CN109817193A - 一种基于时变多段式频谱的音色拟合系统 - Google Patents

一种基于时变多段式频谱的音色拟合系统 Download PDF

Info

Publication number
CN109817193A
CN109817193A CN201910128159.4A CN201910128159A CN109817193A CN 109817193 A CN109817193 A CN 109817193A CN 201910128159 A CN201910128159 A CN 201910128159A CN 109817193 A CN109817193 A CN 109817193A
Authority
CN
China
Prior art keywords
musical instrument
time
model
tone color
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910128159.4A
Other languages
English (en)
Other versions
CN109817193B (zh
Inventor
沈平
唐镇宇
张建雄
余佩佩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN MOOER AUDIO Co Ltd
Original Assignee
SHENZHEN MOOER AUDIO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN MOOER AUDIO Co Ltd filed Critical SHENZHEN MOOER AUDIO Co Ltd
Priority to CN201910128159.4A priority Critical patent/CN109817193B/zh
Publication of CN109817193A publication Critical patent/CN109817193A/zh
Priority to US16/713,023 priority patent/US10902832B2/en
Application granted granted Critical
Publication of CN109817193B publication Critical patent/CN109817193B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/18Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means using a string, e.g. electric guitar
    • G10H3/186Means for processing the signal picked up from the strings
    • G10H3/188Means for processing the signal picked up from the strings for converting the signal to digital format
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/18Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means using a string, e.g. electric guitar
    • G10H3/186Means for processing the signal picked up from the strings
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/02Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
    • G10H1/06Circuits for establishing the harmonic content of tones, or other arrangements for changing the tone colour
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/02Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
    • G10H1/06Circuits for establishing the harmonic content of tones, or other arrangements for changing the tone colour
    • G10H1/12Circuits for establishing the harmonic content of tones, or other arrangements for changing the tone colour by filtering complex waveforms
    • G10H1/125Circuits for establishing the harmonic content of tones, or other arrangements for changing the tone colour by filtering complex waveforms using a digital filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/025Envelope processing of music signals in, e.g. time domain, transform domain or cepstrum domain
    • G10H2250/031Spectrum envelope processing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/055Filters for musical processing or musical effects; Filter responses, filter architecture, filter coefficients or control parameters therefor
    • G10H2250/111Impulse response, i.e. filters defined or specifed by their temporal impulse response features, e.g. for echo or reverberation applications
    • G10H2250/115FIR impulse, e.g. for echoes or room acoustics, the shape of the impulse response is specified in particular according to delay times
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/541Details of musical waveform synthesis, i.e. audio waveshape processing from individual wavetable samples, independently of their origin or of the sound they represent
    • G10H2250/621Waveform interpolation
    • G10H2250/625Interwave interpolation, i.e. interpolating between two different waveforms, e.g. timbre or pitch or giving one waveform the shape of another while preserving its frequency or vice versa

Abstract

本发明公开了一种基于时变多段式频谱的音色拟合系统,包括用于获取乐器音频信号的输入装置和分段式多模型补偿模块,所述分段式多模型补偿模块分别学习源乐器和目标乐器的音色,建立源乐器声音特征的多段式模型和目标乐器声音特征的多段式模型,所述声音特征设置为以在目标乐器和源乐器上演奏相同序列的音频信号的振幅最大值为基准,将该段序列音频信号按照振幅大小分成多段,所述声音特征包括多个分别处于各振幅段内的音符的频谱,所述分段式多模型补偿模块基于源乐器声音特征和目标乐器声音特征的差异建立含时变增益的多模型结构,通过所述多模型结构使源乐器声音特征和目标乐器声音特征的差异最小化。采用本发明的技术方案,在模拟同一类型的另一种弦乐器的音色时,其音色会更加接近。

Description

一种基于时变多段式频谱的音色拟合系统
技术领域
本发明涉及一种乐器领域,具体的说,是一种基于时变多段式频谱的音色拟合系统。
背景技术
弦乐器的发声方式是通过弦振动发声,而反应振动现象最基本的物理量就是频率,简单周期振动只有一个频率。而复杂运动不能用一个频率描写它的运动情况,频谱是频率的分布曲线,是将振动幅值按频率大小排列的图形,因此通常采用频谱来描写一个复杂的振动情况。音色是声音的听觉感知特性,是不同的声音的频率表现在波形方面的特性。不同的物体振动都有不同的特点,因此音色也各不相同。任何一个普通的音色都是由若干谐音组成,即由若干谐波构成,是一种复杂振动,因此,可以通过分析不同乐器发出的音符中谐波的频谱来区分不同乐器的音色。
现有的弦乐器设备通常都只具有一种单一的音色,而在实际演出或使用中,往往需要用到多种不同音色的弦乐器设备,这就需要携带多种不同音色的弦乐器设备外出,且在演奏的间隙频繁的更换以匹配演奏所需的音色,既花费时间实际操作起来又相当不方便。因此,现有技术中已出现一些可模拟多种弦乐器设备音色的装置,从而在实际应用中不用频繁更换弦乐器设备。
如美国专利文献US10115381B2中公开了一种模拟弦乐器音色的装置,该专利中通过获取由源乐器的弦的振动产生的输入电信号;通过将目标乐器的声音特征与所述源乐器的声音特征相关联来获得传递函数,所述声音特征分别包括在所述目标乐器上播放的一系列音符的平均频谱和在所述源乐器上播放的相应音符范围的平均频谱;对由所述源乐器产生的所述电信号进行滤波,将所述传递函数应用于所述电信号,从而能够通过修改源乐器的声音音色直到它与目标乐器的音色完全相同。但是上述专利仍存在不足之处,因为每个音符从音头到音尾的频谱都是变化的,而且其变化规律也是不一样的,因此,将声音特征设置为一段音符的平均频谱,不能准确反应该段音符的声音特征,因此模拟出来的结果仍不够精确。
发明内容
为解决现有技术中的缺点,本发明提供了一种基于时变多段式频谱的音色拟合系统,其根据振幅值大小将音符进行分段,使声音特征包括多个分别处于各振幅段内的音符的频谱,从而更接近实际频谱变化的规律,因而使模拟出的同一类型的另一种弦乐器的音色更相似。
本发明采用的技术方案为:一种基于时变多段式频谱的音色拟合系统,包括用于获取乐器音频信号的输入装置和分段式多模型补偿模块,所述分段式多模型补偿模块分别学习源乐器和目标乐器的音色,建立源乐器声音特征的多段式模型和目标乐器声音特征的多段式模型,所述声音特征设置为以在目标乐器和源乐器上演奏相同序列的音频信号的振幅最大值为基准,将该段序列音频信号按照振幅大小分成多段,所述声音特征包括多个分别处于各振幅段内的音符的频谱,所述分段式多模型补偿模块基于源乐器声音特征和目标乐器声音特征的差异建立含时变增益的多模型结构,通过所述多模型结构使源乐器声音特征和目标乐器声音特征的差异最小化,所述音色拟合系统适用于弦乐器音色的模拟。
所述多模型结构的时变增益值是根据音频信号的振幅值大小来选择的,其中根据振幅值大小,所述时变增益值设置为稳定段和过渡段,相邻两振幅段的时变增益值的交点为相邻两过渡段时变增益曲线的中点,相邻两振幅段的相邻两过渡段的时变增益值之和为1。
所述相邻两振幅段的界限点设置为在相邻两振幅段的时变增益值交点所对应的振幅值上下浮动一定值。
本发明在模拟弦乐器的音色时,首先由输入装置从源乐器和目标乐器弹奏的音符中获得模拟电信号,由输入装置获取的电信号随后被发送到模数转换器,该模数转换器将具有连续级数的模拟电信号(特别是电压)转换为具有一系列离散值的数字信号。在模数转换之后,处理装置 (通常由处理器或CPU组成)处理数字信号,从而定义对应于电信号来源的源乐器和目标乐器的声音特征,声音特征分别包括源乐器和目标乐器的多个分别处于各振幅段内的音符的频谱,该频谱识别即对应于源乐器和目标乐器的声音音色。含分段式多模型补偿模块的处理器基于源乐器和目标乐器声音特征的差异,建立含时变增益的多模型结构,并将模型参数存储于存储器中。在实际运行时,对由源乐器产生的电信号进行滤波,将含时变增益值的多模型结构应用于由源乐器的弦的振动产生的输入电信号,从而能够通过修改源乐器的声音音色直到它与目标乐器的音色差异最小化。
采用本发明的技术方案,其有益效果为:根据振幅值大小将音符进行分段,使声音特征包括多个分别处于各振幅段内的音符的频谱,与采用整段音符的平均频谱相比,本发明的设置更接近实际频谱变化的规律,因而在模拟同一类型的另一种弦乐器的音色时,其音色会更相似。
附图说明
图1是本发明实施例的频谱与振幅分段的关系。
图2是本发明实施例的时变增益值随振幅变化的关系。
图3是本发明实施例的源乐器拟合为目标乐器的运行图。
具体实施方式
下面结合附图和具体实施方式对本发明的技术方案作进一步的详细说明。
一种基于时变多段式频谱的音色拟合系统,其适用于弦乐器音色的模拟,包括用于获取乐器音频信号的输入装置和分段式多模型补偿模块,所述分段式多模型补偿模块分别学习源乐器和目标乐器的音色,建立源乐器声音特征的多段式模型和目标乐器声音特征的多段式模型,如图1所示,在源乐器和目标乐器上演奏相同序列的音符,以该段音符的振幅最大值Fmax为基准,将该段序列音符按照振幅大小均分成三段,形成A、B、C三个振幅段后,声音特征分别包括源乐器和目标乐器的多个分别处于A、B、C三个振幅段内的音符的频谱,分段式多模型补偿模块基于源乐器声音特征和目标乐器声音特征的差异建立含时变增益(a,b,c)的多模型结构(Fir(A)-Fir(B)-Fir(C)),通过所述多模型结构(Fir(A)-Fir(B)-Fir(C))使源乐器声音特征和目标乐器声音特征的差异最小化。其中音符的分段形式,即是否均分、分成几段,可根据实际情况自行调整。
多模型结构(Fir(A)-Fir(B)-Fir(C))的时变增益值(a,b,c)是根据音频信号的振幅值大小来选择的,如图2所示,其中根据振幅值大小,所述时变增益值(a,b,c)设置为稳定段和过渡段,在稳定段时,各时变增益值(a,b,c)的取值为1,在过渡段时,各时变增益值(a,b,c)的取值由1-0过渡或者由0-1过渡 ,相邻两振幅段的时变增益值的交点为相邻两过渡段时变增益曲线的中点,如C1C2段与B1B3段交点m1为C1C2段与B1B3段的中点,A1A2段与B2B4段交点m2为A1A2段与B2B4段的中点,相邻两振幅段的相邻两过渡段的时变增益值之和为1,如C1C2段与B1B3段的时变增益值c与b之和为1,A1A2段与B2B4段的时变增益值a与b之和为1。
相邻两振幅段的界限点设置为在相邻两振幅段的时变增益值交点所对应的振幅值上下浮动一定值,如B1、C1设置在m1所对应的振幅值上下浮动一定值,A1、B2设置在m2所对应的振幅值上下浮动一定值,从而保证相邻两振幅段的时变增益值的交点为相邻两过渡段时变增益曲线的中点。
本发明的基于时变多段式频谱的音色拟合系统,包括用于获取源乐器和目标乐器电信号的输入装置、模数转换器、处理装置(含分段式多模型补偿模块)、存储器、数模转换器。在模拟弦乐器的音色时,首先,输入装置从源乐器和目标乐器弹奏的音符中获得模拟电信号,由输入装置获取的电信号随后被发送到模数转换器,该模数转换器将具有连续级数的模拟电信号(特别是电压)转换为具有一系列离散值的数字信号。在模数转换之后,处理装置 (通常由处理器或CPU组成)处理数字信号,从而定义对应于电信号来源的源乐器和目标乐器的声音特征,声音特征分别包括源乐器和目标乐器的多个分别处于各振幅段内的音符的频谱,该频谱识别即对应于源乐器和目标乐器的声音音色。处理器基于源乐器和目标乐器声音特征的差异,建立含时变增益的多模型结构,并将模型参数存储于存储器中。如图3所示,在实际运行时,对由源乐器产生的电信号进行滤波,将含时变增益值的多模型结构应用于由源乐器的弦的振动产生的输入电信号,从而能够通过修改源乐器的声音音色直到它与目标乐器的音色差异最小化,并通过数模转换器输出新的电信号,发送给放大器或扬声器,这种新电信号具有与目标乐器差异最小的声音音色。
上述实施例仅为本发明的优选方案,并非作为对本发明的进一步限定,不能以此来限制本发明的保护范围,凡是根据本发明精神实质所作的等效变化或修饰,均应涵盖在本发明的保护范围内。

Claims (3)

1.一种基于时变多段式频谱的音色拟合系统,其特征在于,包括用于获取乐器音频信号的输入装置和分段式多模型补偿模块,所述分段式多模型补偿模块分别学习源乐器和目标乐器的音色,建立源乐器声音特征的多段式模型和目标乐器声音特征的多段式模型,所述声音特征设置为以在目标乐器和源乐器上演奏相同序列的音频信号的振幅最大值为基准,将该段序列音频信号按照振幅大小分成多段,所述声音特征包括多个分别处于各振幅段内的音符的频谱,所述分段式多模型补偿模块基于源乐器声音特征和目标乐器声音特征的差异建立含时变增益的多模型结构,通过所述多模型结构使源乐器声音特征和目标乐器声音特征的差异最小化,所述音色拟合系统适用于弦乐器音色的模拟。
2.根据权利要求1所述的一种基于时变多段式频谱的音色拟合系统,其特征在于,所述多模型结构的时变增益值是根据音频信号的振幅值大小来选择的,其中根据振幅值大小,所述时变增益值设置为稳定段和过渡段,相邻两振幅段的时变增益值的交点为相邻两过渡段时变增益曲线的中点,相邻两振幅段的相邻两过渡段的时变增益值之和为1。
3.根据权利要求1所述的一种基于时变多段式频谱的音色拟合系统,其特征在于,所述相邻两振幅段的界限点设置为在相邻两振幅段的时变增益值交点所对应的振幅值上下浮动一定值。
CN201910128159.4A 2019-02-21 2019-02-21 一种基于时变多段式频谱的音色拟合系统 Active CN109817193B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910128159.4A CN109817193B (zh) 2019-02-21 2019-02-21 一种基于时变多段式频谱的音色拟合系统
US16/713,023 US10902832B2 (en) 2019-02-21 2019-12-13 Timbre fitting method and system based on time-varying multi-segment spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910128159.4A CN109817193B (zh) 2019-02-21 2019-02-21 一种基于时变多段式频谱的音色拟合系统

Publications (2)

Publication Number Publication Date
CN109817193A true CN109817193A (zh) 2019-05-28
CN109817193B CN109817193B (zh) 2022-11-22

Family

ID=66607081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910128159.4A Active CN109817193B (zh) 2019-02-21 2019-02-21 一种基于时变多段式频谱的音色拟合系统

Country Status (2)

Country Link
US (1) US10902832B2 (zh)
CN (1) CN109817193B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534081A (zh) * 2019-09-05 2019-12-03 长沙市回音科技有限公司 一种将吉他声音转换成其他乐器声音的实时演奏方法及系统
CN110910895A (zh) * 2019-08-29 2020-03-24 腾讯科技(深圳)有限公司 一种声音处理的方法、装置、设备和介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10186247B1 (en) * 2018-03-13 2019-01-22 The Nielsen Company (Us), Llc Methods and apparatus to extract a pitch-independent timbre attribute from a media signal
CN109817193B (zh) * 2019-02-21 2022-11-22 深圳市魔耳乐器有限公司 一种基于时变多段式频谱的音色拟合系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165121A (zh) * 2011-12-09 2013-06-19 雅马哈株式会社 信号处理设备
US20140260906A1 (en) * 2013-03-14 2014-09-18 Stephen Welch Musical Instrument Pickup Signal Processor
CN104103266A (zh) * 2013-04-08 2014-10-15 雅马哈株式会社 音色选择装置、乐器以及音色选择方法
CN107195289A (zh) * 2016-05-28 2017-09-22 浙江大学 一种可编辑的多级音色合成系统及方法
US20180122347A1 (en) * 2015-04-13 2018-05-03 Filippo Zanetti Device and method for simulating a sound timbre, particularly for stringed electrical musical instruments
CN108630178A (zh) * 2017-03-23 2018-10-09 卡西欧计算机株式会社 乐音生成装置、乐音生成方法、记录介质及电子乐器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504270A (en) * 1994-08-29 1996-04-02 Sethares; William A. Method and apparatus for dissonance modification of audio signals
US5808225A (en) * 1996-12-31 1998-09-15 Intel Corporation Compressing music into a digital format
US6392135B1 (en) * 1999-07-07 2002-05-21 Yamaha Corporation Musical sound modification apparatus and method
US7461002B2 (en) * 2001-04-13 2008-12-02 Dolby Laboratories Licensing Corporation Method for time aligning audio signals using characterizations based on auditory events
US8090120B2 (en) * 2004-10-26 2012-01-03 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
US8199933B2 (en) * 2004-10-26 2012-06-12 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
US8138409B2 (en) * 2007-08-10 2012-03-20 Sonicjam, Inc. Interactive music training and entertainment system
SE535612C2 (sv) * 2011-01-11 2012-10-16 Arne Wallander Förändring av ett ljuds upplevda styrkegrad medelst filtrering med en parametrisk equalizer
GB2493030B (en) * 2011-07-22 2014-01-15 Mikko Pekka Vainiala Method of sound analysis and associated sound synthesis
US9495591B2 (en) * 2012-04-13 2016-11-15 Qualcomm Incorporated Object recognition using multi-modal matching scheme
CA2931105C (en) * 2013-09-05 2022-01-04 George William Daly Systems and methods for acoustic processing of recorded sounds
US20170024495A1 (en) * 2015-07-21 2017-01-26 Positive Grid LLC Method of modeling characteristics of a musical instrument
US10430154B2 (en) * 2016-09-23 2019-10-01 Eventide Inc. Tonal/transient structural separation for audio effects
FR3062945B1 (fr) * 2017-02-13 2019-04-05 Centre National De La Recherche Scientifique Methode et appareil de modification dynamique du timbre de la voix par decalage en frequence des formants d'une enveloppe spectrale
CN107863095A (zh) * 2017-11-21 2018-03-30 广州酷狗计算机科技有限公司 音频信号处理方法、装置和存储介质
US10186247B1 (en) * 2018-03-13 2019-01-22 The Nielsen Company (Us), Llc Methods and apparatus to extract a pitch-independent timbre attribute from a media signal
CN109817193B (zh) * 2019-02-21 2022-11-22 深圳市魔耳乐器有限公司 一种基于时变多段式频谱的音色拟合系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165121A (zh) * 2011-12-09 2013-06-19 雅马哈株式会社 信号处理设备
US20140260906A1 (en) * 2013-03-14 2014-09-18 Stephen Welch Musical Instrument Pickup Signal Processor
CN104103266A (zh) * 2013-04-08 2014-10-15 雅马哈株式会社 音色选择装置、乐器以及音色选择方法
US20180122347A1 (en) * 2015-04-13 2018-05-03 Filippo Zanetti Device and method for simulating a sound timbre, particularly for stringed electrical musical instruments
CN107195289A (zh) * 2016-05-28 2017-09-22 浙江大学 一种可编辑的多级音色合成系统及方法
CN108630178A (zh) * 2017-03-23 2018-10-09 卡西欧计算机株式会社 乐音生成装置、乐音生成方法、记录介质及电子乐器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110910895A (zh) * 2019-08-29 2020-03-24 腾讯科技(深圳)有限公司 一种声音处理的方法、装置、设备和介质
CN110910895B (zh) * 2019-08-29 2021-04-30 腾讯科技(深圳)有限公司 一种声音处理的方法、装置、设备和介质
CN110534081A (zh) * 2019-09-05 2019-12-03 长沙市回音科技有限公司 一种将吉他声音转换成其他乐器声音的实时演奏方法及系统
CN110534081B (zh) * 2019-09-05 2021-09-03 长沙市回音科技有限公司 一种将吉他声音转换成其他乐器声音的实时演奏方法及系统

Also Published As

Publication number Publication date
CN109817193B (zh) 2022-11-22
US10902832B2 (en) 2021-01-26
US20200273441A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
CN109817193A (zh) 一种基于时变多段式频谱的音色拟合系统
Välimäki et al. Discrete-time modelling of musical instruments
US10553188B2 (en) Musical attribution in a two-dimensional digital representation
CN108573690A (zh) 电子乐器、发音控制方法以及记录介质
CN101223564B (zh) 将标准音符的频率转换为对应的Ra格式音符的频率的设备
Park Instrument technology: Bones, tones, phones, and beyond
US11942106B2 (en) Apparatus for analyzing audio, audio analysis method, and model building method
De Souza Orchestra Machines, Old and New
Carmi-Cohen An investigation into the tonal structure of the maqamat
US4641563A (en) Electronic musical instrument
Henderson-Sellers et al. Has classical music a fractal nature?—A reanalysis
Shuster et al. Mapping timbral surfaces in Alpine yodeling: New directions in the analysis of tone color for unaccompanied vocal music
US2971420A (en) Electrical musical instrument
Wun et al. Perceptual wavetable matching for synthesis of musical instrument tones
Fallowfield Cello multiphonics: technical and musical parameters
Su et al. An IIR synthesis method for plucked-string instruments with embedded portamento
So et al. Wavetable matching of pitched inharmonic instrument tones
Chakraborty et al. Statistical analysis of a Tagore song based on Raga Kafi
Vickery Visualising the sonic environment
Kostek et al. Study of Parameter Relations in Music Instrument Patterns
Ackermann et al. Acoustic musical instruments as sound sources with dynamic directivity
Urazbaeva THE IMPORTANCE OF MUSIC THEORY
JP4473979B2 (ja) 音響信号の符号化方法および復号化方法ならびに当該方法を実行するプログラムを記録した記録媒体
Viator Finding Music in Chaos: Designing and Composing with Virtual Instruments Inspired by Chaotic Equations
US20180166052A1 (en) Free bass a system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant