CN109813510A - 基于无人机的高铁桥梁竖向动扰度测量方法 - Google Patents

基于无人机的高铁桥梁竖向动扰度测量方法 Download PDF

Info

Publication number
CN109813510A
CN109813510A CN201910031648.8A CN201910031648A CN109813510A CN 109813510 A CN109813510 A CN 109813510A CN 201910031648 A CN201910031648 A CN 201910031648A CN 109813510 A CN109813510 A CN 109813510A
Authority
CN
China
Prior art keywords
unmanned plane
measurement point
camera
image
shooting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910031648.8A
Other languages
English (en)
Other versions
CN109813510B (zh
Inventor
张小虎
林彬
甘叔玮
叶雪辀
杨夏
王卫东
黄天立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Sun Yat Sen University
National Sun Yat Sen University
Original Assignee
Central South University
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University, National Sun Yat Sen University filed Critical Central South University
Priority to CN201910031648.8A priority Critical patent/CN109813510B/zh
Publication of CN109813510A publication Critical patent/CN109813510A/zh
Application granted granted Critical
Publication of CN109813510B publication Critical patent/CN109813510B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种基于无人机的高铁桥梁竖向动扰度测量方法,在待测高铁桥梁上布置测量点。在无人机上安装一台相机,同时在无人机上设置标志物。在地面布置全站仪。控制无人机飞行到测量点所在水平面内且垂直于测量点的垂线上的设定位置,在设定位置处,利用无人机上的相机按照设定时间间隔对待测高铁桥梁上的测量点拍摄成像,同时全站仪按照与无人机上的相机相同的设定时间间隔同步测量无人机上标志物的位置坐标。利用全站仪以及无人机惯导输出的数据对测量点的图像坐标进行修正,基于修正后的测量点的图像坐标得到高铁桥梁竖向动扰度。本发明能够不受环境振动影响,可实现灵活易操作的高铁桥梁动扰度高精度测量,且测量过程简单高效。

Description

基于无人机的高铁桥梁竖向动扰度测量方法
技术领域
本发明涉及的是桥梁动位移视觉测量技术领域,具体涉及一种利用无人机实现高铁桥梁竖向动扰度测量的方法。
背景技术
基于视觉测量技术的高铁桥梁动位移测量需要在待测桥梁的附近架设配备长焦镜头的相机,通过相机对桥梁待测部位成像,记录待测部位不同时刻在图像上的位置,再根据桥梁待测部位在图像上的位置变化计算桥梁待测部位的实际位置变化,从而得到桥梁该部位的动位移。待测部位可以是桥梁上的自然表面,也可以粘贴或固定特殊制作的光学标志。
现有的机器视觉测量方式,需要对架设的相机进行严格的标定,以确定相机视场与待测目标的相对位姿关系,保证得到待测点在竖直方向的位置变化。这样的标定通常是在地面上选择若干绝对坐标已知的控制点,通过控制点对相机的绝对位姿进行标定。
此外,相机成像时对环境要求很高,因为测量过程容易受到环境影响,致使最终测量精度不能满足要求。例如,当相机架设在公路近旁时,过往车辆引起的路面振动会直接影响到相机的姿态稳定,难以达到亚毫米量级的测量精度要求。
因此,研究一种对测量环境条件要求低,甚至能够不受环境振动影响,可实现高铁桥梁动扰度高精度测量的方法是非常必要的。
发明内容
针对现有技术存在的缺陷,本发明提供一种基于无人机的高铁桥梁竖向动扰度测量方法,该方法不受环境振动影响,可实现灵活易操作的高铁桥梁动扰度高精度测量,且测量过程简单高效。
为实现本发明的技术目的,采用以下技术方案:
基于无人机的高铁桥梁竖向动扰度测量方法,包括:
S1确定待测高铁桥梁,在待测高铁桥梁跨中位置布设一个测量点。在待测高铁桥梁上通过喷漆或者涂写的方式进行测量点的布设。
S2布置相机和全站仪。
在无人机上安装一台相机,相机用于对待测高铁桥梁以及待测高铁桥梁上的测量点拍摄成像。同时在无人机上设置标志物。无人机上自带有GPS以及惯导。
在地面布置全站仪,通过全站仪定位无人机上的标志物,追踪无人机上相机拍摄过程中无人机上标志物的移动。
S3利用无人机进行飞行测量。
无人机的理想观测位置是在测量点所在水平面内且垂直于测量点的垂线上。
控制无人机飞行到测量点所在水平面内且垂直于测量点的垂线上的设定位置,在设定位置处,利用无人机上的相机按照设定时间间隔对待测高铁桥梁上的测量点拍摄成像,同时全站仪按照与无人机上的相机相同的设定时间间隔同步测量无人机上标志物的位置坐标。在设定位置处,无人机与测量点的距离在设定测量距离范围之内。
S4计算待测高铁桥梁竖向动扰度。
根据全站仪以及无人机上自身配备的惯导系统输出的数据对相机拍摄得到的图像进行修正,得到修正后的测量点的图像坐标,计算测量点在竖直方向上的相对位移即高铁桥梁竖向动扰度。
S4.1对于无人机上相机初始拍摄时刻对应的首张拍摄图像,通过模板匹配找到首张拍摄图像中的待测高铁桥梁上标记的测量点,得到测量点在首张拍摄图像中的图像坐标;对于后续各拍摄时刻对应的拍摄图像,采用最小二乘图像匹配跟踪法对测量点进行跟踪,得到后续各拍摄时刻对应的拍摄图像上的测量点的图像坐标。
S4.2从全站仪得到无人机上相机各拍摄时刻对应的无人机上标志点在世界坐标系下的位置坐标。对于各拍摄时刻对应的无人机上标志点在世界坐标系下的位置坐标,将其与初始拍摄时刻对应的无人机上标志点在世界坐标系下的位置坐标进行对比,得到各拍摄时刻对应的无人机上标志点在世界坐标系三个轴向上的位移,将其作为各拍摄时刻对应的无人机的位移。
通过无人机上自身配备的惯导系统得到各拍摄时刻对应的无人机绕世界坐标系三个轴向的旋转角度,将其作为各拍摄时刻对应的无人机的姿态变化。
利用各拍摄时刻对应的无人机的位移以及姿态变化对各拍摄时刻对应的拍摄图像上的测量点的图像坐标进行修正,得到修正后的各拍摄时刻对应的拍摄图像上的测量点的图像坐标。
S4.3根据修正后的各拍摄时刻对应的拍摄图像上的测量点的图像坐标,计算各拍摄时刻对应的世界坐标系下测量点在竖直方向上的相对位移d1,d1即各拍摄时刻对应的高铁桥梁竖向动扰度。
d1=xA-xB
其中,A点为待测高铁桥梁上测量点原来位置,xA为A点对应的世界坐标系下的坐标,B点为待测高铁桥梁上测量点移动后的位置,xB为B点对应的世界坐标系下的坐标,为修正后的xA在i时刻对应的拍摄图像中的坐标,为修正后的xB在i时刻对应的拍摄图像中的坐标,D为无人机上相机镜头到包含测量点移动所在直线并且垂直于相机光轴的平面的垂直距离,f为无人机上相机的焦距,θ为无人机上相机光轴与相机镜头到测量点移动所在平面的垂直线的夹角。
在S4.2中,利用各拍摄时刻对应的无人机的位移以及姿态变化对各拍摄时刻对应的拍摄图像上的测量点的图像坐标进行修正的方法如下:
S4.2.1计算i时刻相机坐标系对应的位移矩阵T′;
其中:Δtx为i时刻无人机在X轴方向上的位移,Δty为i时刻无人机在Y轴方向上的位移,Δtz为i时刻无人机在Z轴方向上的位移;
S4.2.2计算i时刻相机坐标系对应的旋转矩阵R′;
其中:a为i时刻无人机绕X轴的旋转角度,β为i时刻无人机绕Y轴的旋转角度,γ为i时刻无人机绕Z轴的旋转角度;
S4.2.3根据位移矩阵T′和旋转矩阵R′对i时刻对应的拍摄图像上的测量点的图像坐标进行修正;
相机坐标系与图像坐标系的关系式表示如下:
其中(u,v)为S4.1中得到的i时刻对应的拍摄图像上的测量点在图像坐标系下的坐标;fx=f/dx,fy=f/dy,其分别为图像坐标系u轴、v轴的尺度因子;f为相机的焦距;(u0,v0)为图像坐标系的原点坐标,(Xc,Yc,Zc)为i时刻测量点在相机坐标系下的坐标,其中Zc在对相机进行标定时已知,Xc和Yc待求。相机坐标系的原点为相机的光心,相机坐标系的X轴和Y轴分别与图像坐标系的u轴和v轴平行,相机坐标系的Z轴为相机光轴,Z轴与图像坐标系所在图像平面垂直。相机光轴与图像平面的交点,即为图像坐标系的原点。
当u、v及Zc已知时,由相机坐标系与图像坐标系的关系式可计算得i时刻测量点在相机坐标系下的坐标(Xc,Yc,Zc),利用下式即可得到修正后的i时刻对应的拍摄图像上的测量点的图像坐标。
其中u′和v′为修正后的i时刻对应的拍摄图像上的测量点的图像坐标。
与现有技术相比,本发明能够产生以下技术效果:
采用本发明提供的测量方法,能够不受环境振动影响,可实现灵活易操作的高铁桥梁动扰度高精度测量,且测量过程简单高效。
附图说明
图1为基于机器视觉的桥梁扰度测量示图;
图2为相机位置姿态变化引起图像变化示图;
图3为本发明的应用示意图;
图4为无人机(相机)的正下视理想观测位置;
图5为无人机与地面固定物以安全绳连接示意图;
图6是桥梁待测点竖向动位移与其在图像上的位置变化关系图。
具体实施方式
下面结合附图,对本发明的实施方式进行进一步的详细说明。
如图1所示,扰度是指梁在弯曲变形后,梁中横截面的位置将发生改变,横截面的形心在垂直于梁轴向的位移。所以扰度是梁中横截面相对于梁的固定端点的位置变化。
对于高铁桥梁(简支梁类型)来讲,可以认为高铁桥梁的左右两端的两个桥墩支撑点所在的桥梁两端点是静止不变的,高铁桥梁的跨中位置相对于两端点在竖向的位置变化就是高铁桥梁竖向动扰度。
当在无人机等不稳定平台上采用相机对高铁桥梁进行成像时,如图2所示,测量点会在图像上因为相机的晃动而产生位置变化。
针对高铁桥梁竖向动扰度测量,本发明采用的技术方案如下:
S1确定待测高铁桥梁,在待测高铁桥梁跨中位置布设一个测量点。在待测高铁桥梁上通过喷漆或者涂写的方式进行测量点的标记。
S2布置相机和全站仪。
无人机上自带有GPS以及惯导,在无人机上安装一台相机,相机用于对待测高铁桥梁以及待测高铁桥梁上的测量点拍摄成像,同时在无人机上设置标志物。
在地面布置全站仪,通过全站仪定位无人机上的标志物,追踪无人机上相机拍摄过程中无人机上标志物的移动。
S3参照图3,利用无人机进行飞行测量;
无人机的理想观测位置是在测量点所在水平面内且垂直于测量点的垂线上。
参照图4,控制无人机飞行到测量点所在水平面内且垂直于测量点的垂线上的设定位置,在设定位置处,利用无人机上的相机按照设定时间间隔对待测高铁桥梁上的测量点拍摄成像,同时全站仪按照与无人机上的相机相同的设定时间间隔同步测量无人机上标志物的位置坐标。在设定位置处,无人机与测量点的距离在设定测量距离范围之内。
相机通过软件触发或者硬件触发的方式按照设定时间间隔对待测高铁桥梁拍摄成像。
参照图5,为了保证拍摄时的安全,无人机通过安全绳与地面固定物体连接,这样就可以限定无人机的运动范围,能够保证无人机远离高铁桥梁上的高铁线路,在保障测量任务的同时,不影响高铁桥梁上铁路和列车的安全。
S4计算待测高铁桥梁竖向动扰度;
S4.1对于无人机上相机初始拍摄时刻对应的首张拍摄图像,通过模板匹配找到首张拍摄图像中的待测高铁桥梁上标记的测量点,得到测量点在首张拍摄图像中的图像坐标;对于后续各拍摄时刻对应的拍摄图像,采用最小二乘图像匹配跟踪法对测量点进行跟踪,得到后续各拍摄时刻对应的拍摄图像上的测量点的图像坐标。(详见《显著性加权最小二乘图像匹配跟踪算法》,张恒,李立春,李由,于起峰)
S4.2从全站仪得到无人机上相机各拍摄时刻对应的无人机上标志点在世界坐标系下的位置坐标;对于各拍摄时刻对应的无人机上标志点在世界坐标系下的位置坐标,将其与初始拍摄时刻对应的无人机上标志点在世界坐标系下的位置坐标进行对比,得到各拍摄时刻对应的无人机上标志点在世界坐标系三个轴向上的位移,将其作为各拍摄时刻对应的无人机的位移。
通过无人机上自身配备的惯导系统得到各拍摄时刻对应的无人机绕世界坐标系三个轴向的旋转角度,将其作为各拍摄时刻对应的无人机的姿态变化。
利用各拍摄时刻对应的无人机的位移以及姿态变化对各拍摄时刻对应的拍摄图像上的测量点的图像坐标进行修正,得到修正后的各拍摄时刻对应的拍摄图像上的测量点的图像坐标,修正方法如下:
S4.2.1计算i时刻相机坐标系对应的位移矩阵T′。
其中:Δtx为i时刻无人机在X轴方向上的位移,Δty为i时刻无人机在Y轴方向上的位移,Δtz为i时刻无人机在Z轴方向上的位移。
S4.2.2计算i时刻相机坐标系对应的旋转矩阵R′。
其中:a为i时刻无人机绕X轴的旋转角度,β为i时刻无人机绕Y轴的旋转角度,γ为i时刻无人机绕Z轴的旋转角度。
S4.2.3根据位移矩阵T′和旋转矩阵R′对i时刻对应的拍摄图像上的测量点的图像坐标进行修正。
相机坐标系与图像坐标系的关系式表示如下:
其中(u,v)为S4.1中得到的i时刻对应的拍摄图像上的测量点在图像坐标系下的坐标;fx=f/dx,fy=f/dy,其分别为图像坐标系u轴、v轴的尺度因子;f为相机的焦距;(u0,v0)为图像坐标系的原点坐标,(Xc,Yc,Zc)为i时刻测量点在相机坐标系下的坐标,其中Zc在对相机进行标定时已知,Xc和Yc待求。
当u、v及Zc已知时,由相机坐标系与图像坐标系的关系式可计算得i时刻测量点在相机坐标系下的坐标(Xc,Yc,Zc),利用下式即可得到修正后的i时刻对应的拍摄图像上的测量点的图像坐标:
其中u′和v′为修正后的i时刻对应的拍摄图像上的测量点的图像坐标。
S4.3参照图6,根据修正后的各拍摄时刻对应的拍摄图像上的测量点的图像坐标,计算各拍摄时刻对应的世界坐标系下测量点在竖直方向上的相对位移d1即各拍摄时刻对应的高铁桥梁竖向动扰度;
d1=xA-xB
其中,A点为待测高铁桥梁上测量点原来位置,xA为A点对应的世界坐标系下的坐标,B点为待测高铁桥梁上测量点移动后的位置,xB为B点对应的世界坐标系下的坐标,为修正后的xA在i时刻对应的拍摄图像中的坐标,为修正后的xB在i时刻对应的拍摄图像中的坐标,D为无人机上相机镜头到包含测量点移动所在直线并且垂直于相机光轴的平面的垂直距离,f为无人机上相机的焦距,θ为无人机上相机光轴与相机镜头到测量点移动所在平面的垂直线的夹角。
以上所述仅为本发明的优选的实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.基于无人机的高铁桥梁竖向动扰度测量方法,其特征在于:包括以下步骤:
S1确定待测高铁桥梁,在待测高铁桥梁跨中位置布设一个测量点;
S2布置相机和全站仪;
无人机上自带有GPS以及惯导,在无人机上安装一台相机,相机用于对待测高铁桥梁以及待测高铁桥梁上的测量点拍摄成像,同时在无人机上设置标志物;
在地面布置全站仪,通过全站仪定位无人机上的标志物,追踪无人机上相机拍摄过程中无人机上标志物的移动;
S3利用无人机进行飞行测量;
控制无人机飞行到测量点所在水平面内且垂直于测量点的垂线上的设定位置;在设定位置处,利用无人机上的相机按照设定时间间隔对待测高铁桥梁上的测量点拍摄成像,同时全站仪按照与无人机上的相机相同的设定时间间隔同步测量无人机上标志物的位置坐标;
S4计算待测高铁桥梁竖向动扰度;
根据全站仪以及无人机上自身配备的惯导系统输出的数据对相机拍摄得到的图像进行修正,得到修正后的测量点的图像坐标,计算测量点在竖直方向上的相对位移即高铁桥梁竖向动扰度。
2.根据权利要求1所述的基于无人机的高铁桥梁竖向动扰度测量方法,其特征在于:S1中在待测高铁桥梁上通过喷漆或者涂写的方式进行测量点的布设。
3.根据权利要求1所述的基于无人机的高铁桥梁竖向动扰度测量方法,其特征在于:S4的实现方法如下:
S4.1对于无人机上相机初始拍摄时刻对应的首张拍摄图像,通过模板匹配找到首张拍摄图像中的待测高铁桥梁上标记的测量点,得到测量点在首张拍摄图像中的图像坐标;对于后续各拍摄时刻对应的拍摄图像,采用最小二乘图像匹配跟踪法对测量点进行跟踪,得到后续各拍摄时刻对应的拍摄图像上的测量点的图像坐标;
S4.2从全站仪得到无人机上相机各拍摄时刻对应的无人机上标志点在世界坐标系下的位置坐标;对于各拍摄时刻对应的无人机上标志点在世界坐标系下的位置坐标,将其与初始拍摄时刻对应的无人机上标志点在世界坐标系下的位置坐标进行对比,得到各拍摄时刻对应的无人机上标志点在世界坐标系下三个轴向上的位移,将其作为各拍摄时刻对应的无人机的位移;
通过无人机上自身配备的惯导系统得到各拍摄时刻对应的无人机绕世界坐标系三个轴向的旋转角度,将其作为各拍摄时刻对应的无人机的姿态变化;
利用各拍摄时刻对应的无人机的位移以及姿态变化对各拍摄时刻对应的拍摄图像上的测量点的图像坐标进行修正,得到修正后的各拍摄时刻对应的拍摄图像上的测量点的图像坐标;
S4.3根据修正后的各拍摄时刻对应的拍摄图像上的测量点的图像坐标,计算各拍摄时刻对应的世界坐标系下测量点在竖直方向上的相对位移d1即各拍摄时刻对应的高铁桥梁竖向动扰度;
d1=xA-xB
其中,A点为待测高铁桥梁上测量点原来位置,xA为A点对应的世界坐标系下的坐标,B点为待测高铁桥梁上测量点移动后的位置,xB为B点对应的世界坐标系下的坐标,为修正后的xA在i时刻对应的拍摄图像中的坐标,为修正后的xB在i时刻对应的拍摄图像中的坐标,D为相机镜头到包含测量点移动所在直线并且垂直于相机光轴的平面的垂直距离,f为相机的焦距,θ为相机光轴与相机镜头到测量点移动所在平面的垂直线的夹角。
4.根据权利要求3所述的基于无人机的高铁桥梁竖向动扰度测量方法,其特征在于:S4.2中,利用各拍摄时刻对应的无人机的位移以及姿态变化对各拍摄时刻对应的拍摄图像上的测量点的图像坐标进行修正的方法如下:
S4.2.1计算i时刻相机坐标系对应的位移矩阵T′;
其中:Δtx为i时刻无人机在X轴方向上的位移,Δty为i时刻无人机在Y轴方向上的位移,Δtz为i时刻无人机在Z轴方向上的位移;
S4.2.2计算i时刻相机坐标系对应的旋转矩阵R′;
其中:a为i时刻无人机绕X轴的旋转角度,β为i时刻无人机绕Y轴的旋转角度,γ为i时刻无人机绕Z轴的旋转角度;
S4.2.3根据位移矩阵T′和旋转矩阵R′对i时刻对应的拍摄图像上的测量点的图像坐标进行修正。
5.根据权利要求4所述的基于无人机的高铁桥梁竖向动扰度测量方法,其特征在于:S4.2.3的实现方法如下:
相机坐标系与图像坐标系的关系式表示如下:
其中(u,v)为S4.1中得到的i时刻对应的拍摄图像上的测量点在图像坐标系下的坐标;fx=f/dx,fy=f/dy,其分别为图像坐标系u轴、v轴的尺度因子;f为相机的焦距;(u0,v0)为图像坐标系的原点坐标,(Xc,Yc,Zc)为i时刻测量点在相机坐标系下的坐标,其中Zc在对相机进行标定时已知,Xc和Yc待求;
当u、v及Zc已知时,由相机坐标系与图像坐标系的关系式可计算得i时刻测量点在相机坐标系下的坐标(Xc,Yc,Zc),利用下式即可得到修正后的i时刻对应的拍摄图像上的测量点的图像坐标:
其中u′和v′为修正后的i时刻对应的拍摄图像上的测量点的图像坐标。
CN201910031648.8A 2019-01-14 2019-01-14 基于无人机的高铁桥梁竖向动扰度测量方法 Active CN109813510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910031648.8A CN109813510B (zh) 2019-01-14 2019-01-14 基于无人机的高铁桥梁竖向动扰度测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910031648.8A CN109813510B (zh) 2019-01-14 2019-01-14 基于无人机的高铁桥梁竖向动扰度测量方法

Publications (2)

Publication Number Publication Date
CN109813510A true CN109813510A (zh) 2019-05-28
CN109813510B CN109813510B (zh) 2020-01-24

Family

ID=66603739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910031648.8A Active CN109813510B (zh) 2019-01-14 2019-01-14 基于无人机的高铁桥梁竖向动扰度测量方法

Country Status (1)

Country Link
CN (1) CN109813510B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110470226A (zh) * 2019-07-10 2019-11-19 广东工业大学 一种基于无人机系统的桥梁结构位移测量方法
CN111272142A (zh) * 2020-03-30 2020-06-12 广州市重点公共建设项目管理中心 一种高支模的沉降监测装置及方法
WO2022036478A1 (zh) * 2020-08-17 2022-02-24 江苏瑞科科技有限公司 一种基于机器视觉的增强现实盲区装配引导方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843372A (en) * 1988-01-21 1989-06-27 Thomas Savino Bridge sway and deflection detection system
CN105783878A (zh) * 2016-03-11 2016-07-20 三峡大学 一种基于小型无人机遥感的边坡变形检测及量算方法
CN107356230A (zh) * 2017-07-12 2017-11-17 深圳市武测空间信息有限公司 一种基于实景三维模型的数字测图方法和系统
CN206772257U (zh) * 2017-06-08 2017-12-19 三峡大学 一种基于高性能无人机的桥梁结构检测系统
CN108318011A (zh) * 2018-01-02 2018-07-24 中铁隧道局集团有限公司 一种通过无人机搭载全站仪监测施工场地周边位移的方法
CN108489466A (zh) * 2018-03-07 2018-09-04 华北水利水电大学 一种山区航测无人机像控点坐标测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843372A (en) * 1988-01-21 1989-06-27 Thomas Savino Bridge sway and deflection detection system
CN105783878A (zh) * 2016-03-11 2016-07-20 三峡大学 一种基于小型无人机遥感的边坡变形检测及量算方法
CN206772257U (zh) * 2017-06-08 2017-12-19 三峡大学 一种基于高性能无人机的桥梁结构检测系统
CN107356230A (zh) * 2017-07-12 2017-11-17 深圳市武测空间信息有限公司 一种基于实景三维模型的数字测图方法和系统
CN108318011A (zh) * 2018-01-02 2018-07-24 中铁隧道局集团有限公司 一种通过无人机搭载全站仪监测施工场地周边位移的方法
CN108489466A (zh) * 2018-03-07 2018-09-04 华北水利水电大学 一种山区航测无人机像控点坐标测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
丁鑫: "基于三维坐标观测的大跨连续刚构桥主梁挠度监测与评估", 《公路与汽运》 *
曾小明,张文基: "基于全站仪的桥梁挠度检测研究", 《黑龙江工程学院学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110470226A (zh) * 2019-07-10 2019-11-19 广东工业大学 一种基于无人机系统的桥梁结构位移测量方法
CN110470226B (zh) * 2019-07-10 2021-05-28 广东工业大学 一种基于无人机系统的桥梁结构位移测量方法
CN111272142A (zh) * 2020-03-30 2020-06-12 广州市重点公共建设项目管理中心 一种高支模的沉降监测装置及方法
CN111272142B (zh) * 2020-03-30 2021-09-07 广州市重点公共建设项目管理中心 一种高支模的沉降监测装置及方法
WO2022036478A1 (zh) * 2020-08-17 2022-02-24 江苏瑞科科技有限公司 一种基于机器视觉的增强现实盲区装配引导方法

Also Published As

Publication number Publication date
CN109813510B (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
CN109855822A (zh) 一种基于无人机的高铁桥梁竖向动扰度测量方法
CN106092056B (zh) 一种高速铁路桥梁基础沉降变形的车载动态监测方法
CN111076880B (zh) 一种考虑相机姿态变化的大跨桥梁多点挠度测量方法
CN109813509A (zh) 基于无人机实现高铁桥梁竖向动扰度测量的方法
EP1019862B1 (en) Method and apparatus for generating navigation data
CN109798874A (zh) 一种高铁桥梁竖向动扰度测量方法
CN104154928B (zh) 一种适用于惯性平台内置式星敏感器的安装误差标定方法
CN107146256B (zh) 基于差分gps系统的外场大视场条件下的摄像机标定方法
CN101539397B (zh) 物体三维姿态的精密光学测量方法
CN109813510A (zh) 基于无人机的高铁桥梁竖向动扰度测量方法
CN108981754A (zh) 一种光电平台与载机安装角度零位对准的方法
CN107806874B (zh) 一种视觉辅助的捷联惯导极区初始对准方法
CN112629431B (zh) 土木结构变形监测方法及相关设备
CN102788572B (zh) 一种工程机械吊钩姿态的测量方法、装置及系统
CN103759669A (zh) 一种大型零件的单目视觉测量方法
CN111462236A (zh) 一种船舶间相对位姿检测方法及系统
CN104990533B (zh) 卫星地面物理仿真系统超高精度姿态测量方法及装置
CN109708649A (zh) 一种遥感卫星的姿态确定方法及系统
CN109146958B (zh) 一种基于二维图像的交通标志空间位置测量方法
CN107543497A (zh) 一种非重叠视域双目视觉测量站坐标关联方法
CN109887041A (zh) 一种机械臂控制数字相机摄影中心位置和姿态的方法
CN112710303A (zh) 由运动平台运动引起目标在视场中姿态角θ变化的确定方法
CN109596053B (zh) 一种测量高铁桥梁竖向动扰度的方法
CN106292135B (zh) Tdi ccd相机焦面映射至三轴气浮转台球心的方法
CN114459345A (zh) 基于视觉空间定位的飞机机身位置姿态检测系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant