CN109802396B - 一种基于电压灵敏度配置的光伏台区电能质量治理系统 - Google Patents

一种基于电压灵敏度配置的光伏台区电能质量治理系统 Download PDF

Info

Publication number
CN109802396B
CN109802396B CN201910119211.XA CN201910119211A CN109802396B CN 109802396 B CN109802396 B CN 109802396B CN 201910119211 A CN201910119211 A CN 201910119211A CN 109802396 B CN109802396 B CN 109802396B
Authority
CN
China
Prior art keywords
voltage
power
node
photovoltaic
integrated machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910119211.XA
Other languages
English (en)
Other versions
CN109802396A (zh
Inventor
张涛
王晓东
侯宇建
倪喜军
王宪萍
杨林涛
王斌
杜娟
陈凯
聂晓龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Changzhi Power Supply Co of State Grid Shanxi Electric Power Co Ltd
Original Assignee
Nanjing Institute of Technology
Changzhi Power Supply Co of State Grid Shanxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology, Changzhi Power Supply Co of State Grid Shanxi Electric Power Co Ltd filed Critical Nanjing Institute of Technology
Priority to CN201910119211.XA priority Critical patent/CN109802396B/zh
Publication of CN109802396A publication Critical patent/CN109802396A/zh
Application granted granted Critical
Publication of CN109802396B publication Critical patent/CN109802396B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

本发明公开了一种基于电压灵敏度配置的光伏台区电能质量治理系统,包含一个光储充一体机,以及多个关键位置分布放置的智能电容单元,光储充一体机内的通讯管理机与放置在关键节点的分布式智能电容单元通过电力线载波通讯,光储充一体机为控制核心,定时检测关键节点的电压,同时完成台区潮流计算并下发智能电容器无功补偿指令。本发明通过部分光伏接入光储充一体机,依靠有功调节和无功补偿控制并网点的电压,并通过光储充一体机内通讯管理机发送载波信号询问智能电容器的控制器,实时监测每个分支母线的电压情况,根据收集的智能电容器反馈信息实现整体配电网的监控与电压控制,非常适合于含光伏农村配电网的电能质量治理领域。

Description

一种基于电压灵敏度配置的光伏台区电能质量治理系统
技术领域
本发明涉及一种基于电压灵敏度配置的光伏台区电能质量治理系统,属于光伏电力系统调控技术领域。
背景技术
近年来,光伏发电正在快速进入电力能源结构,并且将逐步成为其重要的组成部分,其高效并网利用技术的研究意义重大。此外,对我国这样一个人口基数大,人均资源少,环境问题严峻的国家来说,大力发展光伏发电系统是解决中国能源问题,环保问题及社会问题的有效选择。有数据表明,近年来的扶贫光伏是农村居民收入增加的有效手段,但是,农村配电网相对比较薄弱,高渗透率分布式光伏的无序接入将引起低压配电网电压大波动和潮流反转等现象,严重影响了居民生活,也干扰了电力工业的正常生产。针对上述这些问题,通过一定手段对整个光伏发电系统进行检测管理,优化各个单元间的能量流转,制定合理的能量管理策略是十分有必要的。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种基于电压灵敏度配置的光伏台区电能质量治理系统,利用部分光伏接入的光储充一体机,可以通过有功和无功联合调节有效控制并网点的电压,通过在线潮流计算调整各装置的补偿量,维持台区电压稳定。
为了达到上述目的,本发明所采用的技术方案是:
一种基于电压灵敏度配置的光伏台区电能质量治理系统,包括一个光储充一体机,以及多个关键节点放置的分布式智能电容单元;所述光储充一体机内置通讯管理机,所述通讯管理机与所述分布式智能电容单元通过电力线载波通讯;所述光储充一体机定时检测关键节点的电压,进行潮流计算并下发分布式智能电容单元无功补偿指令;
所述光储充一体机包括一个光伏BOOST变流器,一个DC-AC并网逆变器,一个BUCK-BOOST电池变流器,以及一个隔离DC-DC柔性直流负载模块;所述光伏BOOST变流器通过MPPT控制策略跟踪光伏最大功率;所述BUCK-BOOST电池变流器实现蓄电池储能系统内蓄电池的充放电和电压变换,同时根据自身SOC和能量流向的约束,实现光储充一体机内部的能量平衡;所述隔离DC-DC柔性直流负载模块根据光伏功率、并网有功和蓄电池SOC的差,实现有序的对柔性负载供电;
所述光储充一体机内包含一个潮流计算程序,所述潮流计算程序根据各关键节点的电压和功率信息,实时计算各关键节点的电压分布情况,进行潮流计算得到分布式智能电容单元的无功补偿量。
前述的分布式智能电容单元的放置位置由台区电压灵敏度参数决定,按照台区电压灵敏度参数从高至低的节点选取。
前述的光伏BOOST变流器的输入端连接光伏电池阵列,输出连接公共直流母线;所述BUCK-BOOST电池变流器的输入连接蓄电池的正负极,输出连接公共直流母线;所述隔离DC-DC柔性直流负载模块的输入为公共直流母线,另一端连接直流负载;所述公共直流母线连接至DC-AC并网逆变器的直流端口。
前述的光储充一体机内部的能量平衡满足:
PPV,t+PESS,t+PG,t=Pload,t+Ploss,t
其中,PPV,t表示t时刻的PV出力,PESS,t表示t时刻蓄电池储能系统的出力,正值对应放电功率,负值对应充电功率,PG,t表示t时刻与配电网的交换功率,Pload,t表示t时刻直流负载的功率,Ploss,t表示t时刻系统的损耗;
需满足的约束条件为:
其中,EB表示蓄电池储能系统的额定容量,Et表示t时刻的蓄电池储能系统的容量,Et+1表示t+1时刻的蓄电池储能系统的容量,Δt表示t+1时刻和t时刻之间的时间差,表示t时刻的蓄电池储能系统的充电功率,/>表示t时刻的蓄电池储能系统的放电功率,ηC表示充电效率,ηD表示放电效率,D表示最大放电深度,δS表示自放电率。
前述的节点电压计算如下:
电压灵敏度矩阵如下:
其中,Vi表示节点i的电压,Vi 0表示节点i的初始电压,表示节点电压-有功灵敏度矩阵中第j个节点的有功功率对第i节点电压变化的一个系数,ΔPj表示节点j的有功变化量,/>表示节点电压-无功灵敏度矩阵中第j个节点的无功功率对第i节点电压变化的一个系数,ΔQj表示节点j的无功变化量,ΔUiP表示有功功率引起的节点i的电压变化量,ΔUiQ表示无功功率引起的节点i的电压变化量,i=1,2,…,N,N表示配电网系统节点个数,j=1,2,…,NPV,NPV表示配电网系统中PV节点个数。
前述的光储充一体机和分布式智能电容单元的接入位置及容量,采用以下方式确定:
1)确定配电系统中已安装光伏母线集合:确定接入光伏的节点集合元素数目NT
2)确定光伏接入位置,从NT个可接入光伏母线集合BPV中选取NPV个母线用于实际光伏接入,建立配电网参数,建立统一的配电网模型;
3)对NPV个节点的光伏接入容量按照光伏渗透率百分比RPV依次增加,即各节点光伏安装容量为:
其中,Lj为节点j的有功负荷,j=1,2,…,NPV
然后按照接入位置形成光伏接入有功增量序列ΔP,通过一次潮流计算得到电压灵敏度矩阵,计算系统在不同光伏渗透率下各节点电压,得到不同场景下在电压安全约束范围内允许的可安装光伏的最大容量;
4)针对不同的电压越限情况,重复步骤1)—3),记录并保存各场景下对应的光伏安装点接入容量及电压幅值;然后不断的模拟光储充一体机和分布式智能电容单元补偿后的情况,形成控制策略分析表,进行控制参数整定;
5)制定分布式智能电容单元和光储充一体机的控制策略,以及配置分布式智能电容器和光储充一体机的接入位置及容量。
前述的光储充一体机采用隐式Zbus高斯算法进行潮流计算,具体步骤如下:
a)初始化各节点电压;
b)根据各节点的负载、PV的有功和无功功率,以及电压形成导纳矩阵;
c)分离配电网的有源节点和其他节点,形成其他节点对应的Y22及其因子表;所述有源节点为含PV和光储充一体机的节点;
d)根据各关键节点的电压和功率信息,计算其他节点电流注入向量I2以及电压向量U2
e)判断各节点电压是否收敛,如果否的话,返回步骤d)重新计算;如果收敛,则判断各节点电压是否越限;
f)如果电压越限,则将所述步骤d)计算的其他节点的电压向量作为源节点的电压向量;然后返回步骤d)重新计算;直到满足电压约束的功率情况,形成光储充一体机上网有功和无功功率,以及分布式智能电容单元的无功补偿量。
前述的步骤d)中,其他节点电流注入向量I2和电压向量计算如下:
其中,I1、U1为有源节点的电流向量和电压向量,I2、U2为其他节点的电流注入向量和电压向量,Y11,Y12,Y21,Y22为导纳矩阵元素。
前述的光储充一体机上午10点至下午14点,每个小时进行一次潮流计算,其余时间每隔2小时进行一次潮流计算。
本发明所达到的有益效果为:
1)、充分利用部分光伏接入的光储充一体机,可以通过有功和无功联合调节有效控制并网点的电压;
2)、利用电压灵敏度参数配置方法,可以优化各装置补偿容量;
3)、通过在线潮流计算调整各装置的补偿量,维持台区电压稳定;
4)、利用有序的柔性负载控制,同时实现电能质量治理和能量平衡;
5)、所有控制依靠电力线载波自动完成,配电网动态过程平稳。
附图说明
图1为本发明的电能质量管理系统图;
图2为本发明的光储充一体机原理图;
图3为本发明的光储充一体机功率流图;(a)为光伏的发电功率小于直流负载功率情况一,(b)为光伏的发电功率小于直流负载功率情况二,(c)为光伏的发电功率大于直流负载功率情况一,(d)为光伏的发电功率大于直流负载功率情况二;
图4为本发明的隐式Zbus高斯算法的原理图。
具体实施方式
下面对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1所示,本发明提供一种基于电压灵敏度配置的光伏台区电能质量治理系统,包含一个光储充一体机,以及多个关键节点分布放置的智能电容单元。关键节点是指电压灵敏度系数较高的位置。光储充一体机内置通讯管理机,所述通讯管理机与放置在关键节点的分布式智能电容单元通过电力线载波通讯。光储充一体机为控制核心,定时检测关键节点的电压,同时完成潮流计算并下发智能电容单元无功补偿指令。
如图2所示,光储充一体机包括一个光伏BOOST变流器,一个DC-AC并网逆变器,一个BUCK-BOOST电池变流器,以及一个隔离DC-DC柔性直流负载模块。光伏BOOST变流器的输入端连接光伏电池阵列,输出连接公共直流母线;BUCK-BOOST电池变流器的输入连接蓄电池的正负极,输出连接公共直流母线;隔离DC-DC柔性直流负载模块的输入为公共直流母线,另一端连接直流负载;此外,公共直流母线还连接至DC-AC并网逆变器的直流端口。
光伏BOOST变流器通过MPPT控制策略跟踪光伏最大功率,实现最大可能的发电。BUCK-BOOST电池变流器实现储能系统内蓄电池的充放电和电压变换,同时根据自身SOC和能量流向的约束式(1),实现光储充一体机内部的能量平衡式(2)。
其中,EB表示蓄电池储能系统的额定容量;Et表示t时刻的蓄电池储能系统的容量;Et+1表示t+1时刻的蓄电池储能系统的容量;Δt表示t+1时刻和t时刻之间的时间差;表示t时刻的蓄电池储能系统的充电功率;/>表示t时刻的蓄电池储能系统的放电功率;ηC表示充电效率;ηD表示放电效率;D表示最大放电深度;δS表示自放电率。
PPV,t+PESS,t+PG,t=Pload,t+Ploss,t (2)
其中,PPV,t表示t时刻的PV出力;PESS,t表示t时刻蓄电池储能系统的出力,正值对应放电功率,负值对应充电功率;PG,t表示t时刻与配电网的交换功率;Pload,t表示t时刻直流负载的功率;Ploss,t表示t时刻系统的损耗。
隔离DC-DC柔性直流负载模块则根据光伏功率、并网有功和储能电池SOC的差,实现有序的对柔性负载供电,平衡功率差,其核心目的是在配电网电能质量约束下,保持光伏最大功率发电,维持电池SOC正常,满足经济性和电能质量双重目标。在上述目标确定前提下,光储充一体机最终通过DC-AC并网逆变器有功和无功的联合控制节点电压,维持光储充一体机公共直流母线电压稳定,保证台区交流电压在安全范围内。
光储充一体机内包含一个潮流计算程序,首先根据收集的各关键节点的电压和功率信息,实时计算各关键节点的电压分布情况;然后通过不断的迭代演算,制定光储充一体机上网有功和无功功率,智能电容器的无功补偿量,实现满足约束条件对节点电压的控制,保证电压限制在安全范围内。
各智能电容单元的无功补偿量由光储充一体机核心单元计算,并通过电力线载波通讯下发,各智能电容单元的MCU根据下达指令实现无功补偿;同时,该智能电容单元的MCU采集智能电容单元的电压电流信号,并回传上述信息至光储充一体机通讯管理机,最终传送至光储充一体机潮流计算程序。
光储充一体机和分布式智能电容单元的放置位置由配电网固定参数形成的台区电压灵敏度参数决定,并根据现有光伏并网逆变器的容量、智能电容器容量和配电网电压范围等约束条件确定最优的光储充一体机位置和容量配置。
在包含分布式能源的配电网,如下式(3)、(4)所示,配电网节点电压和配电网的参数与运行参数有关,因此,通过控制光伏逆变器的并网功率和无功补偿,可有效地抑制电网电压的波动范围。
其中,Vi表示节点i的电压,Vi 0表示节点i的初始电压,表示节点电压-有功灵敏度矩阵中第j个节点的有功功率对第i节点电压变化的一个系数,ΔPj表示节点j的有功变化量,/>表示节点电压-无功灵敏度矩阵中第j个节点的无功功率对第i节点电压变化的一个系数,ΔQj表示节点j的无功变化量,ΔUiP表示有功功率引起的节点i的电压变化量,ΔUiQ表示无功功率引起的节点i的电压变化量,i=1,2,…,N,N表示配电网系统节点个数,j=1,2,…,NPV,NPV表示配电网系统中PV节点个数。
为有效地确定实际光伏接入案例下,光储充一体机最优的位置和容量配置,本发明根据光伏节点个数、接入位置及光伏安装容量模拟不同的光伏渗透率场景,通过电压灵敏度系数制定智能电容器和光储充一体机的控制策略,以及配置智能电容器和光储充一体机的接入位置及容量,具体步骤如下:
1)根据系统情况确定配电系统中已安装光伏母线集合确定接入光伏的节点集合元素数目NT(NT为常数)。
2)确定光伏接入位置,从NT个可接入光伏母线集合BPV中选取NPV(NPV∈[1,NT])个母线用于实际光伏接入,建立配电网参数,建立统一的配电网模型。
3)对这NPV个节点的光伏接入容量按照光伏渗透率百分比RPV(0-100%)依次增加,即各节点光伏安装容量为Lj为节点j的有功负荷,j=1,2,…,NPV。并按照接入位置形成光伏接入有功增量序列ΔP,通过一次潮流计算得到电压灵敏度矩阵式(4a)和(4b),根据式(3)计算系统在不同光伏渗透率下各节点电压幅值,得到不同场景下在电压安全约束范围内允许的可安装光伏的最大容量。
4)针对不同的电压越限情况,重复步骤1)—3),进行多个场景模拟。即重复抽样确定智能电容器接入和光储充一体机补偿容量,计算不同光伏安装场景下系统电压水平,记录并保存各场景下对应的光伏安装点接入容量及电压幅值;然后不断的模拟光储充一体机和智能电容器补偿后的情况,形成控制策略分析表,进行控制参数整定。
5)根据上述结论,制定智能电容器和光储充一体机的控制策略,以及配置智能电容器和光储充一体机的接入位置及容量。
如图3(a)-(d)所示,实际运行的光储充一体机共有4种功率流模式:1)光伏的发电功率小于直流负载功率,且此时电网仅通过无功调节能满足电压质量要求,剩余功率由电网提供;2)光伏的发电功率小于直流负载功率,但此时的配电网电能质量较差,此时并网逆变器主要通过无功调节满足电压质量要求,在电池容量充裕的前提下,剩余功率由电池提供;3)光伏的发电功率大于直流负载功率,但此时的配电网电能质量较差,此时并网逆变器主要通过无功调节满足电压质量要求,在电池容量较低的前提下,剩余功率由电池吸收;4)光伏的发电功率大于直流负载功率,且此时电网通过有功和无功同时调节能满足电压质量要求,剩余功率上传电网,该模式为光储充一体机的主要运行模式。
I=YU(5)
其中,I1、U1为源节点的电流和电压向量,I2、U2为其他节点的电流和电压向量。
光储充一体机内的潮流计算程序,上午10点至下午14点,每个小时计算一次,形成光储充一体机上网有功和无功功率,以及智能电容器的无功补偿量;其余时间每隔2小时计算一次,夜间可忽略光伏的发电功率。
本发明采用隐式Zbus高斯算法进行潮流计算,具体步骤如图4所示:
41)初始化各节点电压;
42)根据各节点的负载、PV的有功和无功功率,以及电压形成导纳矩阵;
43)分离配电网的有源节点和其他节点,形成其他节点对应的Y22及其因子表;定义含PV和一体机的节点为有源节点;
44)根据收集的各关键节点的电压和功率信息,根据式(5)至式(7)计算其他节点电流注入向量I2,实时计算各节点电压分布情况;
45)判断各节点电压是否收敛,如果否的话,返回步骤44)重新计算;如果收敛,则判断各节点电压是否越限;电压大于120%或小于80%为越限;
46)如果电压越限,用t时刻式(7)的计算结果修正源节点的电压向量U2;然后返回步骤44)重新计算;直到满足电压约束的功率情况,制定光储充一体机上网有功和无功功率,以及智能电容单元的无功补偿量,实现满足约束条件对节点电压的控制,保证电压限制在安全范围内。
上述光伏台区电能质量治理方案,通过柔性直流负荷和储能的协调控制,不仅提高了光伏消纳能力和配电网运行效率,而且有效的控制了储能的配置成本;同时还实现了配电网网络的电压控制,非常适合于含光伏的农村配电网电能质量治理领域。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (7)

1.一种基于电压灵敏度配置的光伏台区电能质量治理系统,其特征在于,包括一个光储充一体机,以及多个关键节点放置的分布式智能电容单元;所述光储充一体机内置通讯管理机,所述通讯管理机与所述分布式智能电容单元通过电力线载波通讯;所述光储充一体机定时检测关键节点的电压,进行潮流计算并下发分布式智能电容单元无功补偿指令;
所述光储充一体机包括一个光伏BOOST变流器,一个DC-AC并网逆变器,一个BUCK-BOOST电池变流器,以及一个隔离DC-DC柔性直流负载模块;所述光伏BOOST变流器通过MPPT控制策略跟踪光伏最大功率;所述BUCK-BOOST电池变流器实现蓄电池储能系统内蓄电池的充放电和电压变换,同时根据自身SOC和能量流向的约束,实现光储充一体机内部的能量平衡;所述隔离DC-DC柔性直流负载模块根据光伏功率、并网有功和蓄电池SOC的差,实现有序的对柔性负载供电;
所述光储充一体机内包含一个潮流计算程序,所述潮流计算程序根据各关键节点的电压和功率信息,实时计算各关键节点的电压分布情况,进行潮流计算得到分布式智能电容单元的无功补偿量;
所述实时计算各关键节点的电压分布情况如下:
电压灵敏度矩阵如下:
其中,Vi表示节点i的电压,Vi 0表示节点i的初始电压,表示节点电压-有功灵敏度矩阵中第j个节点的有功功率对第i节点电压变化的一个系数,ΔPj表示节点j的有功变化量,表示节点电压-无功灵敏度矩阵中第j个节点的无功功率对第i节点电压变化的一个系数,ΔQj表示节点j的无功变化量,ΔUiP表示有功功率引起的节点i的电压变化量,ΔUiQ表示无功功率引起的节点i的电压变化量,i=1,2,…,N,N表示配电网系统节点个数,j=1,2,…,NPV,NPV表示配电网系统中PV节点个数;
所述进行潮流计算得到分布式智能电容单元的无功补偿量如下:
a)初始化各节点电压;
b)根据各节点的负载、PV的有功和无功功率,以及电压形成导纳矩阵;
c)分离配电网的有源节点和其他节点,形成其他节点对应的Y22及其因子表;所述有源节点为含PV和光储充一体机的节点;Y22为导纳矩阵元素;
d)根据各关键节点的电压和功率信息,计算其他节点电流注入向量I2以及电压向量U2
e)判断各节点电压是否收敛,如果否的话,返回步骤d)重新计算;如果收敛,则判断各节点电压是否越限;
f)如果电压越限,则将所述步骤d)计算的其他节点的电压向量作为源节点的电压向量;然后返回步骤d)重新计算;直到满足电压约束的功率情况,形成光储充一体机上网有功和无功功率,以及分布式智能电容单元的无功补偿量。
2.根据权利要求1所述的一种基于电压灵敏度配置的光伏台区电能质量治理系统,其特征在于,所述分布式智能电容单元的放置位置由台区电压灵敏度参数决定,按照台区电压灵敏度参数从高至低的节点选取。
3.根据权利要求1所述的一种基于电压灵敏度配置的光伏台区电能质量治理系统,其特征在于,所述光伏BOOST变流器的输入端连接光伏电池阵列,输出连接公共直流母线;所述BUCK-BOOST电池变流器的输入连接蓄电池的正负极,输出连接公共直流母线;所述隔离DC-DC柔性直流负载模块的输入为公共直流母线,另一端连接直流负载;所述公共直流母线连接至DC-AC并网逆变器的直流端口。
4.根据权利要求1所述的一种基于电压灵敏度配置的光伏台区电能质量治理系统,其特征在于,所述光储充一体机内部的能量平衡满足:
PPV,t+PESS,t+PG,t=Pload,t+Ploss,t
其中,PPV,t表示t时刻的PV出力,PESS,t表示t时刻蓄电池储能系统的出力,正值对应放电功率,负值对应充电功率,PG,t表示t时刻与配电网的交换功率,Pload,t表示t时刻直流负载的功率,Ploss,t表示t时刻系统的损耗;
需满足的约束条件为:
其中,EB表示蓄电池储能系统的额定容量,Et表示t时刻的蓄电池储能系统的容量,Et+1表示t+1时刻的蓄电池储能系统的容量,Δt表示t+1时刻和t时刻之间的时间差,表示t时刻的蓄电池储能系统的充电功率,/>表示t时刻的蓄电池储能系统的放电功率,ηC表示充电效率,ηD表示放电效率,D表示最大放电深度,δS表示自放电率。
5.根据权利要求1所述的一种基于电压灵敏度配置的光伏台区电能质量治理系统,其特征在于,所述光储充一体机和分布式智能电容单元的接入位置及容量,采用以下方式确定:
1)确定配电系统中已安装光伏母线集合:确定接入光伏的节点集合元素数目NT
2)确定光伏接入位置,从NT个可接入光伏母线集合BPV中选取NPV个母线用于实际光伏接入,建立配电网参数,建立统一的配电网模型;
3)对NPV个节点的光伏接入容量按照光伏渗透率百分比RPV依次增加,即各节点光伏安装容量为:
其中,Lj为节点j的有功负荷,j=1,2,…,NPV
然后按照接入位置形成光伏接入有功增量序列ΔP,通过一次潮流计算得到电压灵敏度矩阵,计算系统在不同光伏渗透率下各节点电压,得到不同场景下在电压安全约束范围内允许的可安装光伏的最大容量;
4)针对不同的电压越限情况,重复步骤1)-3),记录并保存各场景下对应的光伏安装点接入容量及电压幅值;然后不断的模拟光储充一体机和分布式智能电容单元补偿后的情况,形成控制策略分析表,进行控制参数整定;
5)制定分布式智能电容单元和光储充一体机的控制策略,以及配置分布式智能电容器和光储充一体机的接入位置及容量。
6.根据权利要求1所述的一种基于电压灵敏度配置的光伏台区电能质量治理系统,其特征在于,所述步骤d)中,其他节点电流注入向量I2和电压向量计算如下:
其中,I1、U1为有源节点的电流向量和电压向量,I2、U2为其他节点的电流注入向量和电压向量,Y11,Y12,Y21,Y22为导纳矩阵元素。
7.根据权利要求1所述的一种基于电压灵敏度配置的光伏台区电能质量治理系统,其特征在于,所述光储充一体机上午10点至下午14点,每个小时进行一次潮流计算,其余时间每隔2小时进行一次潮流计算。
CN201910119211.XA 2019-02-18 2019-02-18 一种基于电压灵敏度配置的光伏台区电能质量治理系统 Active CN109802396B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910119211.XA CN109802396B (zh) 2019-02-18 2019-02-18 一种基于电压灵敏度配置的光伏台区电能质量治理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910119211.XA CN109802396B (zh) 2019-02-18 2019-02-18 一种基于电压灵敏度配置的光伏台区电能质量治理系统

Publications (2)

Publication Number Publication Date
CN109802396A CN109802396A (zh) 2019-05-24
CN109802396B true CN109802396B (zh) 2024-02-02

Family

ID=66562260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910119211.XA Active CN109802396B (zh) 2019-02-18 2019-02-18 一种基于电压灵敏度配置的光伏台区电能质量治理系统

Country Status (1)

Country Link
CN (1) CN109802396B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601211B (zh) * 2019-09-23 2022-12-02 国网辽宁省电力有限公司鞍山供电公司 基于svc调节配网电压提高分布式电源消纳的方法
CN110912189A (zh) * 2019-11-29 2020-03-24 国网山西省电力公司经济技术研究院 一种含分布式光伏的农村配电网适应性规划方法及系统
CN111564854B (zh) * 2020-06-11 2020-10-27 四川华泰电气股份有限公司 基于能源互联网分区域脆弱性分析的储能装置布放方法
CN113904353A (zh) * 2021-10-26 2022-01-07 东南大学 基于电压灵敏度矩阵的分布式储能自适应下垂控制方法
CN114243912B (zh) * 2021-12-06 2022-12-27 南京瀚元科技有限公司 一种台区光储充云边协同方法及系统
CN114447944B (zh) * 2022-04-07 2022-06-03 南京易司拓电力科技股份有限公司 主动配电网台区无功全局优化调压方法
CN115207921B (zh) * 2022-09-14 2022-12-30 国网江西省电力有限公司电力科学研究院 一种光伏接入配电网的位置优化方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104092278A (zh) * 2014-07-11 2014-10-08 安徽启光能源科技研究院有限公司 应用于光伏储能系统的能量管理方法
CN104158198A (zh) * 2013-05-15 2014-11-19 株式会社日立制作所 配电网优化潮流控制装置和方法
CN105281360A (zh) * 2015-09-14 2016-01-27 国家电网公司 一种基于灵敏度的分布式光伏自动发电控制方法
CN106058935A (zh) * 2016-07-27 2016-10-26 芜湖格利特新能源科技有限公司 一种分布式风光储充一体化微电网系统
CN106208090A (zh) * 2016-09-06 2016-12-07 国网湖北省电力公司宜昌供电公司 一种光伏发电接入的电压无功优化控制方法及系统
CN107134789A (zh) * 2017-06-30 2017-09-05 华南理工大学 基于拓展qv节点的光储最优潮流控制方法
CN107370172A (zh) * 2017-07-25 2017-11-21 山东大学 高渗透率光伏配网中电池储能系统综合运行控制系统及方法
CN107994587A (zh) * 2017-12-06 2018-05-04 国网江苏省电力有限公司淮安供电分公司 一种高渗透率光伏配电网就地电压控制方法
CN108521140A (zh) * 2018-04-03 2018-09-11 深圳电丰电子有限公司 一种分布式光伏并离储能逆变系统
CN207884343U (zh) * 2018-01-22 2018-09-18 北京海瑞克科技发展有限公司 一种移动式光储充一体化系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9866029B2 (en) * 2014-11-04 2018-01-09 Nec Corporation Enhancing power system voltage stability using grid energy storage for voltage support

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158198A (zh) * 2013-05-15 2014-11-19 株式会社日立制作所 配电网优化潮流控制装置和方法
CN104092278A (zh) * 2014-07-11 2014-10-08 安徽启光能源科技研究院有限公司 应用于光伏储能系统的能量管理方法
CN105281360A (zh) * 2015-09-14 2016-01-27 国家电网公司 一种基于灵敏度的分布式光伏自动发电控制方法
CN106058935A (zh) * 2016-07-27 2016-10-26 芜湖格利特新能源科技有限公司 一种分布式风光储充一体化微电网系统
CN106208090A (zh) * 2016-09-06 2016-12-07 国网湖北省电力公司宜昌供电公司 一种光伏发电接入的电压无功优化控制方法及系统
CN107134789A (zh) * 2017-06-30 2017-09-05 华南理工大学 基于拓展qv节点的光储最优潮流控制方法
CN107370172A (zh) * 2017-07-25 2017-11-21 山东大学 高渗透率光伏配网中电池储能系统综合运行控制系统及方法
CN107994587A (zh) * 2017-12-06 2018-05-04 国网江苏省电力有限公司淮安供电分公司 一种高渗透率光伏配电网就地电压控制方法
CN207884343U (zh) * 2018-01-22 2018-09-18 北京海瑞克科技发展有限公司 一种移动式光储充一体化系统
CN108521140A (zh) * 2018-04-03 2018-09-11 深圳电丰电子有限公司 一种分布式光伏并离储能逆变系统

Also Published As

Publication number Publication date
CN109802396A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
CN109802396B (zh) 一种基于电压灵敏度配置的光伏台区电能质量治理系统
CN109325608A (zh) 考虑储能并计及光伏随机性的分布式电源优化配置方法
CN111244931B (zh) 一种多储能模块并联运行的soc自均衡控制方法
CN105515083A (zh) 一种支持安全动态增容的电动汽车群充电微网控制方法
CN113285451A (zh) 一种基于光伏储能系统的黑启动协调控制方法
CN104410091B (zh) 基于变流器控制的风储能量管理系统及其控制方法
CN108923446B (zh) 一种光伏/储能一体化系统中储能容量的配置方法
CN111327053A (zh) 一种适用于极地气候下的多源微电网容量优化配置方法
Rossi et al. Real-time optimization of the battery banks lifetime in hybrid residential electrical systems
Huangfu et al. An optimal energy management strategy with subsection bi-objective optimization dynamic programming for photovoltaic/battery/hydrogen hybrid energy system
CN112269966B (zh) 一种考虑备用需求的通信基站虚拟电厂发电容量测量方法
CN102005807B (zh) 一种利用超级电容器储能系统调控光伏发电系统的方法
CN105896613B (zh) 一种考虑通讯时滞的微电网分布式有限时间控制方法
CN104281984A (zh) 一种用于微电网经济运行的供电方法
CN115940284B (zh) 一种考虑分时电价的新能源制氢系统的运行控制策略
Li et al. Research on microgrid optimization based on simulated annealing particle swarm optimization
CN109119988B (zh) 基于动态批发市价的光伏-电池微电网能量调度管理方法
Shi et al. Energy management mode of the photovoltaic power station with energy storage based on the photovoltaic power prediction
CN114336703A (zh) 一种大规模风光储电站自动协同控制方法
CN113435730A (zh) 一种变电站储能容量的协同配置方法、装置及系统
CN112736978A (zh) 一种多源互补电源并网优化系统
Liu et al. Capacity optimization of Energy Storage Based on Intelligent optimization Algorithm and Photovoltaic Power Prediction Error Data
Pan et al. Power regulation of islanded PV-battery DC microgrid with seamless transition
CN209626975U (zh) 一种基于电压灵敏度配置的光伏台区电能质量治理系统
CN110768306A (zh) 一种提高保底电网中微电网应急能力的电源容量配置方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant