CN109811032B - 一种海水微生物量光谱检测方法 - Google Patents

一种海水微生物量光谱检测方法 Download PDF

Info

Publication number
CN109811032B
CN109811032B CN201910006065.XA CN201910006065A CN109811032B CN 109811032 B CN109811032 B CN 109811032B CN 201910006065 A CN201910006065 A CN 201910006065A CN 109811032 B CN109811032 B CN 109811032B
Authority
CN
China
Prior art keywords
seawater
microorganisms
spectral data
spectrum
adopting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910006065.XA
Other languages
English (en)
Other versions
CN109811032A (zh
Inventor
吕美蓉
李雪莹
范萍萍
侯广利
孙中梁
刘岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Oceanographic Instrumentation Shandong Academy of Sciences
Original Assignee
Institute of Oceanographic Instrumentation Shandong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Oceanographic Instrumentation Shandong Academy of Sciences filed Critical Institute of Oceanographic Instrumentation Shandong Academy of Sciences
Priority to CN201910006065.XA priority Critical patent/CN109811032B/zh
Publication of CN109811032A publication Critical patent/CN109811032A/zh
Application granted granted Critical
Publication of CN109811032B publication Critical patent/CN109811032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及海洋生物技术领域,具体涉及海洋微生物量检测方法。该方法包括以下步骤:(1)于不同区域采集不少于50份海水样品;(2)分别培养各个海水样品中的微生物,获得各个海水样品中可培养微生物群落;(3)高温高压灭菌所有海水样品;(4)将培养后的微生物一对一接种到灭菌后的海水样品中,培养7天;(5)采用平板培养法测定培养后的海水微生物量;同时采集培养后的海水光谱数据;(6)对光谱数据进行预处理,建立光谱数据和微生物量的相关模型;(7)采集海水光谱数据,代入所述的模型,测得海水中微生物的总量。本发明的方法建立光谱数据和微生物量的相关模型,通过海水光谱准确反演海水中微生物数量。

Description

一种海水微生物量光谱检测方法
技术领域
本发明涉及海洋生物技术领域,具体涉及海洋微生物量速测技术。
背景技术
海洋微生物是海洋生态系统中一个重要的组成部分,在海洋生态系统中起到承上启下的作用,影响着海洋的物质循环、能量流动、生态平衡、环境净化等,在维持海洋系统的能、群落多样性中处于不可替代性地位。
微生物的细胞结构和组分会形成特定的光谱,即指纹光谱。因此,可根据微生物对光的吸收特征,得到微生物的信息,实现微生物的检测。
获取海水微生物的共性指纹光谱是海水总微生物量检测技术的关键。明确海水总微生物情况,是获取海水微生物共性指纹光谱的前提。海水总微生物量的检测方法主要有平板培养法、分子生物学法。分子生物学方法价格昂贵,难以满足需求,毕竟获取微生物共性指纹光谱需要大量海水样品的微生物数据支撑。平板培养法操作简单、成本低,但是,由于部分微生物无法被培养,导致平板培养法无法准确测定海水总微生物量。因此,如何精确获取大数量样品中的海水微生物量待解决。
申请号2016110315717的中国发明专利公开了“基于近红外光谱技术检测乳制品中微生物的种类和含量的方法”,该方法通过向牛奶等水介质中添加某种细菌,然后辨别光谱数据的变化,建立该细菌和光谱数据的关联,从获得该种细菌的光谱检测技术。该方法实现了快速、简便地检测微生物。但是,该方法由于采用人为向水介质中添加一种或几种细菌,模拟乳制品中微生物的种类和含量来建立细菌和光谱数据的关联,不足之处是这一种或几种细菌无法代表这些水介质中全部的微生物,也就是说,人为添加的方式不能真实反映实际情况,无法通过该方法获取到水介质中全部微生物的共性指纹光谱,毕竟微生物种类多样,比如海水不仅包含大量的细菌种群,还包括古菌、真菌、原生生物等。因此,该方法虽然能够满足乳制品中微生物种类和含量的检测,但是无法适用于检测海水中全部的微生物量。
发明内容
本发明的目的是提供一种海洋微生物量光谱检测技术,本发明提供的微生物检测方法具有精确、简单、迅速、无污染的优点。
为了实现本发明的目的,本发明采用的技术方案是:1、一种海水微生物量光谱检测方法,包括以下步骤:
(1)于不同区域采集不少于50份海水样品;
(2)分别培养各个海水样品中的微生物,获得各个海水样品中可培养微生物群落;
(3)高温高压灭菌所有海水样品;
(4)将培养后的微生物一对一接种到灭菌后的海水样品中,置于培养箱中培养7天;
(5)采用平板培养法测定培养后的海水微生物量;同时采集培养后的海水光谱数据;
(6)对光谱数据进行预处理,找出海水微生物的特征波长,建立光谱数据和微生物量的相关模型;
(7)采集海水光谱数据,代入建好的模型,测得海水中微生物的总量。
进一步的,步骤二中采用平板培养法培养各个海水样品中的微生物,具体方法为:测定各个样品的海水pH,以氯化钠、酵母提取物、胰蛋白胨、氯化钾、氯化钙、硫酸镁配制出培养基培养微生物,用碳酸钠调节培养基pH至海水实际pH。将海水稀释10000倍,涂于培养基上,培养24小时。
进一步的,所述高温高压灭菌海水,为将所有海水样品置于高温高压灭菌锅内,于121度高温高压条件下灭菌1.5小时。
进一步的,采用紫外可见分光光度计或光谱仪测量海水吸收光谱。
进一步的,采用平滑、多元散射矫正、导数方法对光谱数据预处理,消除基线漂移、噪声。
进一步的,采用遗传算法、连续投影算法,无信息变量消除法获得微生物的特征波长。
进一步的,采用偏最小二乘回归、最小二乘支持向量机、BP神经网络方法建立光谱数据和微生物量的相关模型。
本发明的方法,通过平板培养法培养海水中可培养的微生物,将海水高温高压灭菌,去除掉海水中不可培养的微生物种类,然后将可培养的微生物重新接种到灭菌后的海水中。这样,既保证通过平板培养法准确获取微生物数量,也保证海水中存在足够多的微生物种类,以获得微生物共性光谱,从而建立光谱数据和微生物量的相关模型,通过海水光谱准确反演海水中微生物数量。
具体实施方式
下面结合实施例对本发明的海水微生物量光谱检测方法做详细的阐述和说明。
本发明的海水微生物量光谱检测方法,具体包括以下步骤:
1)于青岛近海不同区域采集了200份海水。
2)用pH计测量海水pH,200份海水PH范围为8.0-8.3。以氯化钠、酵母提取物、胰蛋白胨、氯化钾、氯化钙、硫酸镁配制出培养基培养微生物,用碳酸钠将每份培养基的pH调节至海水实际pH。将培养基灭菌待用。将200份海水分别稀释10000倍,采用灭菌的吸管转移稀释后的海水到200份培养基中,用涂布棒将海水分布均匀,培养24小时至可培养微生物形成菌落。
3)将200份海水分别转移至200个塑料瓶中,放入高温高压锅内灭菌,于121度高温高压条件下灭菌1.5小时。
4)待灭菌海水冷却后,采用灭菌后的接种环,将200份培养的微生物群落一对一转移至200份灭菌海水中。
5)将接种后的海水放置于培养箱中培养7天,温度调节至25度。
6)培养结束后,取1ml的海水稀释10000倍后,用吸管转移海水至培养基上,然后用涂布棒将海水均匀涂抹于培养基上,培养24小时后,计数培养基上的菌落数目。再取5ml海水放置于样品池里,采用紫外可见分光光度计获取200份吸收光谱。
7)对光谱数据进行预处理,采用多元散射校正、平滑求导的方法去除基线漂移噪声等。
①平滑:
平滑基本思路为在光谱某一平滑点前后区若干点来进行“平均”或“拟合”,从而求得该平滑点的最佳估计值,实现随机噪声的消除。包括移动平均法(Moving average)、S-G(Savitzky-Golay)平滑算法等。
②导数:
一阶导数、二阶导数公式如下:
Figure BDA0001935489740000041
③多元散射校正具体过程如下:
平均光谱
Figure BDA0001935489740000042
线性回归
Figure BDA0001935489740000043
多元散射校正
Figure BDA0001935489740000044
式中,A是校正集的光谱矩阵,Ai,j为第j列第i个样品的光谱值,Ai(msc)为多元散射校正后的光谱,ki和bi是第i个样品光谱Ai与平均光谱
Figure BDA0001935489740000045
的线性回归的斜率与截距。
8)分析不同波长的光谱数据和总微生物量的相关性,明确微生物共性指纹图谱,采用遗传算法从光谱中提取出总微生物量的特征波长。
遗传算法具体算法如下:随机生成初始群体,同时设置最大迭代次数N;根据适应度评价函数计算所有个体适应度;进行选择运算,将优化个体直接遗传至下一代;进行交叉替换运算;进行编译操作;通过上述操作,最终得到变异后群体,重复迭代。
9)依托提取的特征波长,采用偏最小二乘回归、多元线性回归、主成分回归方法建立光谱数据和微生物量的相关模型,比较几种方法的建模效果,优选最佳的建模方法。
①多元线性回归
多元线性回归基本形式为:
y=β01x12x2+…+βnxn
式中,y为因变量,xi为自变量(i=1,2,…,n),βi为回归系数(i=1,2,…,n),n为变量个数,ε为误差。若对多样本进行多元线性回归,则表达式为:
Y=Xβ+E
式中,
Figure BDA0001935489740000051
自变量Y为m×1列向量(m为样本个数),β为n×1回归系数(n为变量个数),E为误差(m×1列向量)。根据上式计算出回归估计值,得到多元线性回归模型
②主成分回归
主成分回归是以m个主成分中贡献率最大的前k个主成分作为自变量所建立的回归方程。主成分回归的关键是主成分k的选取,一般根据方差贡献率大小及建模中模型结果来选取最优主成分k。
③偏最小二乘回归
偏最小二乘法的原理如下:
Y=UQ+F
X=TP+E
式中,Y为n个样品m个组分的浓度矩阵,X为n个样品p个波长点处的光谱矩阵,U和T分别为n行d列(d为抽象组分数)的浓度特征因子矩阵和光谱特征因子矩阵,Q为d×m阶浓度载荷阵,P为d×p阶光谱载荷阵,F,E分别为n×m,n×p阶浓度残差阵和光谱残差阵。采用偏最小二乘法建立浓度特征因子矩阵U和光谱特征因子矩阵T的回归模型:
U=TB+Ed
式中,B为d维对角回归系数阵,Ed为随机误差矩阵。
对于待预测的未知样品,若光谱矩阵为x,则其浓度y为:
y=x(UX)′BQ
10)验证该模型是否可以准确通过光谱数据反演海洋总微生物量:另采集50份海水,重复步骤1-9建模;测海水的光谱,用测得的光谱数据和已建立模型反演微生物量。同时采用培养法测定海水中微生物量,计算培养法测定的微生物量和光谱反演的微生物量的相关性R2,从而验证建立的模型是否可以精确反演海洋微生物量。
11)不同光谱预处理方法及不同建模方法的验证结果如下表所示:
表1本发明实施案例中,不同光谱预处理方式下的建模和验证效果
Figure BDA0001935489740000061
表2本发明实施案例中,遗传算法处理下的建模和验证效果
Figure BDA0001935489740000062
表3本发明实施案例中,不同建模方式下的建模和验证效果
Figure BDA0001935489740000063
从上表可以看出,本发明的海洋总微生物量光谱检测方法,采用多元散射校正预处理及最小二乘支持向量机建模方法,验证效果最好,即采用多元散射校正预处理及最小二乘支持向量机建模方法,海水光谱反演海水中微生物量的准确率最高。

Claims (3)

1.一种海水微生物量光谱检测方法,其特征在于:包括以下步骤:
(1)于不同区域采集不少于50份海水样品;
(2)分别培养各个海水样品中的微生物,获得各个海水样品中可培养微生物群落;
(3)高温高压灭菌所有海水样品;灭菌条件为:121度、灭菌1.5小时。
(4)将培养后的微生物一对一接种到灭菌后的海水样品中,置于培养箱中培养7天;
(5)采用平板培养法测定培养后的海水微生物量;同时采集培养后的海水光谱数据;
(6)对光谱数据进行预处理,通过分析不同波长的光谱数据和总微生物量的相关性,明确微生物共性指纹图谱,从光谱中提取出总微生物量的特征波长,利用该特征波长,建立光谱数据和微生物量的相关模型;
(7)采集海水光谱数据,代入建好的模型,测得海水中微生物的总量;
步骤(5)中采用紫外可见分光光度计或光谱仪测量海水吸收光谱;
步骤(6)采用遗传算法、连续投影算法,无信息变量消除法获得微生物的特征波长;
步骤(6)采用平滑、多元散射矫正、求导法对光谱数据预处理,消除基线漂移、噪声;
步骤(6)采用偏最小二乘回归、最小二乘支持向量机、BP神经网络方法建立光谱数据和微生物量的相关模型。
2.根据权利要求1所述的海水微生物量光谱检测方法,其特征在于:步骤(2)中培养各个海水样品中的微生物的方法为:测定各个样品的海水pH,以氯化钠、酵母提取物、胰蛋白胨、氯化钾、氯化钙、硫酸镁配制出培养基培养微生物,用碳酸钠调节培养基pH至海水实际pH;将海水稀释10000倍,涂于培养基上,培养24小时。
3.根据权利要求1或2所述的海水微生物量光谱检测方法,其特征在于:步骤(6)采用多元散射校正法对光谱数据预处理,采用遗传算法获得微生物的特征波长,然后采用最小二乘支持向量机方法建立光谱数据和微生物量的相关模型。
CN201910006065.XA 2019-01-04 2019-01-04 一种海水微生物量光谱检测方法 Active CN109811032B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910006065.XA CN109811032B (zh) 2019-01-04 2019-01-04 一种海水微生物量光谱检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910006065.XA CN109811032B (zh) 2019-01-04 2019-01-04 一种海水微生物量光谱检测方法

Publications (2)

Publication Number Publication Date
CN109811032A CN109811032A (zh) 2019-05-28
CN109811032B true CN109811032B (zh) 2022-03-08

Family

ID=66603961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910006065.XA Active CN109811032B (zh) 2019-01-04 2019-01-04 一种海水微生物量光谱检测方法

Country Status (1)

Country Link
CN (1) CN109811032B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049500B (zh) * 2021-03-19 2022-12-06 杭州海康威视数字技术股份有限公司 水质检测模型训练和水质检测方法、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556242A (zh) * 2009-05-22 2009-10-14 中国药品生物制品检定所 用傅立叶红外光谱鉴别微生物的方法
CN105158175A (zh) * 2015-09-01 2015-12-16 中国科学院合肥物质科学研究院 一种采用透射光谱鉴别水中细菌的方法
CN108728511A (zh) * 2017-04-19 2018-11-02 布鲁克道尔顿有限公司 用于红外光谱测定的微生物测试标准及其使用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556242A (zh) * 2009-05-22 2009-10-14 中国药品生物制品检定所 用傅立叶红外光谱鉴别微生物的方法
CN105158175A (zh) * 2015-09-01 2015-12-16 中国科学院合肥物质科学研究院 一种采用透射光谱鉴别水中细菌的方法
CN108728511A (zh) * 2017-04-19 2018-11-02 布鲁克道尔顿有限公司 用于红外光谱测定的微生物测试标准及其使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A New spectroscopy Method for in-situ Rapid Detection and classification of microorganisms;L H. Garcia-Rubio等;《The international society for optical engineering》;20041231;全文 *
海洋微生物多样性进展;何建瑜等;《生命科学》;20120131;第24卷(第6期);全文 *

Also Published As

Publication number Publication date
CN109811032A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
Oust et al. FT-IR spectroscopy for identification of closely related lactobacilli
Loisel et al. Denaturing gradient electrophoresis (DGE) and single‐strand conformation polymorphism (SSCP) molecular fingerprintings revisited by simulation and used as a tool to measure microbial diversity
Madrid et al. Microbial biomass estimation
EP1623212A1 (en) Automated characterization and classification of microorganisms
CN113916847A (zh) 一种基于光谱技术和线性支持向量算法的水质检测方法
CN109993062B (zh) 一种湿地植被根际土壤微生物高光谱植被指数监测方法
Daims et al. In situ techniques and digital image analysis methods for quantifying spatial localization patterns of nitrifiers and other microorganisms in biofilm and flocs
CN108728511B (zh) 用于红外光谱测定的微生物测试标准及其使用方法
Almomani et al. Monitoring and measurement of microalgae using the first derivative of absorbance and comparison with chlorophyll extraction method
CN101556242B (zh) 用傅立叶红外光谱鉴别微生物的方法
Tremblay et al. Mucus composition and bacterial communities associated with the tissue and skeleton of three scleractinian corals maintained under culture conditions
Jakobsen et al. Estimating time series phytoplankton carbon biomass: inter-lab comparison of species identification and comparison of volume-to-carbon scaling ratios
CN105158175A (zh) 一种采用透射光谱鉴别水中细菌的方法
CN109811032B (zh) 一种海水微生物量光谱检测方法
Chapman et al. A high‐throughput and machine learning resistance monitoring system to determine the point of resistance for Escherichia coli with tetracycline: Combining UV‐visible spectrophotometry with principal component analysis
Geinitz et al. Noninvasive tool for optical online monitoring of individual biomass concentrations in a defined coculture
Liu et al. Bacterial community diversity dynamics highlight degrees of nestedness and turnover patterns
Cai et al. Combination of uniform design with artificial neural network coupling genetic algorithm: an effective way to obtain high yield of biomass and algicidal compound of a novel HABs control actinomycete
Murphy et al. Multispectral image analysis for algal biomass quantification
CN115015126A (zh) 一种粉末状生物粒子材料活性判定方法和系统
Porras et al. Novel spectrophotometric technique for rapid determination of extractable PHA using Sudan black dye
Ratha et al. A rapid and reliable method for estimating microalgal biomass using a moisture analyser
Stone et al. A novel soft sensor approach for estimating individual biomass in mixed cultures
US11661620B2 (en) Method for the spectrometric characterization of microorganisms
Lin et al. The Flora Compositions of Nitrogen‐Fixing Bacteria and the Differential Expression of nifH Gene in Pennisetum giganteum zx lin Roots

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant