, ξ, η are the coordinates of the pixels of O(ξ, η) on the observation plane, z is the distance between the object plane and the observation plane, λ is the light The wavelength of , k=2π/λ is the wave number.
可选的,所述利用分数维傅里叶变换计算求解满足所述约束条件方程的相位函数的方法,包括:Optionally, the method for calculating and solving the phase function satisfying the constraint equation by using fractal Fourier transform includes:
以所述原始载体图像为输入物光函数的振幅,计算中间输出物光函数Q(n)(ξ,η),Q(n)(ξ,η)的振幅为|Q(n)(ξ,η)|,观测平面的中间相位函数为φ(ξ,η)(n),Taking the original carrier image as the amplitude of the input object light function, calculate the intermediate output object light function Q (n) (ξ, η), and the amplitude of Q (n) (ξ, η) is |Q (n) (ξ, η, η)|, the intermediate phase function of the observation plane is φ(ξ, η) (n) ,
Q(n)(ξ,η)=|Q(n)((ξ,η)|exp[jφ(ξ,η)(n)]=FP{f(x,y))exp[jφ(x,y)(n-1)]} (8)Q (n) (ξ, η)=|Q (n) ((ξ, η)|exp[jφ(ξ, η) (n) ]=F P {f(x, y))exp[jφ(x , y) (n-1) ]} (8)
以所述数字全息图像为输出物光函数的振幅,以所述观测平面的中间相位函数φ(ξ,η)(n)为相位函数,进行逆分数维傅里叶变换,得到物平面的中间相位函数φ(x,y)(n),Taking the digital holographic image as the amplitude of the output object light function, and taking the intermediate phase function φ(ξ, η) (n) of the observation plane as the phase function, perform inverse fractal Fourier transform to obtain the middle of the object plane. Phase function φ(x, y) (n) ,
T(n)(x,y)=|T(n)(x,y)|exp[jφ(x,y)(n)]=IFP{g(ξ,η)exp[jφ(ξ,η)(n)]} (9)T (n) (x, y)=|T (n) (x, y)|exp[jφ(x, y) (n) ]=IF P {g(ξ, η)exp[jφ(ξ, η ) (n) ]} (9)
计算所述中间输出物光函数的振幅|Q(n)(ξ,η)|与所述数字全息图的均方根误差MSE:Calculate the amplitude |Q (n) (ξ,η)| of the intermediate output object light function and the root mean square error MSE of the digital hologram:
其中,Nx、Ny分别为数字全息图/原始载体图像在x、y方向的像素点的个数,1≤i≤Nx,1≤k≤Ny;Wherein, N x and N y are the number of pixels in the x and y directions of the digital hologram/original carrier image, respectively, 1≤i≤N x , 1≤k≤N y ;
根据所述均方根误差,判断所述均方根误差是否小于预设的误差阈值,若是,所述中间相位函数φ(x,y)(n)满足所述约束条件方程,若否,按照公式(8)-(10),重新计算中间相位函数,并判断该中间相位函数是否满足所述约束条件方程。According to the root mean square error, it is judged whether the root mean square error is smaller than a preset error threshold, if so, the intermediate phase function φ(x, y) (n) satisfies the constraint equation, if not, according to Formulas (8)-(10), recalculate the intermediate phase function, and determine whether the intermediate phase function satisfies the constraint condition equation.
从上面所述可以看出,本发明提供的数字水印认证方法及装置,具有如下优点:As can be seen from the above, the digital watermark authentication method and device provided by the present invention have the following advantages:
1)依本发明的方法及装置,只有同时具有原始载体图像与满足约束条件的相位函数信息,才能恢复出水印信息图像;由于重建水印图像信息基于原始载体图像和相位函数实现,与嵌入水印信息图像的载体图像无关,因而,嵌入水印信息图像的载体图像经过打印扫描、复印之后,不会影响水印图像信息,使得嵌入水印信息图像的载体图像具有很强的抗打印特性;1) According to the method and the device of the present invention, the watermark information image can be recovered only by having the original carrier image and the phase function information satisfying the constraint conditions at the same time; because the reconstructed watermark image information is realized based on the original carrier image and the phase function, and the watermark information is embedded. The carrier image of the image is irrelevant. Therefore, the carrier image embedded with the watermark information image will not affect the watermark image information after printing, scanning and copying, so that the carrier image embedded with the watermark information image has strong anti-printing characteristics;
2)依本发明的方法及装置,利用全息水印技术对水印信息图像进行处理生成数字全息图,大大增加了破解难度,即便获得了相位函数与密码在无全息制作参数与方法的条件下,也无法重建恢复水印信息图像;同时,利用对称加密算法(如SM4国密算法)对相位函数进行加密,实现了对水印信息图像的多重加密,进一步提高了破解难度;2) According to the method and the device of the present invention, the watermark information image is processed by the holographic watermark technology to generate a digital hologram, which greatly increases the difficulty of cracking. The watermark information image cannot be reconstructed and restored; at the same time, the phase function is encrypted by using a symmetric encryption algorithm (such as the SM4 national secret algorithm), which realizes multiple encryption of the watermark information image and further improves the difficulty of cracking;
3)依本发明的方法及装置,实现了包括多媒体信息在载体图像中的信息隐藏和提取,大大扩展了适用范围,能够保证水印信息的真实性、多样性、不可复制性,实现水印信息真伪的有效认证。3) According to the method and device of the present invention, the information hiding and extraction including multimedia information in the carrier image is realized, the scope of application is greatly expanded, the authenticity, diversity and non-replicability of the watermark information can be ensured, and the authenticity of the watermark information can be realized. Fake valid authentication.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1为本发明实施例的生成嵌入水印信息图像的载体图像的方法流程示意图;1 is a schematic flowchart of a method for generating a carrier image embedded in a watermark information image according to an embodiment of the present invention;
图2为本发明实施例的重建水印信息图像的方法流程示意图;2 is a schematic flowchart of a method for reconstructing a watermark information image according to an embodiment of the present invention;
图3为本发明实施例的生成嵌入水印信息图像的载体图像的装置结构示意图;3 is a schematic structural diagram of an apparatus for generating a carrier image embedded in a watermark information image according to an embodiment of the present invention;
图4为本发明实施例的重建水印信息图像的装置结构示意图。FIG. 4 is a schematic structural diagram of an apparatus for reconstructing a watermark information image according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to specific embodiments and accompanying drawings.
需要说明的是,本发明实施例中所有使用“第一”和“第二”的表述均是为了区分两个相同名称非相同的实体或者非相同的参量,可见“第一”“第二”仅为了表述的方便,不应理解为对本发明实施例的限定,后续实施例对此不再一一说明。It should be noted that all expressions using "first" and "second" in the embodiments of the present invention are for the purpose of distinguishing two entities with the same name but not the same or non-identical parameters. It can be seen that "first" and "second" It is only for the convenience of expression and should not be construed as a limitation to the embodiments of the present invention, and subsequent embodiments will not describe them one by one.
图1为本发明实施例的生成嵌入水印信息图像的载体图像的方法流程示意图,如图所示,本发明实施例提供的数字水印认证方法,包括生成嵌入水印信息图像的载体图像,方法包括:1 is a schematic flowchart of a method for generating a carrier image embedded in a watermark information image according to an embodiment of the present invention. As shown in the figure, a digital watermark authentication method provided by an embodiment of the present invention includes generating a carrier image embedded in a watermark information image, and the method includes:
S10:根据水印信息图像,生成数字全息图;S10: generate a digital hologram according to the watermark information image;
所述数字全息图是用全息板记录的物光波与参考光干涉条纹图样。将隐藏的水印信息图像当作物光源利用菲涅尔衍射积分变换计算得到物光分布,再与参考光进行计算形成数字全息图。The digital hologram is the interference fringe pattern of the object light wave and the reference light recorded by the holographic plate. The hidden watermark information image is used as the crop light source to calculate the object light distribution by Fresnel diffraction integral transformation, and then calculate with the reference light to form a digital hologram.
菲涅尔衍射积分变换为:The Fresnel diffraction integral transforms into:
其中,Fn表示菲涅尔衍射积分,O(x,y)和O(ξ,η)分别为物平面和观测平面的光波分布函数;j为单位虚数,x、y分别为物光(水印信息图像)O(x,y)在物平面像素点的坐标,ξ,η分别为物光衍射光O(ξ,η)在观测平面像素点的坐标(也称为空间频域坐标);z为物平面与观测平面之间的距离;λ为光的波长;k=2π/λ为波数。可利用式(1)计算光波的衍射场分布(称为菲涅尔衍射场)。Among them, Fn represents the Fresnel diffraction integral, O(x, y) and O(ξ, η) are the light wave distribution functions of the object plane and the observation plane, respectively; j is the unit imaginary number, and x and y are the object light (watermark information), respectively. image) O(x, y) coordinates of the pixel points on the object plane, ξ, η are the coordinates of the object light diffracted light O(ξ, η) on the observation plane pixel points (also called spatial frequency domain coordinates); z is The distance between the object plane and the observation plane; λ is the wavelength of light; k=2π/λ is the wave number. The diffraction field distribution of the light wave (called the Fresnel diffraction field) can be calculated using the formula (1).
利用菲涅尔衍射积分变换计算水印信息图像在观测平面的物光分布为:Using the Fresnel diffraction integral transform to calculate the object light distribution of the watermark information image in the observation plane is:
其中,O0(x,y)为物光的振幅,ψ(x,y)为物光在物平面的相位函数(若水印信息为图像则ψ(x,y)=0),O(ξ,η)为物光在观测平面的物光衍射场分布,为物光在观测平面的相位函数。Among them, O 0 (x, y) is the amplitude of the object light, ψ(x, y) is the phase function of the object light in the object plane (if the watermark information is an image, ψ(x, y)=0), O(ξ , η) is the object light diffraction field distribution of the object light in the observation plane, is the phase function of the object light in the observation plane.
选择参考光(平行光)为:Select the reference light (parallel light) as:
R(ξ,η)=R0exp[2πjαξ] (3)R(ξ, η)=R 0 exp[2πjαξ] (3)
其中,R(ξ,η)为参考光在观测平面的光分布,R0为参考光的振幅,α为平行光的传播方向。Among them, R(ξ, η) is the light distribution of the reference light in the observation plane, R 0 is the amplitude of the reference light, and α is the propagation direction of the parallel light.
将观测平面的物光与参考光进行叠加,得到数字全息图的强度分布为:By superimposing the object light on the observation plane and the reference light, the intensity distribution of the digital hologram is obtained as:
H(ξ,η)=|R(ξ,η)|2+|O(ξ,η)|2+R*(ξ,η)O(ξ,η)+R(ξ,η)O*(ξ,η) (4)H(ξ, η)=|R(ξ, η)| 2 +|O(ξ, η)| 2 +R * (ξ, η)O(ξ, η)+R(ξ, η)O * ( ξ, η) (4)
其中,R(ξ,η)、O(ξ,η)分别为物光O(x,y)和参考光在观测平面的光场分布,上标*表示取共轭复数。Among them, R(ξ, η) and O(ξ, η) are the light field distributions of the object light O(x, y) and the reference light on the observation plane, respectively, and the superscript * indicates the complex conjugate number.
记录:Record:
g(ξ,η)为实数,即g(ξ,η)=|g(ξ,η)|,则g(ξ,η)为物光与参考光在观测平面的光强(干涉条纹)分布,称为数字全息图。g(ξ, η) is a real number, that is, g(ξ, η)=|g(ξ, η)|, then g(ξ, η) is the light intensity (interference fringe) distribution of the object light and the reference light in the observation plane , known as a digital hologram.
本发明实施例中,水印信息图像是根据多媒体信息生成的图像,多媒体信息包括文字、音频、图像等,若多媒体信息为文字或是音频,则对多媒体信息进行处理,生成相应的水印信息图像。In the embodiment of the present invention, the watermark information image is an image generated according to multimedia information, and the multimedia information includes text, audio, images, etc. If the multimedia information is text or audio, the multimedia information is processed to generate a corresponding watermark information image.
根据分数维傅里叶变换:According to the fractal Fourier transform:
其中,x、y分别为图像m(x,y)的像素点的坐标,M(ξ,η)称为m(x,y)的分数维傅里叶谱,ξ,η分别为分数维傅里叶谱M(ξ,η)的空间频域坐标(或称观测平面像素的坐标);π为圆周率,φ=πp/2,p为分数维傅立叶变换的阶。Among them, x and y are the coordinates of the pixel points of the image m(x, y) respectively, M(ξ, η) is called the fractal Fourier spectrum of m(x, y), ξ, η are the fractal Fourier spectrum, respectively The spatial frequency domain coordinates of the Liye spectrum M(ξ, η) (or the coordinates of the observation plane pixels); π is the pi, φ=πp/2, and p is the order of the fractal Fourier transform.
将数字全息图嵌入原始载体图像,生成嵌入水印信息图像的载体图像的具体方法是:The specific method of embedding the digital hologram into the original carrier image and generating the carrier image embedded with the watermark information image is as follows:
S11:以原始载体图像为透镜前焦面的输入物光函数的振幅,以数字全息图为后焦面的输出物光函数,建立以下约束条件方程:S11: Taking the original carrier image as the amplitude of the input object light function of the front focal plane of the lens, and taking the digital hologram as the output object light function of the back focal plane, establish the following constraint equation:
|FP{f(x,y)exp[jφ(x,y)]}|=g(ξ,η) (7)|F P {f(x,y)exp[jφ(x,y)]}|=g(ξ,η) (7)
其中,f(x,y)为原始载体图像,g(ξ,η)为数字全息图,φ(x,y)为待求解的满足约束条件的相位函数。Among them, f(x, y) is the original carrier image, g(ξ, η) is the digital hologram, and φ(x, y) is the phase function to be solved that satisfies the constraints.
S12:利用分数维傅里叶变换计算求解满足所述约束条件的相位函数φ(x,y);S12: Use the fractal Fourier transform to calculate and solve the phase function φ(x, y) that satisfies the constraint condition;
具体过程是:The specific process is:
S120:以原始载体图像f(x,y)为输入物光函数的振幅,计算中间输出物光函数Q(n)(ξ,η):S120: Taking the original carrier image f(x, y) as the amplitude of the input object light function, calculate the intermediate output object light function Q (n) (ξ, η):
Q(n)(ξ,η)=|Q(n)((ξ,η)|exp[jφ(ξ,η)(n)]=FP{f(x,y))exp[jφ(x,y)(n-1)]} (8)Q (n) (ξ, η)=|Q (n) ((ξ, η)|exp[jφ(ξ, η) (n) ]=F P {f(x, y))exp[jφ(x , y) (n-1) ]} (8)
其中,n为迭代次数。经过公式(8)的计算,得到中间输出物光函数Q(n)(ξ,η),其振幅为|Q(n)(ξ,η)|,对应的观测平面的中间相位函数为φ(ξ,η)(n)。where n is the number of iterations. After the calculation of formula (8), the intermediate output object optical function Q (n) (ξ, η) is obtained, its amplitude is |Q (n) (ξ, η)|, and the corresponding intermediate phase function of the observation plane is φ( ξ, η) (n) .
第一次迭代时,n=1,利用二维随机函数生成初始相位函数φ(x,y)(n),得到中间输出物光函数Q(1)(ξ,η)。In the first iteration, n=1, the initial phase function φ(x, y) (n) is generated by a two-dimensional random function, and the intermediate output object light function Q (1) (ξ, η) is obtained.
以数字全息图像g(ξ,η)为输出物光函数的振幅,以公式(8)计算得到的中间相位函数φ(ξ,η)(n)为相位函数,进行逆分数维傅里叶变换计算得:Taking the digital holographic image g(ξ, η) as the amplitude of the output object light function, and the intermediate phase function φ(ξ, η) (n) calculated by formula (8) as the phase function, perform the inverse fractal Fourier transform Calculated:
T(n)(x,y)=|T(n)(x,y)|exp[jφ(x,y)(n)]=IFP{g(ξ,η)exp[jφ(ξ,η)(n)]} (9)T (n) (x, y)=|T (n) (x, y)|exp[jφ(x, y) (n) ]=IF P {g(ξ, η)exp[jφ(ξ, η ) (n) ]} (9)
其中,IFP表示分数维傅里叶逆变换,只需将公式(6)中的p取-p即可经过公式(9)的计算,得到物平面的中间相位函数为φ(x,y)(n)。Among them, IF P represents the inverse fractal Fourier transform, and it is only necessary to take -p from p in formula (6) to obtain the intermediate phase function of the object plane through the calculation of formula (9) as φ(x, y) (n) .
S121:计算中间输出物光函数的振幅|Q(n)(ξ,η)|与数字全息图|g(ξ,η)|的均方根误差MSE:S121: Calculate the root mean square error MSE of the amplitude |Q (n) (ξ, η)| of the intermediate output object light function and the digital hologram |g(ξ, η)|:
其中,Nx、Ny分别为数字全息图/原始载体图像(两幅图像的像素点个数相同)在x、y方向的像素点的个数,1≤i≤Nx,1≤k≤Ny。Wherein, N x and N y are respectively the number of pixels in the x and y directions of the digital hologram/original carrier image (the number of pixels in the two images is the same), 1≤i≤Nx , 1≤k≤ N y .
S122:根据计算得到的均方根误差,判断当前计算得到的中间相位函数φ(x,y)(n)是否符合约束条件,若符合约束条件,则将当前计算得到的中间相位函数φ(x,y)(n)确定为符合公式(7)所示约束条件方程的相位函数,若不符合约束条件,执行步骤S1110-S1112,重新计算确定中间相位函数,并判断其是否满足约束条件。S122: According to the calculated root mean square error, determine whether the currently calculated intermediate phase function φ(x, y) (n) conforms to the constraints, and if it conforms to the constraints, the currently calculated intermediate phase function φ(x , y) (n) is determined as a phase function that complies with the constraint equation shown in formula (7). If it does not meet the constraint, steps S1110-S1112 are performed to recalculate and determine the intermediate phase function, and determine whether it satisfies the constraint.
本发明实施例中,若均方根误差MSE小于设定的误差阈值,判定为当前计算得到的中间相位函数φ(x,y)(n)符合公式(7)所示约束条件,误差阈值的取值为0.05。In the embodiment of the present invention, if the root mean square error MSE is less than the set error threshold, it is determined that the currently calculated intermediate phase function φ(x, y) (n) complies with the constraints shown in formula (7), and the error threshold The value is 0.05.
S13:根据满足约束条件的相位函数,得到嵌入水印信息图像的载体图像。S13: Obtain a carrier image embedded in the watermark information image according to the phase function satisfying the constraint condition.
根据确定的满足公式(7)所示约束条件方程的相位函数φ(x,y)(n),得到隐藏有水印信息图像的复波前函数I(x,y)为:According to the determined phase function φ(x, y) (n) that satisfies the constraint equation shown in formula (7), the complex wavefront function I(x, y) of the image with hidden watermark information is obtained as:
I(x,y)=f(x,y)exp[jφ(x,y)(n)] (11)I(x, y)=f(x, y) exp[jφ(x, y) (n) ] (11)
式(11)所示复波前函数I(x,y)即为嵌入了水印信息图像的载体图像,该嵌入数字全息图的载体图像I(x,y)包含了原始载体图像与数字全息图的全部信息,其振幅为原始载体图像f(x,y),如公式(12)所示,复波前函数I(x,y)的分数傅立叶变换即为数字全息图g(ξ,η):The complex wavefront function I(x, y) shown in formula (11) is the carrier image embedded with the watermark information image, and the carrier image I(x, y) embedded in the digital hologram contains the original carrier image and the digital hologram. , whose amplitude is the original carrier image f(x, y), as shown in formula (12), the fractional Fourier transform of the complex wavefront function I(x, y) is the digital hologram g(ξ, η) :
|FP{f(x,y)exp[jφ(x,y)(n)]}|=g(ξ,η) (12)|F P {f(x, y)exp[jφ(x, y) (n) ]}|=g(ξ, η) (12)
图2为本发明实施例的重建水印信息图像的方法流程示意图,如图所示,本发明实施例提供的数字水印认证方法,包括提取水印图像信息,方法包括:2 is a schematic flowchart of a method for reconstructing a watermark information image according to an embodiment of the present invention. As shown in the figure, a digital watermark authentication method provided by an embodiment of the present invention includes extracting watermark image information, and the method includes:
S20:确定用于提取数字全息图的提取密码;S20: determine the extraction password for extracting the digital hologram;
基于符合约束条件的相位函数φ(x,y)(n),生成用于提取数字全息图的提取密码。具体包括:Based on the constrained phase function φ(x, y) (n) , an extraction cipher for extracting the digital hologram is generated. Specifically include:
将符合约束条件的相位函数φ(x,y)(n)进行奇异值分解,得到奇异值矩阵D及两个酉矩阵U和V,基于对称加密算法,利用对称密钥对奇异值矩阵D进行加密,将加密处理结果D`作为用于提取数字全息图的提取密码。Perform singular value decomposition on the phase function φ(x, y) (n) that meets the constraints, and obtain the singular value matrix D and two unitary matrices U and V. Based on the symmetric encryption algorithm, the singular value matrix D is processed by the symmetric key. For encryption, the encryption processing result D' is used as the extraction password for extracting the digital hologram.
S21:根据原始载体图像及提取密码,提取数字全息图;S21: Extract the digital hologram according to the original carrier image and the extraction password;
根据原始载体图像及提取密码D`,提取数字全息图的方法是:According to the original carrier image and the extraction password D`, the method of extracting the digital hologram is:
S210:基于对称加密算法利用对称密钥对提取密码D`进行解密,生成奇异值矩阵D;S210: Decrypt the extraction password D` with a symmetric key based on a symmetric encryption algorithm, and generate a singular value matrix D;
S211:利用奇异值矩阵D及两个酉矩阵U和V重构得到相位函数φ(x,y)(n);S211: utilize singular value matrix D and two unitary matrices U and V to reconstruct to obtain phase function φ(x, y) (n) ;
S212:利用原始载体图像f(x,y)和相位函数φ(n)(x,y),计算数字全息图g(ξ,η):S212: Using the original carrier image f(x, y) and the phase function φ (n) (x, y), calculate the digital hologram g(ξ, η):
g(ξ,η)=Fp{f(x,y)exp[jφ(x,y)(n)]}g(ξ, η)=F p {f(x, y)exp[jφ(x, y) (n) ]}
S22:基于数字全息图,重建水印信息图像。S22: Based on the digital hologram, reconstruct the watermark information image.
利用全息逆变换重建水印信息图像,具体是:Use the holographic inverse transform to reconstruct the watermark information image, specifically:
将参考光(称为重现光)与数字全息图g(ξ,η)相乘,得到:Multiplying the reference light (called the reproduced light) by the digital hologram g(ξ, η) gives:
其中, 为常数,式(15)中,若忽略不会影响物光在观测平面上的光场分布O(ξ,η)。O*(ξ,η)为O(ξ,η)的共轭像,若选择原物平面为衍射(成像)平面,即做菲涅尔衍射积分逆变换,则获得数字全息图的重建水印信息图像O(x,y);需要说明的是:式(15)中的R2(ξ,η)O*(ξ,η)的逆变换在原物平面的菲涅尔衍射积分产生一个分布接近均匀的背景场分布,基本不影响重建水印信息图像的质量,因而,对O(ξ,η)作菲涅尔衍射积分逆变换,得到:in, is a constant, in formula (15), if ignored It will not affect the light field distribution O(ξ, η) of the object light on the observation plane. O * (ξ, η) is the conjugate image of O(ξ, η). If the original object plane is selected as the diffraction (imaging) plane, that is, the inverse Fresnel diffraction integral transformation is performed, the reconstructed watermark information of the digital hologram can be obtained. The image O(x, y); it should be noted that the inverse transformation of R 2 (ξ, η)O * (ξ, η) in Eq. (15) results in a Fresnel diffraction integral of the original object plane with a distribution close to uniform The background field distribution of , basically does not affect the quality of the reconstructed watermark information image. Therefore, by performing the inverse Fresnel diffraction integral transformation on O(ξ, η), we get:
其中,IFn表示菲涅尔衍射积分逆变换,O(x,y)为重建出的水印信息图像。其中,选择不同方向的参考光可重建得到不同的水印图像信息,若选择参考光为R*(ξ,η)则重建得到的水印信息图像为O*(ξ,η)Among them, IFn represents the Fresnel diffraction integral inverse transform, and O(x, y) is the reconstructed watermark information image. Among them, selecting reference light in different directions can reconstruct different watermark image information. If the reference light is selected as R * (ξ, η), the reconstructed watermark information image is O * (ξ, η)
图3为本发明实施例的生成嵌入水印信息图像的载体图像的装置结构示意图。如图所示,本发明实施例提供的数字水印认证装置,包括:FIG. 3 is a schematic structural diagram of an apparatus for generating a carrier image embedded in a watermark information image according to an embodiment of the present invention. As shown in the figure, the digital watermark authentication device provided by the embodiment of the present invention includes:
图像嵌入模块,用于生成嵌入水印信息图像的载体图像;Image embedding module, used to generate a carrier image embedded with watermark information image;
所述图像嵌入模块包括:The image embedding module includes:
数字全息图生成模块,用于根据水印信息图像,生成数字全息图;The digital hologram generation module is used to generate a digital hologram according to the watermark information image;
利用菲涅尔衍射积分变换计算水印信息图像在观测平面的物光分布为:Using the Fresnel diffraction integral transform to calculate the object light distribution of the watermark information image in the observation plane is:
其中,O0(x,y)为物光的振幅,ψ(x,y)为物光在物平面的相位函数,O(ξ,η)为物光在观测平面的物光衍射场分布,为物光在观测平面的相位函数。Among them, O 0 (x, y) is the amplitude of the object light, ψ(x, y) is the phase function of the object light in the object plane, O(ξ, η) is the object light diffraction field distribution of the object light in the observation plane, is the phase function of the object light in the observation plane.
g(ξ,η)为实数,即g(ξ,η)=|g(ξ,η)|,则g(ξ,η)为物光与参考光在观测平面的光强(干涉条纹)分布,称为数字全息图。g(ξ, η) is a real number, that is, g(ξ, η)=|g(ξ, η)|, then g(ξ, η) is the light intensity (interference fringe) distribution of the object light and the reference light in the observation plane , known as a digital hologram.
图像合成模块,用于根据数字全息图和原始载体图像,处理生成嵌入水印信息图像的载体图像。The image synthesis module is used to process and generate the carrier image embedded with the watermark information image according to the digital hologram and the original carrier image.
以原始载体图像为透镜前焦面的输入物光函数的振幅,以数字全息图为后焦面的输出物光函数,建立以下约束条件方程:Taking the original carrier image as the amplitude of the input object light function of the front focal plane of the lens, and taking the digital hologram as the output object light function of the back focal plane, the following constraint equations are established:
|FP{f(x,y)exp[jφ(x,y)]}|=g(ξ,η) (7)|F P {f(x,y)exp[jφ(x,y)]}|=g(ξ,η) (7)
其中,f(x,y)为原始载体图像,g(ξ,η)为数字全息图,φ(x,y)为待求相位函数。Among them, f(x, y) is the original carrier image, g(ξ, η) is the digital hologram, and φ(x, y) is the phase function to be obtained.
按照步骤S1110-S1112,利用分数维傅里叶变换计算求解满足上述约束条件的相位函数φ(x,y);According to steps S1110-S1112, use the fractal Fourier transform to calculate and solve the phase function φ(x, y) that satisfies the above constraints;
根据满足约束条件的相位函数,得到嵌入水印信息图像的载体图像I(x,y):According to the phase function satisfying the constraints, the carrier image I(x, y) of the embedded watermark information image is obtained:
I(x,y)=f(x,y)exp[jφ(x,y)(n)] (11)I(x, y)=f(x, y) exp[jφ(x, y) (n) ] (11)
嵌入水印信息图像的载体图像I(x,y)包含了原始载体图像与数字全息图的全部信息,其振幅为原始载体图像f(x,y),如公式(14)所示,载体图像I(x,y)的分数傅立叶变换即为数字全息图g(ξ,η),数字全息图中包含了水印信息图像的全部信息,The carrier image I(x, y) embedded in the watermark information image contains all the information of the original carrier image and the digital hologram, and its amplitude is the original carrier image f(x, y), as shown in formula (14), the carrier image I The fractional Fourier transform of (x, y) is the digital hologram g(ξ, η), and the digital hologram contains all the information of the watermark information image,
|FP{f(x,y)exp[jφ(x,y)(n)]}|=g(ξ,η) (12)|F P {f(x, y)exp[jφ(x, y) (n) ]}|=g(ξ, η) (12)
图4为本发明实施例的重建水印信息图像的装置结构示意图,如图所示,所述数字水印认证装置还包括:4 is a schematic structural diagram of an apparatus for reconstructing a watermark information image according to an embodiment of the present invention. As shown in the figure, the digital watermark authentication apparatus further includes:
水印提取模块,用于提取水印信息图像。The watermark extraction module is used to extract the watermark information image.
所述水印提取模块包括:The watermark extraction module includes:
密码确定模块:用于确定用于提取数字全息图的提取密码;Password determination module: used to determine the extraction password for extracting the digital hologram;
将符合约束条件的相位函数φ(x,y)(n)进行奇异值分解,得到奇异值矩阵D及两个酉矩阵U和V,基于对称加密算法,利用对称密钥对奇异值矩阵D进行加密,将加密处理结果D`作为用于提取数字全息图的提取密码。Perform singular value decomposition on the phase function φ(x, y) (n) that meets the constraints, and obtain the singular value matrix D and two unitary matrices U and V. Based on the symmetric encryption algorithm, the singular value matrix D is processed by the symmetric key. For encryption, the encryption processing result D' is used as the extraction password for extracting the digital hologram.
图像提取模块,用于根据原始载体图像及提取密码,提取数字全息图;The image extraction module is used to extract the digital hologram according to the original carrier image and the extraction password;
基于对称加密算法利用对称密钥对提取密码D`进行解密,生成奇异值矩阵D;利用奇异值矩阵D及两个酉矩阵U和V重构得到相位函数φ(x,y)(n);利用原始载体图像f(x,y)和相位函数φ(n)(x,y),计算数字全息图g(ξ,η):Utilize symmetric key to extract password D ` to decrypt based on symmetric encryption algorithm, generate singular value matrix D; Utilize singular value matrix D and two unitary matrices U and V reconstruction to obtain phase function φ(x, y) (n) ; Using the original carrier image f(x, y) and the phase function φ (n) (x, y), calculate the digital hologram g(ξ, η):
g(ξ,η)=Fp{f(x,y)exp[jφ(x,y)(n)]}g(ξ, η)=F p {f(x, y)exp[jφ(x, y) (n) ]}
水印重建模块,用于基于提取出的数字全息图,重建水印信息图像。The watermark reconstruction module is used to reconstruct the watermark information image based on the extracted digital hologram.
利用全息逆变换重建水印信息图像,Using the holographic inverse transform to reconstruct the watermark information image,
其中,IFn表示菲涅尔衍射积分逆变换,O(x,y)为重建出的水印信息图像。Among them, IFn represents the Fresnel diffraction integral inverse transform, and O(x, y) is the reconstructed watermark information image.
上述实施例的装置用于实现前述实施例中相应的方法,并且具有相应的方法实施例的有益效果,在此不再赘述。The apparatuses in the foregoing embodiments are used to implement the corresponding methods in the foregoing embodiments, and have the beneficial effects of the corresponding method embodiments, which will not be repeated here.
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明它们没有在细节中提供。Those of ordinary skill in the art should understand that the discussion of any of the above embodiments is only exemplary, and is not intended to imply that the scope of the present disclosure (including the claims) is limited to these examples; under the spirit of the present invention, the above embodiments or There may also be combinations between technical features in different embodiments, steps may be carried out in any order, and there are many other variations of the different aspects of the invention as described above, which are not provided in detail for the sake of brevity.
另外,为简化说明和讨论,并且为了不会使本发明难以理解,在所提供的附图中可以示出或可以不示出与集成电路(IC)芯片和其它部件的公知的电源/接地连接。此外,可以以框图的形式示出装置,以便避免使本发明难以理解,并且这也考虑了以下事实,即关于这些框图装置的实施方式的细节是高度取决于将要实施本发明的平台的(即,这些细节应当完全处于本领域技术人员的理解范围内)。在阐述了具体细节(例如,电路)以描述本发明的示例性实施例的情况下,对本领域技术人员来说显而易见的是,可以在没有这些具体细节的情况下或者这些具体细节有变化的情况下实施本发明。因此,这些描述应被认为是说明性的而不是限制性的。Additionally, well known power/ground connections to integrated circuit (IC) chips and other components may or may not be shown in the figures provided in order to simplify illustration and discussion, and in order not to obscure the present invention. . Furthermore, devices may be shown in block diagram form in order to avoid obscuring the present invention, and this also takes into account the fact that the details regarding the implementation of these block diagram devices are highly dependent on the platform on which the invention will be implemented (i.e. , these details should be fully within the understanding of those skilled in the art). Where specific details (eg, circuits) are set forth to describe exemplary embodiments of the invention, it will be apparent to those skilled in the art that these specific details may be used without or with changes The present invention is carried out below. Accordingly, these descriptions are to be considered illustrative rather than restrictive.
尽管已经结合了本发明的具体实施例对本发明进行了描述,但是根据前面的描述,这些实施例的很多替换、修改和变型对本领域普通技术人员来说将是显而易见的。例如,其它存储器架构(例如,动态RAM(DRAM))可以使用所讨论的实施例。Although the present invention has been described in conjunction with specific embodiments thereof, many alternatives, modifications, and variations to these embodiments will be apparent to those of ordinary skill in the art from the foregoing description. For example, other memory architectures (eg, dynamic RAM (DRAM)) may use the discussed embodiments.
本发明的实施例旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本发明的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明的保护范围之内。Embodiments of the present invention are intended to cover all such alternatives, modifications and variations that fall within the broad scope of the appended claims. Therefore, any omission, modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910089286.8A CN109840874B (en) | 2019-01-29 | 2019-01-29 | Digital watermark authentication method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910089286.8A CN109840874B (en) | 2019-01-29 | 2019-01-29 | Digital watermark authentication method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109840874A true CN109840874A (en) | 2019-06-04 |
CN109840874B CN109840874B (en) | 2023-03-21 |
Family
ID=66884345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910089286.8A Active CN109840874B (en) | 2019-01-29 | 2019-01-29 | Digital watermark authentication method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109840874B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005114849A1 (en) * | 2004-05-24 | 2005-12-01 | Hokkaido Technology Licensing Office Co., Ltd. | Encrypted data transmission method, data transmission system and data reception system using digital holography |
CN102520602A (en) * | 2011-11-08 | 2012-06-27 | 浙江师范大学 | Two-step quadrature phase-shift interferometry-based optical image encryption device and method |
CN102938134A (en) * | 2012-11-20 | 2013-02-20 | 山东大学 | Digital watermark embedding and detecting method based on phase-shifting interferometry and singular value decomposition |
CN103971035A (en) * | 2014-05-08 | 2014-08-06 | 华中科技大学 | Three-dimensional model copyright protection method based on digital fingerprint technology |
CN104794674A (en) * | 2015-04-24 | 2015-07-22 | 福建师范大学 | Watermark method and watermark device based on host digital hologram |
-
2019
- 2019-01-29 CN CN201910089286.8A patent/CN109840874B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005114849A1 (en) * | 2004-05-24 | 2005-12-01 | Hokkaido Technology Licensing Office Co., Ltd. | Encrypted data transmission method, data transmission system and data reception system using digital holography |
CN102520602A (en) * | 2011-11-08 | 2012-06-27 | 浙江师范大学 | Two-step quadrature phase-shift interferometry-based optical image encryption device and method |
CN102938134A (en) * | 2012-11-20 | 2013-02-20 | 山东大学 | Digital watermark embedding and detecting method based on phase-shifting interferometry and singular value decomposition |
CN103971035A (en) * | 2014-05-08 | 2014-08-06 | 华中科技大学 | Three-dimensional model copyright protection method based on digital fingerprint technology |
CN104794674A (en) * | 2015-04-24 | 2015-07-22 | 福建师范大学 | Watermark method and watermark device based on host digital hologram |
Non-Patent Citations (3)
Title |
---|
CHENLIANG CHANG,ET AL: "Holographic image projection using fractional Fourier transformation", 《OPTICS COMMUNICATIONS》 * |
丛长平: "信息安全中的光学加密及数字水印技术", 《中国优秀硕士学位论文全文数据库》 * |
位恒政: "光学对称密码分析学的研究", 《中国博士学位论文全文数据库》 * |
Also Published As
Publication number | Publication date |
---|---|
CN109840874B (en) | 2023-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Novel optical image encryption scheme based on fractional Mellin transform | |
CN106408500B (en) | An Image Encryption and Decryption Method Based on Phase Recovery Algorithm and Computational Correlation Imaging | |
Wang et al. | A compressive sensing based secure watermark detection and privacy preserving storage framework | |
Mehra et al. | Optical asymmetric watermarking using modified wavelet fusion and diffractive imaging | |
CN109901370B (en) | Phase-only hologram and single random phase coding optical image encryption and decryption method | |
CN104794675B (en) | Image concealing, reduction and encrypted transmission method based on cut Fourier transformation | |
Guo et al. | Image watermarking algorithm based on fractional Fourier transform and random phase encoding | |
CN101482965A (en) | Digital watermark imbedding and detecting method and device | |
CN104794674A (en) | Watermark method and watermark device based on host digital hologram | |
CN106506150B (en) | A dual-image optical encryption method with high security strength and its decryption method | |
CN110766596A (en) | Optical encryption method based on correlated imaging | |
CN111583395B (en) | A Method for Encryption and Decryption of Multiple Complex 3D Scenes | |
CN111583088A (en) | A Robust Watermarking Method for Self-Embedding Fully Blind Color Images Based on Multiple Transform Domains | |
CN103258315A (en) | Double-image encryption method based on tangential fractional Fourier transformation | |
Zhu et al. | An asymmetric color-image cryptosystem based on spiral phase transformation and equal modulus decomposition | |
CN103942745A (en) | Method and system for adding watermark to image | |
CN102663671B (en) | Digital watermarking embedding and detecting method based on three-step phase shift interferometry | |
Shi et al. | Optical image hiding in the Fresnel domain | |
CN104573561B (en) | Authentication method based on sparse double random-phase encoding and QR codes | |
CN109840874B (en) | Digital watermark authentication method and device | |
CN105912940B (en) | Image authentication method based on two pieces of binary masks | |
Li et al. | Computational integral imaging-based 3D digital watermarking scheme using cellular automata transform and maximum length cellular automata | |
Zhang et al. | Optical voice hiding based on chaotic fingerprint phase mask and phase-shifting digital holography | |
CN106371304A (en) | Safe compressed holographic imaging system and method | |
Alam et al. | A Novel Hybrid Watermarking scheme with Image authentication based on frequency domain, 2-Level SVD using chaotic map. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |