CN109786957A - 一种折线螺旋缝隙分形阵列超宽频带天线 - Google Patents

一种折线螺旋缝隙分形阵列超宽频带天线 Download PDF

Info

Publication number
CN109786957A
CN109786957A CN201910069927.3A CN201910069927A CN109786957A CN 109786957 A CN109786957 A CN 109786957A CN 201910069927 A CN201910069927 A CN 201910069927A CN 109786957 A CN109786957 A CN 109786957A
Authority
CN
China
Prior art keywords
broken line
line spiral
spiral slit
array
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910069927.3A
Other languages
English (en)
Inventor
林斌
潘依郎
郑萍
魏昕煜
洪志杰
李振昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University Tan Kah Kee College
Original Assignee
Xiamen University Tan Kah Kee College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University Tan Kah Kee College filed Critical Xiamen University Tan Kah Kee College
Priority to CN201910069927.3A priority Critical patent/CN109786957A/zh
Publication of CN109786957A publication Critical patent/CN109786957A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及一种折线螺旋缝隙分形阵列超宽频带天线,包括薄膜基质、贴覆在所述薄膜基质正面的折线螺旋缝隙分形阵列馈电辐射贴片、贴覆在所述薄膜基质背面的天线接地板、贴覆在所述天线接地板背面的钽铌酸钾薄片和贴覆在所述钽铌酸钾薄片背面的铁基纳米晶合金镀层;所述折线螺旋缝隙分形阵列馈电辐射贴片是由折线螺旋缝隙分形小天线按照矩形阵列结构排列组成的天线阵列。本发明使用折线螺旋缝隙分形天线作为阵元天线,兼具折线螺旋缝隙和“嵌入式”缝隙分形结构的优点,保证阵元天线能够在很宽的频率范围内稳定地工作。

Description

一种折线螺旋缝隙分形阵列超宽频带天线
技术领域
本发明涉及移动通信天线、射频识别天线、超宽带天线、移动数字电视天线、“嵌入式”缝隙分形天线、阵列天线和强抗干扰天线领域,特别是一种折线螺旋缝隙分形阵列超宽频带天线。
背景技术
进入新世纪以来,无线通信技术飞速发展,以移动通信系统、射频识别系统、超宽带通信系统、移动数字电视系统为代表的无线通信应用系统愈发成熟。不同频段、不同制式的多个无线通信应用系统长期共存、共同发展,催生了多网合一技术。移动通信系统、射频识别系统、超宽带通信系统、移动数字电视系统都工作在微波频段,如果能够将这四种系统融合起来,设计出兼具接打电话、收发短信、使用移动互联网、读写射频识别卡、中远距离高速传输超宽带通信数据、收看卫星转发的移动数字电视并进行互动等功能的新型无线通信系统,就能够实现微波频段的多网合一。
多网合一系统要求终端天线具备多频段兼容功能。我国目前使用的第二代移动通信频段为GSM制式 0.905~0.915 GHz、0.950~0.960 GHz、1.710~1.785 GHz、1.805~1.880 GHz频段;第三代移动通信频段为TD-SCDMA制式1.880~1.920 GHz、2.010~2.025GHz、2.300~2.400 GHz频段和WCDMA制式 1.920~1.980 GHz、2.110~2.170 GHz频段;第四代移动通信频段为TD-LTE制式 2.570~2.620 GHz频段。即将投入使用的第五代移动通信有三个候选频段,分别为:3.300~3.400 GHz、4.400~4.500 GHz、4.800~4.990 GHz。射频识别系统有三个主要的工作频段:0.902~0.928 GHz、2.400~2.4835 GHz、5.725~5.875 GHz。超宽带系统的工作频段为3.100~10.600 GHz。移动数字电视系统工作频段为11.700~12.200 GHz。微波频段多网合一终端设备天线需要完全覆盖上述所有工作频段,且能够在超宽频带稳定辐射工作,尺寸小、辐射强度高、性能冗余大,有较强的抵抗电磁干扰的能力。
发明内容
有鉴于此,本发明的目的是提出一种折线螺旋缝隙分形阵列超宽频带天线,使用折线螺旋缝隙分形天线作为阵元天线,兼具折线螺旋缝隙和“嵌入式”缝隙分形结构的优点,保证阵元天线能够在很宽的频率范围内稳定地工作。
本发明采用以下方案实现:一种折线螺旋缝隙分形阵列超宽频带天线,包括薄膜基质、贴覆在所述薄膜基质正面的折线螺旋缝隙分形阵列馈电辐射贴片即天线辐射贴片、贴覆在所述薄膜基质背面的天线接地板、贴覆在所述天线接地板背面的钽铌酸钾薄片和贴覆在所述钽铌酸钾薄片背面的铁基纳米晶合金镀层;所述折线螺旋缝隙分形阵列馈电辐射贴片是由折线螺旋缝隙分形小天线按照矩形阵列结构排列组成的天线阵列。
进一步地,所述折线螺旋缝隙分形小天线是在尺寸为4.5 mm±0.1 mm×4.5 mm±0.1 mm的矩形区域进行折线螺旋缝隙分形迭代得到的。
进一步地,所述折线螺旋缝隙分形小天线使用至少2阶的折线螺旋缝隙分形结构。
进一步地,每个所述折线螺旋缝隙分形小天线的底部边沿中心处设有天线馈电点。
进一步地,所述折线螺旋缝隙分形阵列馈电辐射贴片使用矩形阵列结构作为基本阵列排布结构,该矩形阵列结构至少包括4行4列共16个折线螺旋缝隙分形小天线。
进一步地,所述薄膜基质采用聚对苯二甲酸乙二酯(PET)薄膜基质,其形状为矩形,尺寸是20 mm±0.1 mm×20 mm±0.1 mm,厚度为0.2 mm±0.02 mm。
进一步地,所述薄膜基质由至少4行4列共16个小区域组成,每个薄膜基质小区域的相对介电常数沿着薄膜基质长、宽两个方向渐变;相对介电常数最小的小区域位于薄膜基质左上角,其相对介电常数为17.0;相对介电常数最大的小区域位于薄膜基质右下角,其相对介电常数为23.0;每个薄膜基质小区域的相对介电常数按照从左到右、从上到下的顺序逐渐增加,相邻两个薄膜基质小区域的相对介电常数的差值为1.0。
进一步地,所述钽铌酸钾薄片为微波频段低损耗钽铌酸钾薄片,其形状为矩形,尺寸是20 mm±0.1 mm×20 mm±0.1 mm,厚度为0.3 mm±0.1 mm,相对介电常数为200±5。
进一步地,所述铁基纳米晶合金镀层的尺寸与钽铌酸钾薄片的尺寸相同,所用铁基纳米晶合金是以铁元素为主,添加少量铌、铜、硅、硼元素,使用快速凝固工艺制成的非晶态低损耗高磁导率合金材料。
进一步地,所述天线辐射贴片和天线接地板由石墨烯导电墨水印制而成。
与现有技术相比,本发明有以下有益效果:
(1)本发明使用折线螺旋缝隙分形天线作为阵元天线,兼具折线螺旋缝隙和“嵌入式”缝隙分形结构的优点,保证阵元天线能够在很宽的频率范围内稳定地工作。
(2)本发明使用相对介电常数渐变的聚对苯二甲酸乙二酯(PET)薄膜作为天线基质材料,保证天线具有很好的温度适应性、抗腐蚀性和稳定的物理、化学特性,并利用叠加原理进一步提高阵列天线的辐射性能和带宽性能。
(3)本发明在天线结构中使用钽铌酸钾薄片和铁基纳米晶合金镀层,可以有效提高天线抵抗外界电磁场干扰的能力。
(4)本发明使用石墨烯导电墨水印制天线的辐射贴片,可以有效防止腐蚀并提高天线辐射强度。
(5)本发明天线有优异的抗干扰性能,能够放置在移动通信基站、射频识别读写器、超宽带通信发射机、移动数字电视发射机等射频信号源附近正常工作,天线辐射性能不会受到影响。
附图说明
图1为本发明实施例的折线螺旋缝隙分形结构的迭代规律图。其中,(a)为0阶迭代;(b)为1阶迭代;(c)为2阶迭代。
图2为本发明实施例的薄膜基质的结构图。
图3为本发明实施例的折线螺旋缝隙分形阵列馈电辐射贴片的结构图。
图4为本发明实施例的天线整体的分层截面结构图。
图5为本发明实施例的回波损耗(S11)性能图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
本实施例提供了一种折线螺旋缝隙分形阵列超宽频带天线,包括薄膜基质、贴覆在薄膜基质正面的折线螺旋缝隙分形阵列馈电辐射贴片即天线辐射贴片、贴覆在薄膜基质背面的天线接地板、贴覆在天线接地板背面的钽铌酸钾薄片和贴覆在钽铌酸钾薄片背面的铁基纳米晶合金镀层;所述折线螺旋缝隙分形阵列馈电辐射贴片是由折线螺旋缝隙分形小天线按照矩形阵列结构排列组成的天线阵列。
在本实施例中,所述折线螺旋缝隙分形小天线是在尺寸为4.5 mm±0.1 mm×4.5mm±0.1 mm的矩形区域进行折线螺旋缝隙分形迭代而得到。
在本实施例中,所述折线螺旋缝隙分形小天线使用至少2阶的折线螺旋缝隙分形结构。
折线螺旋缝隙分形结构的迭代规律如图1所示。折线螺旋缝隙分形结构的初始结构是正方形,将其等分为9行9列81个小正方形,将第2行第2列,第3行第2列、第4列、第5列、第6列、第7列、第8列,第4行第2列、第4列、第8列,第5行第2列、第4列、第6列、第8列,第6行第2列、第4列、第5列、第6列、第8列,第7行第2列、第8列,第8行第2列、第3列、第4列、第5列、第6列、第7列、第8列,共28个小正方形挖去,形成折线螺旋缝隙,剩下53个等分的正方形区域,则得到1阶折线螺旋缝隙分形结构。将1阶折线螺旋缝隙分形结构的53个正方形区域,分别再做折线螺旋缝隙分形迭代,则得到2阶折线螺旋缝隙分形结构。按照这种方法继续迭代,则可得到高阶的折线螺旋缝隙分形结构。
折线螺旋缝隙由多条直线缝隙组成,随着折线旋转,由外到内,每条缝隙的长度逐渐减小,每条缝隙的长度不同,辐射时的工作频段也不同,多条缝隙的辐射相叠加,可以形成一个较大的辐射工作频段。折线螺旋缝隙分形结构是一种全新的“嵌入式”缝隙分形迭代方式,兼具折线螺旋缝隙和“嵌入式”缝隙分形结构的优点,具有优异的宽频带工作能力。在天线设计中使用这种“嵌入式”缝隙分形,可以在不改变天线辐射贴片整体形状、尺寸和外部辐射缝隙的情况下,在天线辐射贴片内部引入分形缝隙结构,在不改变天线工作中心频率的情况下,利用分形缝隙结构的自相似性使天线辐射贴片内部具有均匀的电流分布,保证天线具有稳定的超宽频带工作性能。
多个阵元天线组成天线阵列可以有效提高天线的辐射强度。单个折线螺旋缝隙分形小天线的工作带宽虽然较大,但是辐射强度较弱,多个折线螺旋缝隙分形小天线按照矩形阵列结构排列组成天线阵列,可以让它们的辐射相叠加,进一步增强天线的辐射强度。
在本实施例中,所述每个折线螺旋缝隙分形小天线的底部边沿中心处设有天线馈电点。
在本实施例中,所述折线螺旋缝隙分形阵列馈电辐射贴片的结构如图3所示,其使用矩形阵列结构作为基本阵列排布结构,该矩形阵列结构至少包括4行4列共16个折线螺旋缝隙分形小天线。
单个折线螺旋缝隙分形小天线的工作带宽虽然较大,但是辐射强度较弱,多个折线螺旋缝隙分形小天线按照矩形阵列结构排列组成天线阵列,可以让它们的辐射相叠加,进一步增强天线的辐射强度。
在本实施例中,所述薄膜基质为聚对苯二甲酸乙二酯(PET)薄膜基质,其形状为矩形,尺寸是20 mm±0.1 mm×20 mm±0.1 mm,厚度为0.2 mm±0.02 mm。
聚对苯二甲酸乙二酯(PET)薄膜的化学稳定性非常好,可以耐油、耐稀酸、耐稀碱,耐大多数溶剂,在-70℃到150℃的温度范围内都可以正常工作,使用它作为天线基质材料,可以保证天线有稳定的物理和化学性质。
在本实施例中,所述薄膜基质的结构如图2所示,其由至少4行4列共16个小区域组成,图2中数字表示某个小区域的相对介电常数。相对介电常数渐变的PET薄膜基质可以划分为多行多列多个小区域,每个薄膜基质小区域的相对介电常数沿着薄膜基质长、宽两个方向渐变;相对介电常数最小的小区域位于薄膜基质左上角,其相对介电常数为17.0;相对介电常数最大的小区域位于薄膜基质右下角,其相对介电常数为23.0;每个薄膜基质小区域的相对介电常数按照从左到右、从上到下的顺序逐渐增加,相邻两个薄膜基质小区域的相对介电常数的差值为1.0。
每个薄膜基质小区域的相对介电常数按照从左到右、从上到下的顺序逐渐增加。在阵列天线设计中使用这种相对介电常数渐变的薄膜基质后,每个阵元天线的基质相对介电常数都不相同,因此每个阵元天线的工作频点不同。当不同阵元天线的工作频点较为接近时,它们的辐射和工作频带会相互叠加,形成一个辐射强度和工作带宽都较大的工作频带,从而提高阵列天线的辐射性能和带宽性能。
在阵列天线设计中使用这种相对介电常数渐变的薄膜基质后,每个阵元天线的基质相对介电常数都不相同,因此每个阵元天线的工作频点不同。当不同阵元天线的工作频点较为接近时,它们的辐射和工作频带会相互叠加,形成一个辐射强度和工作带宽都较大的工作频带,从而提高阵列天线的辐射性能和带宽性能。
在本实施例中,所述钽铌酸钾薄片为微波频段低损耗钽铌酸钾薄片,其形状为矩形,尺寸是20 mm±0.1 mm×20 mm±0.1 mm,厚度为0.3 mm±0.1 mm,相对介电常数为200±5。
在本实施例中,所述铁基纳米晶合金镀层的尺寸与钽铌酸钾薄片的尺寸相同,所用铁基纳米晶合金是以铁元素为主,添加少量铌、铜、硅、硼元素,使用快速凝固工艺制成的非晶态低损耗高磁导率合金材料。
天线整体的分层截面结构如图4所示。钽铌酸钾是一种有着良好的热稳定性、化学稳定性、机械稳定性的高介电常数低损耗化合物,能够形成高效的电场屏蔽层,防止外部电场干扰天线工作。铁基纳米晶合金是一种理想的高性能软磁材料,具有超高磁导率、良好的耐蚀性和磁稳定性、极低的损耗,可以有效阻止外界磁场对天线工作的干扰。将钽铌酸钾薄片和铁基纳米晶合金镀层组合在一起,可以有效阻止天线周围环境电磁场对天线辐射的干扰。
在本实施例中,所述天线辐射贴片和天线接地板由石墨烯导电墨水印制而成。
石墨烯具有很高的电子迁移率,制作成导电墨水后能通过的射频电流强度大,以石墨烯导电墨水印制天线辐射贴片,可以增强天线内部的射频电流强度,提高天线辐射强度。石墨烯导电墨水不含金属,印制天线辐射贴片可以有效防止腐蚀。
如图5所示,给出了实施例的回波损耗(S11)性能图。从图5可以看出,实测结果显示,该款天线的工作频带范围为0.478~15.962 GHz,工作带宽为15.484 GHz,带宽倍频程为33.39,在整个工作频带内天线回波损耗都低于-10 dB,回波损耗最小值为-47.53 dB。该款天线放置在射频信号源附近时能够正常辐射工作。该款天线能够在超宽频带稳定辐射工作,尺寸小、辐射强度高、性能冗余大,有较强的抵抗电磁干扰的能力,能够完全覆盖第二代至第五代移动通信频段、射频识别频段、超宽带通信频段和移动数字电视频段,在多网合一时代有较大的应用前景。
较佳的,本实施例天线使用折线螺旋缝隙分形天线作为阵元天线,兼具折线螺旋缝隙和“嵌入式”缝隙分形结构的优点,保证阵元天线能够在很宽的频率范围内稳定地工作;多个阵元天线按照矩形阵列结构排列组成天线阵列,阵元天线的辐射相叠加,使阵列天线同时具有较大的工作带宽和较强的辐射强度,天线有较大的性能冗余;使用相对介电常数渐变的聚对苯二甲酸乙二酯(PET)薄膜作为天线基质材料,保证天线具有很好的温度适应性、抗腐蚀性和稳定的物理、化学特性,并利用叠加原理进一步提高阵列天线的辐射性能和带宽性能。在天线结构中使用钽铌酸钾薄片和铁基纳米晶合金镀层,可以有效提高天线抵抗外界电磁场干扰的能力。使用石墨烯导电墨水印制天线的辐射贴片,可以有效防止腐蚀并提高天线辐射强度。
天线实测结果显示,本实施例天线的工作频带范围为0.478~15.962 GHz,工作带宽为15.484 GHz,带宽倍频程为33.39,在整个工作频带内天线回波损耗都低于-10 dB,回波损耗最小值为-47.53 dB。本实施例天线能够抵抗外界电磁信号的干扰,放置在射频信号源附近时能够正常辐射工作。该款天线完全覆盖了0.902~0.928 GHz、0.905~0.915 GHz、0.950~0.960 GHz、1.710~1.785 GHz、1.805~1.880 GHz、1.880~1.920 GHz、1.920~1.980 GHz、2.010~2.025 GHz、2.110~2.170 GHz、2.300~2.400 GHz、2.400~2.4835GHz、2.570~2.620 GHz、3.300~3.400 GHz、4.400~4.500 GHz、4.800~4.990 GHz、5.725~5.875 GHz、3.100~10.600 GHz、11.700~12.200 GHz等第二代至第五代移动通信所有制式所有工作频段、射频识别频段、超宽带通信频段和移动数字电视频段。
与用于移动通信系统、射频识别系统、超宽带通信系统、移动数字电视系统的常规天线比较,该款天线具有突出的优点和显著的效果:本实施例天线具有很好的超宽频带工作能力,工作带宽高达15.484 GHz,带宽倍频程高达33.39,且在工作频段内回波损耗值波动较小,辐射特性稳定可靠;本实施例天线在工作频段内的绝大多数区域回波损耗值都低于-40dB,回波损耗最小值低达-47.53 dB,天线有充足的性能冗余来保证无线通信信号有较好的传输效果;本实施例天线有优异的抗干扰性能,能够放置在移动通信基站、射频识别读写器、超宽带通信发射机、移动数字电视发射机等射频信号源附近正常工作,天线辐射性能不会受到影响。
较佳的,本实施例提供一种能够在超宽频带稳定辐射工作,尺寸小、辐射强度高、性能冗余大,有较强的抵抗电磁干扰的能力,能够完全覆盖第二代至第五代移动通信频段、射频识别频段、超宽带通信频段和移动数字电视频段的折线螺旋缝隙分形阵列超宽频带天线。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (10)

1.一种折线螺旋缝隙分形阵列超宽频带天线,其特征在于:包括薄膜基质、贴覆在所述薄膜基质正面的折线螺旋缝隙分形阵列馈电辐射贴片即天线辐射贴片、贴覆在所述薄膜基质背面的天线接地板、贴覆在所述天线接地板背面的钽铌酸钾薄片和贴覆在所述钽铌酸钾薄片背面的铁基纳米晶合金镀层;所述折线螺旋缝隙分形阵列馈电辐射贴片是由折线螺旋缝隙分形小天线按照矩形阵列结构排列组成的天线阵列。
2.根据权利要求1所述的一种折线螺旋缝隙分形阵列超宽频带天线,其特征在于:所述折线螺旋缝隙分形小天线是在尺寸为4.5 mm±0.1 mm×4.5 mm±0.1 mm的矩形区域进行折线螺旋缝隙分形迭代得到的。
3.根据权利要求2所述的一种折线螺旋缝隙分形阵列超宽频带天线,其特征在于:所述折线螺旋缝隙分形小天线使用至少2阶的折线螺旋缝隙分形结构。
4.根据权利要求2所述的一种折线螺旋缝隙分形阵列超宽频带天线,其特征在于:每个所述折线螺旋缝隙分形小天线的底部边沿中心处设有天线馈电点。
5.根据权利要求1所述的一种折线螺旋缝隙分形阵列超宽频带天线,其特征在于:所述折线螺旋缝隙分形阵列馈电辐射贴片使用矩形阵列结构作为基本阵列排布结构,该矩形阵列结构至少包括4行4列共16个折线螺旋缝隙分形小天线。
6.根据权利要求1所述的一种折线螺旋缝隙分形阵列超宽频带天线,其特征在于:所述薄膜基质采用聚对苯二甲酸乙二酯(PET)薄膜基质,其形状为矩形,尺寸是20 mm±0.1 mm×20 mm±0.1 mm,厚度为0.2 mm±0.02 mm。
7.根据权利要求1所述的一种折线螺旋缝隙分形阵列超宽频带天线,其特征在于:所述薄膜基质由至少4行4列共16个小区域组成,每个薄膜基质小区域的相对介电常数沿着薄膜基质长、宽两个方向渐变;相对介电常数最小的小区域位于薄膜基质左上角,其相对介电常数为17.0;相对介电常数最大的小区域位于薄膜基质右下角,其相对介电常数为23.0;每个薄膜基质小区域的相对介电常数按照从左到右、从上到下的顺序逐渐增加,相邻两个薄膜基质小区域的相对介电常数的差值为1.0。
8.根据权利要求1所述的一种折线螺旋缝隙分形阵列超宽频带天线,其特征在于:所述钽铌酸钾薄片为微波频段低损耗钽铌酸钾薄片,其形状为矩形,尺寸是20 mm±0.1 mm×20mm±0.1 mm,厚度为0.3 mm±0.1 mm,相对介电常数为200±5。
9.根据权利要求1所述的一种折线螺旋缝隙分形阵列超宽频带天线,其特征在于:所述铁基纳米晶合金镀层的尺寸与钽铌酸钾薄片的尺寸相同,所用铁基纳米晶合金是以铁元素为主,添加少量铌、铜、硅、硼元素,使用快速凝固工艺制成的非晶态低损耗高磁导率合金材料。
10.根据权利要求1所述的一种折线螺旋缝隙分形阵列超宽频带天线,其特征在于:所述天线辐射贴片和天线接地板由石墨烯导电墨水印制而成。
CN201910069927.3A 2019-01-24 2019-01-24 一种折线螺旋缝隙分形阵列超宽频带天线 Pending CN109786957A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910069927.3A CN109786957A (zh) 2019-01-24 2019-01-24 一种折线螺旋缝隙分形阵列超宽频带天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910069927.3A CN109786957A (zh) 2019-01-24 2019-01-24 一种折线螺旋缝隙分形阵列超宽频带天线

Publications (1)

Publication Number Publication Date
CN109786957A true CN109786957A (zh) 2019-05-21

Family

ID=66501342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910069927.3A Pending CN109786957A (zh) 2019-01-24 2019-01-24 一种折线螺旋缝隙分形阵列超宽频带天线

Country Status (1)

Country Link
CN (1) CN109786957A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2539279A (en) * 2015-06-12 2016-12-14 Secr Defence Frequency selective surface for reducing antenna coupling
CN107799887A (zh) * 2017-11-29 2018-03-13 厦门大学嘉庚学院 电磁仿生光子晶体阵列超宽频带天线
CN108417979A (zh) * 2018-03-06 2018-08-17 厦门大学嘉庚学院 强抗干扰型复合超宽频带天线
CN208078166U (zh) * 2018-01-30 2018-11-09 厦门大学嘉庚学院 三角螺旋缝隙-六边形阵列复合超宽频带天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2539279A (en) * 2015-06-12 2016-12-14 Secr Defence Frequency selective surface for reducing antenna coupling
CN107799887A (zh) * 2017-11-29 2018-03-13 厦门大学嘉庚学院 电磁仿生光子晶体阵列超宽频带天线
CN208078166U (zh) * 2018-01-30 2018-11-09 厦门大学嘉庚学院 三角螺旋缝隙-六边形阵列复合超宽频带天线
CN108417979A (zh) * 2018-03-06 2018-08-17 厦门大学嘉庚学院 强抗干扰型复合超宽频带天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林斌等: "分形阵列螺旋仿生超宽带天线设计", 《浙江万里学院学报》 *

Similar Documents

Publication Publication Date Title
Choukiker et al. Wideband frequency reconfigurable Koch snowflake fractal antenna
Sharawi Printed MIMO antenna engineering
EP2573864B1 (en) Man-made microstructure and artificial electromagnetic material
Taghadosi et al. Miniaturised printed elliptical nested fractal multiband antenna for energy harvesting applications
Bhatia et al. An optimal design of fractal antenna with modified ground structure for wideband applications
CN105655721A (zh) 基于频率选择表面的双波段复合宽频带吸波材料
Haji-hashemi et al. Space-filling patch antennas with CPW feed
Rahman et al. The broken-heart printed antenna for ultrawideband applications: Design and characteristics analysis
El‐Khamy et al. A new fractal‐like tree structure of circular patch antennas for UWB and 5G multi‐band applications
Sarkar et al. Multiband miniaturised fractal antenna for mobile communications
CN109786957A (zh) 一种折线螺旋缝隙分形阵列超宽频带天线
CN109786955A (zh) 一种光子晶体缝隙分形阵列超宽频带天线
Abolade et al. Compact Vitis vinifera-Inspired Ultrawideband Antenna for High‐Speed Communications
Jehangir et al. Frequency reconfigurable Yagi‐like MIMO antenna system with a wideband reflector
CN109768376A (zh) 蝶形缝隙分形阵列超宽频带天线
Xie et al. A Novel Dual‐Band “C+ O” Structure Antenna
Shelar et al. Microstrip patch antenna with partial ground plane and parasitic patch for K band application in 5G
Tripathi et al. A novel multi band notched octagonal shaped fractal UWB antenna
CN209249690U (zh) 三维镜像工型缝隙分形偶极子超宽频带天线
CN109728432A (zh) 渐变方形缝隙分形阵列超宽频带天线
Sharma et al. Design and analysis of a compact CSRR loaded defected ground plane antenna for ultra-wideband applications
Elsheakh et al. Reconfigurable microstrip monopole patch antenna with electromagnetic band‐gap structure design for ultrawideband wireless communication systems
CN109786956A (zh) 生长方形缝隙分形阵列超宽频带天线
CN109768375A (zh) 方形嵌套缝隙分形阵列超宽频带天线
Kumar et al. Circular Slotted Antenna with CPW feed for GSM and UWB Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190521

RJ01 Rejection of invention patent application after publication