CN109785405A - A method for generating quasi-CT images using multivariate regression of multiple sets of magnetic resonance images - Google Patents
A method for generating quasi-CT images using multivariate regression of multiple sets of magnetic resonance images Download PDFInfo
- Publication number
- CN109785405A CN109785405A CN201910087064.2A CN201910087064A CN109785405A CN 109785405 A CN109785405 A CN 109785405A CN 201910087064 A CN201910087064 A CN 201910087064A CN 109785405 A CN109785405 A CN 109785405A
- Authority
- CN
- China
- Prior art keywords
- magnetic resonance
- images
- image
- same
- resonance images
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000013507 mapping Methods 0.000 claims abstract description 18
- 238000012163 sequencing technique Methods 0.000 claims abstract 11
- 230000011218 segmentation Effects 0.000 claims description 28
- 210000004872 soft tissue Anatomy 0.000 claims description 19
- 210000000988 bone and bone Anatomy 0.000 claims description 16
- 230000007717 exclusion Effects 0.000 claims description 12
- 238000003384 imaging method Methods 0.000 claims description 12
- 210000001519 tissue Anatomy 0.000 claims description 8
- 210000003484 anatomy Anatomy 0.000 claims description 7
- 210000000056 organ Anatomy 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims description 3
- 238000001959 radiotherapy Methods 0.000 abstract description 6
- 238000002059 diagnostic imaging Methods 0.000 abstract description 3
- 238000004364 calculation method Methods 0.000 abstract description 2
- 238000004088 simulation Methods 0.000 abstract description 2
- 238000002591 computed tomography Methods 0.000 description 63
- 238000002595 magnetic resonance imaging Methods 0.000 description 28
- 101000969327 Homo sapiens Methylthioribose-1-phosphate isomerase Proteins 0.000 description 5
- 102100021415 Methylthioribose-1-phosphate isomerase Human genes 0.000 description 5
- 238000010606 normalization Methods 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013170 computed tomography imaging Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种CT图像的生成。特别是涉及一种利用多组磁共振图像的多变量回归生成准CT图像的方法。The present invention relates to the generation of a CT image. In particular, it relates to a method for generating quasi-CT images using multivariate regression of multiple sets of magnetic resonance images.
背景技术Background technique
计算机断层扫描(CT)和磁共振成像(MRI)是两种主要的获取三维图像的成像模式。计算机断层扫描成像是传统上用于创建放射治疗计划的成像模式。CT图像能够精确地描述目标者的几何形状,并且CT图像对应的CT值可以直接转换成电子密度以用于计算目标者体内的辐射剂量分布。然而,CT图像对于软组织没有良好的对比度,并且CT还使目标者接受额外的辐射剂量。与CT图像相比,磁共振成像模式由于其优异的软组织对比度也具有广泛用途。磁共振成像不含电离辐射,而且可以提供目标者的新陈代谢等功能信息。Computed tomography (CT) and magnetic resonance imaging (MRI) are the two main imaging modalities for obtaining three-dimensional images. Computed tomography imaging is an imaging modality traditionally used to create radiation treatment plans. The CT image can accurately describe the geometry of the target, and the CT value corresponding to the CT image can be directly converted into electron density for calculating the radiation dose distribution in the target. However, CT images do not have good contrast for soft tissue, and CT also exposes the target to additional radiation doses. Magnetic resonance imaging modalities are also widely used due to their superior soft tissue contrast compared to CT images. Magnetic resonance imaging does not contain ionizing radiation and can provide functional information such as the target's metabolism.
目前磁共振图像主要用于补充CT图像以获得更准确的解剖结构轮廓和肿瘤靶向,所以需要将目标者的磁共振图像与对应的CT图像对准。由于磁共振图像和CT图像通常是在不同的机器上获取,因此磁共振图像和CT图像在重叠时不会完全对准;这是肿瘤靶向定位误差的一个重要来源。磁共振引导放射治疗计划利用磁共振图像而不需要CT图像,所以肿瘤靶向会更准确。由于磁共振强度值不能直接转换为电子密度,因此需要有方法将磁共振图像精确地转换为与电子密度值相对应的图像,即准CT图像,也称为pCT图像或衍生CT图像。At present, magnetic resonance images are mainly used to supplement CT images to obtain more accurate anatomical structure contours and tumor targeting, so it is necessary to align the magnetic resonance images of the target with the corresponding CT images. Since MR images and CT images are usually acquired on different machines, MR images and CT images are not perfectly aligned when they overlap; this is a significant source of tumor targeting errors. MR-guided radiation therapy planning utilizes MR images instead of CT images, so tumor targeting will be more accurate. Since magnetic resonance intensity values cannot be directly converted into electron density, methods are needed to accurately convert magnetic resonance images into images corresponding to electron density values, ie, quasi-CT images, also known as pCT images or derived CT images.
Edmund和Nyholm的期刊文章“A Review of Substitute CT Generation forMRI-only Radiation Therapy”,RadiatOncol 12:28(2017),doi:10.1186/s13014-016-0747-y,评论了创建pCT所采用的各种方法,包括地图集(atlas)方法和体素(voxel)方法。如Dowling等人的期刊文章“An Atlas-based Electron Density Mapping Method forMagnetic Resonance Imaging(MRI)-Alone Treatment Planning and Adaptive MRI-Based Prostate Radiation Therapy”,Int J RadiatOncolBiol Phys 83,5(2012),doi:10.1016/j.ijrobp.2011.11.056所述,地图集方法是利用作为参考的预先存在的地图集图像来帮助生成准CT图像。在生成准CT图像的过程中,地图集磁共振图像和地图集CT图像是从新的目标者磁共振图像生成准CT图像的参考。地图集磁共振图像需要与目标者的磁共振图像对准,并且将相同的对准变换应用于把同一位置的地图集CT图像融合成目标者准CT图像的过程中。然而,地图集图像的对准过程以及从地图集磁共振图像到目标者磁共振图像的对准过程都会存在一些误差。体素方法利用从磁共振图像强度值到CT值的转换方法来创建准CT图像,而不需要将目标者和训练者的磁共振图像进行对准。The journal article "A Review of Substitute CT Generation for MRI-only Radiation Therapy" by Edmund and Nyholm, RadiatOncol 12:28 (2017), doi:10.1186/s13014-016-0747-y, reviews the various approaches used to create pCT , including the atlas method and the voxel method. For example, the journal article "An Atlas-based Electron Density Mapping Method for Magnetic Resonance Imaging (MRI)-Alone Treatment Planning and Adaptive MRI-Based Prostate Radiation Therapy" by Dowling et al., Int J RadiatOncolBiol Phys 83,5 (2012), doi:10.1016 /j.ijrobp.2011.11.056, the atlas method utilizes pre-existing atlas images as references to help generate quasi-CT images. In the process of generating the quasi-CT image, the atlas MRI image and the atlas CT image are the reference for generating the quasi-CT image from the new subject MRI image. The atlas MR image needs to be aligned with the target's MR image, and the same alignment transformation is applied in the process of fusing the atlas CT image at the same location into the target's quasi-CT image. However, there are some errors in the alignment process of the atlas images and the alignment process from the atlas MR images to the target MR images. The voxel method utilizes a conversion method from magnetic resonance image intensity values to CT values to create quasi-CT images without the need to align the target and trainer magnetic resonance images.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是,提供一种利用多组磁共振图像的多变量回归生成准CT图像的方法。The technical problem to be solved by the present invention is to provide a method for generating quasi-CT images by using multivariate regression of multiple sets of magnetic resonance images.
本发明所采用的技术方案是:一种利用多组磁共振图像的多变量回归生成准CT图像的方法,包括如下步骤:The technical solution adopted in the present invention is: a method for generating quasi-CT images by using multivariate regression of multiple sets of magnetic resonance images, comprising the following steps:
1)从若干个训练者中分别获取多组磁共振图像(MRI)和相应的一组CT图像,每个训练者的不同排序组的磁共振图像是使用不同的磁共振参数获取;不同训练者的多组磁共振图像中位于同一排序组的磁共振图像是使用相同的磁共振参数获取;1) Obtain multiple sets of magnetic resonance images (MRI) and a corresponding set of CT images from several trainers, respectively. The MRI images of different sorted groups of each trainer are obtained using different MRI parameters; The magnetic resonance images in the same sorting group among the multiple groups of magnetic resonance images are acquired using the same magnetic resonance parameters;
2)将每个训练者的同一位置的每组磁共振图像中的每个图像与对应的CT图像对准;2) aligning each image in each group of magnetic resonance images at the same position of each trainer with the corresponding CT image;
3)生成从所有训练者的多组磁共振图像的强度值对应到相同体素CT值的映射函数;3) generating a mapping function corresponding to the CT value of the same voxel from the intensity values of the multiple groups of magnetic resonance images of all trainers;
4)从目标者的多组磁共振图像生成目标者准CT图像。4) Generating a quasi-CT image of the target person from multiple sets of magnetic resonance images of the target person.
当步骤1)中不同训练者位于同一排序组的磁共振图像是使用不同的扫描机器和/或不同的成像条件获取时,要对所述磁共振图像进行标准化,使所有训练者中位于同一排序组的磁共振图像的平均强度值相同。When the magnetic resonance images of different trainers in the same ranking group in step 1) are acquired using different scanning machines and/or different imaging conditions, the magnetic resonance images should be standardized so that all trainers are in the same ranking The mean intensity values of the magnetic resonance images of the groups were the same.
步骤3)包括:Step 3) includes:
(3.1)分别对每一个磁共振图像和CT图像划分人体轮廓;(3.1) Divide the outline of the human body for each magnetic resonance image and CT image respectively;
(3.2)对第一排序组的磁共振图像建立区域分割掩模;(3.2) establishing a region segmentation mask for the magnetic resonance images of the first sorting group;
(3.3)将得到的区域分割掩模用于同一位置第一排序组以外的其他排序组的磁共振图像以及CT图像上进行区域分割;(3.3) using the obtained region segmentation mask to perform region segmentation on magnetic resonance images and CT images of other sorting groups other than the first sorting group at the same position;
(3.4)从排除区以外的每个区域中的体素提取相应的磁共振图像强度值和CT值;(3.4) extracting the corresponding magnetic resonance image intensity value and CT value from the voxels in each area except the exclusion area;
(3.5)根据多组磁共振图像强度值和具有相同多组磁共振图像强度值的体素的平均CT值使用多变量回归方法确定每个区域的多元高次多项式的映射函数:(3.5) Using the multivariate regression method to determine the mapping function of the multivariate high-order polynomial of each region according to the multiple sets of magnetic resonance image intensity values and the average CT value of the voxels with the same multiple sets of magnetic resonance image intensity values:
其中N是多项式最高项次数,CT(S1,…,Sm)为映射函数是因变量,S1是第一组磁共振图像强度值,在映射函数中为自变量,Sm是第m组磁共振图像强度值,在映射函数中为自变量,i1是S1的指数,im是Sm的指数,是拟合系数。where N is the highest degree of polynomial term, CT(S 1 , . group MRI intensity values, which are independent variables in the mapping function, i1 is the index of S1, im is the index of Sm, is the fitting coefficient.
第(3.1)步所述的划分人体轮廓,是将图像中人体结构与周围空气分开。The division of the human body contour described in step (3.1) is to separate the human body structure in the image from the surrounding air.
第(3.2)步中,当第一排序组的磁共振图像中只有骨骼或软组织时,将所述的磁共振图像作为一个区域;当第一排序组的磁共振图像中同时具有骨骼和软组织时,将所述的磁共振图像分割为骨骼区域,软组织区域,以及混合组织区域,所述的混合组织区域是指骨骼和软组织之间的不确定部分,所述各区域的边界构成区域分割掩模。In step (3.2), when there are only bones or soft tissues in the magnetic resonance images of the first sorting group, the magnetic resonance images are regarded as a region; when the magnetic resonance images of the first sorting group have both bones and soft tissues , segment the magnetic resonance image into a bone region, a soft tissue region, and a mixed tissue region, where the mixed tissue region refers to the uncertain part between the bone and the soft tissue, and the boundaries of the regions constitute a region segmentation mask .
第(3.2)步中,将同一位置的多组磁共振图像和CT图像中因器官的日常活动或图像对准不充分而导致解剖结构对不齐的区域,以及人体轮廓以外的区域设定为排除区。In step (3.2), the areas where the anatomical structures are misaligned due to the daily activities of the organs or insufficient image alignment in the multiple sets of magnetic resonance images and CT images at the same location, and the areas outside the body contour are set as Exclusion zone.
步骤4)包括:Step 4) includes:
(4.1)使用与训练者同一排序组相同的磁共振参数获取目标者的各组磁共振图像;(4.1) Use the same magnetic resonance parameters as the trainer to obtain the magnetic resonance images of each group of the target person;
(4.2)将目标者同一位置的多组磁共振图像相互对准;(4.2) Align multiple sets of magnetic resonance images at the same position of the target with each other;
(4.3)当目标者的磁共振图像是使用与训练者不同的扫描机器和/或不同的成像条件获取时,要对目标者的磁共振图像进行标准化,使目标者与所有训练者相同位置的同一排序组的磁共振图像的平均强度值相同;(4.3) When the MR image of the target person is acquired using a different scanning machine and/or different imaging conditions than the trainer, the MRI image of the target person should be standardized so that the target person is in the same position as all trainers. The mean intensity values of the magnetic resonance images of the same sorting group are the same;
(4.4)采用步骤3)中第(3.2)、(3.3)步所述的区域分割方式对目标者第一排序组的磁共振图像进行区域分割以及建立区域分割掩模,并获取目标者同一位置第一排序组以外的其他排序组的磁共振图像的区域,其中,目标者的图像不设置排除区;(4.4) Use the region segmentation method described in steps (3.2) and (3.3) in step 3) to perform region segmentation on the magnetic resonance images of the first sorting group of the target person and establish a region segmentation mask, and obtain the same position of the target person Regions of magnetic resonance images of other sorting groups other than the first sorting group, wherein the image of the target person does not set an exclusion zone;
(4.5)对目标者磁共振图像中的体素提取多组磁共振图像强度值;(4.5) Extracting multiple sets of magnetic resonance image intensity values from the voxels in the target person's magnetic resonance image;
(4.6)将目标者每个体素的多组磁共振图像的强度值通过步骤3)第(3.5)步得到的相对应区域的映射函数,得到目标者相同体素的CT值;(4.6) Pass the intensity values of multiple groups of magnetic resonance images of each voxel of the target person through the mapping function of the corresponding area obtained in step 3) step (3.5) to obtain the CT value of the same voxel of the target person;
(4.7)将目标者所有体素的CT值的集合构成目标者的准CT图像。(4.7) The set of CT values of all voxels of the target person constitutes a quasi-CT image of the target person.
本发明的利用多组磁共振图像的多变量回归生成准CT图像的方法,使用多变量函数将目标者的多组磁共振图像对应成准CT图像。此方法的准确度与地图集方法现有的最好结果相似,但是比地图集方法更加方便和快速。本发明使用体素方法将目标者的磁共振图像直接转换为准CT图像。所以此方法不需要将训练者图像和目标者图像对齐,因而避免了地图集方法中对准过程引起的误差。本发明可用于磁共振引导放射治疗计划的模拟计算和医学成像。The method for generating quasi-CT images using multivariate regression of multiple sets of magnetic resonance images of the present invention uses a multivariate function to correspond multiple sets of magnetic resonance images of the target person into quasi-CT images. The accuracy of this method is similar to the best existing results of the atlas method, but it is more convenient and faster than the atlas method. The present invention uses the voxel method to directly convert the magnetic resonance image of the target person into a quasi-CT image. Therefore, this method does not need to align the trainer image with the target image, thus avoiding the error caused by the alignment process in the atlas method. The present invention can be used for analog computation and medical imaging of magnetic resonance guided radiation therapy planning.
附图说明Description of drawings
图1是利用训练者的多组磁共振图像和CT图像来确定回归模型的方法的示例性流程图;1 is an exemplary flowchart of a method for determining a regression model using sets of magnetic resonance images and CT images of a trainer;
图2是利用目标者的多组磁共振图像来生成准CT图像的示例性流程图。FIG. 2 is an exemplary flowchart of generating a quasi-CT image using sets of magnetic resonance images of a subject.
具体实施方式Detailed ways
下面结合实施例和附图对本发明的利用多组磁共振图像的多变量回归生成准CT图像的方法做出详细说明。The method for generating a quasi-CT image by using multivariate regression of multiple sets of magnetic resonance images of the present invention will be described in detail below with reference to the embodiments and the accompanying drawings.
在描述示例性实例时,所使用的附图和具体术语仅是为了清楚起见,并无限制此描述之目的。In describing the illustrative examples, the drawings and specific terminology are used for the purpose of clarity only and not for the purpose of limiting this description.
本发明的利用多组磁共振图像的多变量回归生成准CT图像的方法,包括如下步骤:The method for generating quasi-CT images using multivariate regression of multiple sets of magnetic resonance images of the present invention includes the following steps:
1)从若干个训练者中分别获取多组磁共振图像(MRI)和相应的一组CT图像,每个训练者的不同排序组的磁共振图像是使用不同的磁共振参数获取;不同训练者的多组磁共振图像中位于同一排序组的磁共振图像是使用相同的磁共振参数获取;1) Obtain multiple sets of magnetic resonance images (MRI) and a corresponding set of CT images from several trainers, respectively. The MRI images of different sorted groups of each trainer are obtained using different MRI parameters; The magnetic resonance images in the same sorting group among the multiple groups of magnetic resonance images are acquired using the same magnetic resonance parameters;
当不同训练者位于同一排序组的磁共振图像是使用不同的扫描机器和/或不同的成像条件获取时,要对所述磁共振图像进行标准化,使所有训练者中位于同一排序组的磁共振图像的平均强度值相同。标准化是为了确保所采集的磁共振图像强度值对于不同的训练者是自洽的。一种决定是否需要标准化的简单方法是对不同训练者的相同区域中体素的磁共振图像强度值做直方图进行比较;如果不同训练者的直方图显示相似的形状但非常不同的峰值和平均值,则需要标准化。在示例性标准化过程中,先找到每个训练者位于同一排序组的磁共振图像的平均强度值,然后确定每个训练者的校正因子来乘以相应训练者这一排序组的磁共振图像中体素的磁共振图像强度值,以便使得所有训练者这一排序组的磁共振图像的平均强度值一样。When the MRI images of different trainers in the same ranking group are acquired using different scanning machines and/or different imaging conditions, the MRI images are normalized so that the MR images of all trainers in the same ranking group The average intensity values of the images are the same. Normalization is to ensure that the acquired magnetic resonance image intensity values are self-consistent for different trainers. A simple way to decide whether normalization is needed is to compare histograms of MRI image intensity values for voxels in the same region across different trainers; if the histograms from different trainers show similar shapes but very different peak and mean values value, you need to standardize. In an exemplary normalization process, the average intensity value of each trainer's MRI images in the same rank group is found, and then a correction factor for each trainer is determined to be multiplied by the corresponding trainer's MRI image in the rank group of this rank group. Magnetic resonance image intensity values of voxels so that the mean intensity value of the magnetic resonance images of the sorted group of all trainees is the same.
2)将每个训练者的同一位置的每组磁共振图像中的每个图像与对应的CT图像对准。磁共振图像和CT图像通常是在不同的机器上获取,因此磁共振图像和CT图像在重叠时不会完全对齐。所以需要通过图像对准技术来对准每个训练者的磁共振图像和对应位置的CT图像,以争取让训练者磁共振图像和CT图像的每个体素彼此对应。2) Align each image in each set of magnetic resonance images at the same location of each trainer with the corresponding CT image. The MRI and CT images are usually acquired on different machines, so the MRI and CT images are not perfectly aligned when they overlap. Therefore, it is necessary to align the magnetic resonance image of each trainer and the CT image of the corresponding position through the image alignment technology, so as to make each voxel of the magnetic resonance image of the trainer and the CT image correspond to each other.
3)生成从所有训练者的多组磁共振图像的强度值对应到相同体素CT值的映射函数;包括:3) Generate a mapping function corresponding to the CT value of the same voxel from the intensity values of multiple sets of magnetic resonance images of all trainers; including:
(3.1)分别对每一个磁共振图像和CT图像划分人体轮廓;所述的划分人体轮廓,是将图像中人体结构与周围空气分开。(3.1) Divide the outline of the human body for each magnetic resonance image and CT image respectively; the dividing the outline of the human body is to separate the human body structure in the image from the surrounding air.
(3.2)对第一排序组的磁共振图像建立区域分割掩模;其中,(3.2) Establish a region segmentation mask for the magnetic resonance images of the first sorting group; wherein,
当第一排序组的磁共振图像中只有骨骼或软组织时,将所述的磁共振图像作为一个区域;当第一排序组的磁共振图像中同时具有骨骼和软组织时,将所述的磁共振图像分割为骨骼区域,软组织区域,以及混合组织区域,所述的混合组织区域是指骨骼和软组织之间的不确定部分,所述各区域的边界构成区域分割掩模;并将同一位置的多组磁共振图像和CT图像中因器官的日常活动或图像对准不充分而导致解剖结构对不齐的区域以及人体轮廓以外的区域设定为排除区。When there are only bones or soft tissues in the magnetic resonance images of the first sorting group, the magnetic resonance images are regarded as a region; when the magnetic resonance images of the first sorting group contain both bones and soft tissues, the magnetic resonance images The image is divided into bone area, soft tissue area, and mixed tissue area. The mixed tissue area refers to the uncertain part between bone and soft tissue, and the boundary of each area constitutes an area segmentation mask; Regions of misalignment of anatomical structures due to the daily activities of organs or inadequate image alignment in the MRI and CT images and regions outside the contours of the human body were set as exclusion zones.
(3.3)将得到的区域分割掩模用于同一位置第一排序组以外的其他排序组的磁共振图像以及CT图像上进行区域分割;(3.3) using the obtained region segmentation mask to perform region segmentation on magnetic resonance images and CT images of other sorting groups other than the first sorting group at the same position;
(3.4)从排除区以外的每个区域中的体素提取相应的磁共振图像强度值和CT值;(3.4) extracting the corresponding magnetic resonance image intensity value and CT value from the voxels in each area except the exclusion area;
(3.5)根据多组磁共振图像强度值和具有相同多组磁共振图像强度值的体素的平均CT值使用多变量回归方法确定每个区域的多元高次多项式的映射函数:(3.5) Using the multivariate regression method to determine the mapping function of the multivariate high-order polynomial of each region according to the multiple sets of magnetic resonance image intensity values and the average CT value of the voxels with the same multiple sets of magnetic resonance image intensity values:
其中N是多项式最高项次数,CT(S1,…,Sm)为映射函数是因变量,S1是第一组磁共振图像强度值,在映射函数中为自变量,Sm是第m组磁共振图像强度值,在映射函数中为自变量,i1是S1的指数,im是Sm的指数,是拟合系数。where N is the highest degree of polynomial term, CT(S 1 , . group MRI intensity values, which are independent variables in the mapping function, i1 is the index of S1, im is the index of Sm, is the fitting coefficient.
4)从目标者的多组磁共振图像生成目标者准CT图像。包括:4) Generating a quasi-CT image of the target person from multiple sets of magnetic resonance images of the target person. include:
(4.1)使用与训练者同一排序组相同的磁共振参数获取目标者的各组磁共振图像。在优选实例中,目标者和训练者的磁共振图像是由相同的磁共振扫描仪生成;在其他实例中,训练者和目标者的磁共振图像可以由不同的磁共振扫描仪生成。(4.1) Obtain each group of magnetic resonance images of the target person using the same magnetic resonance parameters as those of the trainer in the same ranking group. In a preferred example, the magnetic resonance images of the subject and the trainer are generated by the same magnetic resonance scanner; in other examples, the magnetic resonance images of the trainer and the target may be generated by different magnetic resonance scanners.
(4.2)将目标者同一位置的多组磁共振图像相互对准;(4.2) Align multiple sets of magnetic resonance images at the same position of the target with each other;
(4.3)当目标者的磁共振图像是使用与训练者不同的扫描机器和/或不同的成像条件获取时,要对目标者的磁共振图像进行标准化,使目标者与所有训练者相同位置的同一排序组的磁共振图像的平均强度值相同;(4.3) When the MR image of the target person is acquired using a different scanning machine and/or different imaging conditions than the trainer, the MRI image of the target person should be standardized so that the target person is in the same position as all trainers. The mean intensity values of the magnetic resonance images of the same sorting group are the same;
(4.4)采用步骤3)中第(3.2)、(3.3)步所述的区域分割方式对目标者第一排序组的磁共振图像进行区域分割以及建立区域分割掩模,并获取目标者同一位置第一排序组以外的其他排序组的磁共振图像的区域,其中,目标者的图像不设置排除区;(4.4) Use the region segmentation method described in steps (3.2) and (3.3) in step 3) to perform region segmentation on the magnetic resonance images of the first sorting group of the target person and establish a region segmentation mask, and obtain the same position of the target person Regions of magnetic resonance images of other sorting groups other than the first sorting group, wherein the image of the target person does not set an exclusion zone;
(4.5)对目标者磁共振图像中的体素提取多组磁共振图像强度值;(4.5) Extracting multiple sets of magnetic resonance image intensity values from the voxels in the target person's magnetic resonance image;
(4.6)将目标者每个体素的多组磁共振图像的强度值通过步骤3)第(3.5)步得到的相对应区域的映射函数,得到目标者相同体素的CT值;(4.6) Pass the intensity values of multiple groups of magnetic resonance images of each voxel of the target person through the mapping function of the corresponding area obtained in step 3) step (3.5) to obtain the CT value of the same voxel of the target person;
(4.7)将目标者所有体素的CT值的集合构成目标者的准CT图像。(4.7) The set of CT values of all voxels of the target person constitutes a quasi-CT image of the target person.
下面给出一具体实例:A specific example is given below:
图1是利用训练者的多组磁共振图像和CT图像来确定回归模型的方法的示例性流程图。1 is an exemplary flowchart of a method of determining a regression model using sets of magnetic resonance images and CT images of a trainer.
在步骤110,训练数据是使用相同的磁共振扫描仪从多个训练者获得的两组磁共振(称为MRI1组和MRI2组)图像以及用相同的CT扫描仪从这些训练者获得的相应部位的CT图像。不同训练者的多组磁共振图像中位于同一排序组的磁共振图像是使用相同的磁共振参数和成像条件获取。每个训练者的不同排序组的磁共振图像是使用不同的磁共振参数获取,比如使用具有不同对比度属性的磁共振图像序列参数(T1加权,T2加权)获取的。每个训练者的数据包括两组磁共振图像和一组对应的CT图像以用作基础事实。由于不同训练者位于同一排序组的磁共振图像是使用相同的磁共振参数和成像条件获取的,所以不需要对训练者的磁共振图像进行标准化。At step 110, the training data are two sets of magnetic resonance (referred to as MRI1 and MRI2 sets) images obtained from multiple trainers using the same MRI scanner and corresponding parts obtained from these trainers using the same CT scanner CT images. The MR images in the same ranking group among the multiple sets of MR images from different trainers were acquired using the same MR parameters and imaging conditions. The magnetic resonance images of the different ranking groups of each trainer are acquired using different magnetic resonance parameters, such as magnetic resonance image sequence parameters (T1-weighted, T2-weighted) with different contrast properties. The data for each trainer consisted of two sets of magnetic resonance images and a set of corresponding CT images to serve as ground truth. Since the magnetic resonance images of different trainers in the same ranking group were acquired using the same magnetic resonance parameters and imaging conditions, there was no need to normalize the magnetic resonance images of the trainers.
在步骤120,磁共振图像和CT图像通常是在不同的机器上获取,因此磁共振图像和CT图像在重叠时不会完全对齐。所以需要通过图像对准技术来对准每个训练者的磁共振图像和对应位置的CT图像,以争取让训练者磁共振图像和CT图像的每个体素彼此对应。At step 120, the magnetic resonance image and the CT image are usually acquired on different machines, so the magnetic resonance image and the CT image will not be perfectly aligned when overlapping. Therefore, it is necessary to align the magnetic resonance image of each trainer and the CT image of the corresponding position through the image alignment technology, so as to make each voxel of the magnetic resonance image of the trainer and the CT image correspond to each other.
在步骤130,首先分别对每一个磁共振图像和CT图像划分人体轮廓,将图像中人体结构与周围空气分开,然后为每个图像进行区域分割。先为第一排序组的磁共振图像进行区域分割。当第一排序组的磁共振图像中只有骨骼或软组织时,将所述的磁共振图像作为一个区域;当第一排序组的磁共振图像中同时具有骨骼和软组织时,将所述的磁共振图像分割为骨骼区域,软组织区域,以及混合组织三个区域。骨骼区域仅包含确定的骨骼解剖结构,包括皮质和海绵状(松质骨)骨骼结构。软组织区域仅包括所有确定的非骨骼解剖结构。在骨骼区域和软组织区域接触的区域(即不确定区域)之间保留的剩余区域为混合组织区域。另外,将同一位置的多组磁共振图像和CT图像中因器官的日常活动或图像对准不充分而导致解剖结构对不齐的区域,以及人体轮廓以外的区域设定为排除区。区域分割可以手动或利用计算机生成的训练者轮廓完成。所述的第一排序组的磁共振图像中各区域的边界构成区域分割掩模;然后将得到的区域分割掩模用于同一位置第一排序组以外的其他排序组的磁共振图像以及CT图像上进行区域分割。In step 130, firstly, the outline of the human body is divided for each magnetic resonance image and the CT image, the human body structure in the image is separated from the surrounding air, and then the region is segmented for each image. Region segmentation is first performed for the magnetic resonance images of the first sorted group. When there are only bones or soft tissues in the magnetic resonance images of the first sorting group, the magnetic resonance images are regarded as a region; when the magnetic resonance images of the first sorting group contain both bones and soft tissues, the magnetic resonance images The image is segmented into three regions: bone region, soft tissue region, and mixed tissue region. The skeletal region contains only defined skeletal anatomy, including cortical and spongy (cancellous) skeletal structures. Soft tissue areas only include all defined non-skeletal anatomical structures. The remaining area remaining between the area where the bone area and the soft tissue area are in contact (ie, the indeterminate area) is the mixed tissue area. In addition, in the multiple sets of magnetic resonance images and CT images at the same location, the areas where the anatomical structures are misaligned due to the daily activities of organs or insufficient image alignment, and the areas outside the outline of the human body are set as exclusion zones. Region segmentation can be done manually or using computer-generated trainer profiles. The boundary of each region in the magnetic resonance image of the first sorting group constitutes a region segmentation mask; then the obtained region segmentation mask is used for the magnetic resonance images and CT images of other sorting groups other than the first sorting group at the same position Region segmentation is performed.
在步骤140,从训练数据的每个图像提取体素的磁共振图像强度值和CT值。每个体素的数据是由来自MRI1组的磁共振图像强度值,来自MRI2组的磁共振图像强度值,和对应的CT值组成的三元组。从每个训练者给定区域的体素提取的数据集合在一起;但排除区中的体素被排除在所述数值提取之外,以便保证磁共振图像强度值和CT值之间的真实关联。At step 140, magnetic resonance image intensity values and CT values of the voxels are extracted from each image of the training data. The data for each voxel is a triplet consisting of the magnetic resonance image intensity value from the MRI1 group, the magnetic resonance image intensity value from the MRI2 group, and the corresponding CT value. Data extracted from voxels in a given region of each trainer are grouped together; however, voxels in exclusion zones are excluded from the numerical extraction in order to ensure a true correlation between MRI image intensity values and CT values .
步骤150对每个区域进行多变量回归,即用两组磁共振图像强度值的函数来拟合相对应的平均CT值(即训练数据同一区域的体素在该两组磁共振图像强度值区间内的平均值)。此示例中的多变量回归使用以下二元高次多项式的映射函数:Step 150 performs multivariate regression on each region, that is, uses the function of the two groups of magnetic resonance image intensity values to fit the corresponding average CT value (that is, the voxels in the same region of the training data are in the two groups of magnetic resonance image intensity value intervals. average value within). The multivariate regression in this example uses the following mapping function for a bivariate high-degree polynomial:
其中多项式最高项次数N=30,CT(S1,S2)为映射函数是因变量,MRI1组磁共振图像强度值S1和MRI2组磁共振图像强度值S2是自变量,是拟合系数。Among them, the highest polynomial term is N=30, CT(S 1 , S 2 ) is the mapping function and is the dependent variable, and the magnetic resonance image intensity value S 1 of the MRI1 group and the magnetic resonance image intensity value S 2 of the MRI2 group are the independent variables. is the fitting coefficient.
图2是利用目标者的多组磁共振图像来生成准CT图像的示例性流程图。FIG. 2 is an exemplary flowchart of generating a quasi-CT image using sets of magnetic resonance images of a subject.
在步骤210,使用与训练者相同型号的磁共振扫描仪并使用与训练者同一排序组相同的磁共振参数和成像条件获取目标者的两组磁共振图像(MRI1组和MRI2组)。由于目标者的磁共振图像是使用与训练者相同型号的磁共振扫描仪和成像条件获得的,所以不需要对目标者的磁共振图像进行标准化。At step 210, two sets of magnetic resonance images (MRI1 group and MRI2 group) of the target are acquired using the same type of magnetic resonance scanner as the trainer and using the same magnetic resonance parameters and imaging conditions as the trainer's same ranking group. Since the MR images of the target were acquired using the same model of MR scanner and imaging conditions as the trainer, normalization of the MR images of the target was not required.
在步骤220,将目标者的同一位置的两组磁共振图像中相互对准。In step 220, the two sets of magnetic resonance images of the same position of the target are aligned with each other.
在步骤230,采用步骤130所述的区域分割方式对目标者第一排序组的磁共振图像进行区域分割以及建立区域分割掩模,并获取目标者同一位置第二排序组的磁共振图像的区域;目标者的图像不设置排除区。In step 230, the region segmentation method described in step 130 is used to perform region segmentation on the magnetic resonance images of the first sorted group of the target person and establish a region segmentation mask, and acquire the region of the magnetic resonance image of the second sorted group of the target person at the same position ; The image of the target does not set an exclusion zone.
在步骤240,提取目标者每个体素的磁共振图像强度值,即来自MRI1组的磁共振图像强度值和来自MRI2组的磁共振图像强度值。In step 240, the magnetic resonance image intensity value of each voxel of the target person is extracted, that is, the magnetic resonance image intensity value from the MRI1 group and the magnetic resonance image intensity value from the MRI2 group.
在步骤250,将在步骤150中确定的每个区域的多变量函数应用于目标者的对应区域。先使用目标者的每个体素的两组磁共振图像强度值作为自变量,然后利用在步骤150中确定的这个体素所在区域的二元高次多项式来获得因变量作为此体素的CT值。In step 250, the multivariate function for each region determined in step 150 is applied to the corresponding region of the target person. First use the two sets of magnetic resonance image intensity values of each voxel of the target as an independent variable, and then use the binary high-order polynomial of the region where the voxel is determined in step 150 to obtain the dependent variable as the CT value of this voxel .
在步骤260,目标者的每个体素所对应的准CT值的全部即构成了准CT图像。该图像可用于目标者磁共振引导放射治疗计划的模拟计算和医学成像。In step 260, all the quasi-CT values corresponding to each voxel of the target constitute a quasi-CT image. This image can be used for simulation calculations and medical imaging for MRI-guided radiation therapy planning of the target.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910087064.2A CN109785405A (en) | 2019-01-29 | 2019-01-29 | A method for generating quasi-CT images using multivariate regression of multiple sets of magnetic resonance images |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910087064.2A CN109785405A (en) | 2019-01-29 | 2019-01-29 | A method for generating quasi-CT images using multivariate regression of multiple sets of magnetic resonance images |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109785405A true CN109785405A (en) | 2019-05-21 |
Family
ID=66503634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910087064.2A Withdrawn CN109785405A (en) | 2019-01-29 | 2019-01-29 | A method for generating quasi-CT images using multivariate regression of multiple sets of magnetic resonance images |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109785405A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104794739A (en) * | 2015-05-03 | 2015-07-22 | 南方医科大学 | Method for predicting CT (computerized tomography) image from MR (magnetic resonance) image on the basis of combination of corresponding partial sparse points |
CN108351395A (en) * | 2015-10-27 | 2018-07-31 | 皇家飞利浦有限公司 | Virtual CT images from magnetic resonance image |
CN108770373A (en) * | 2015-10-13 | 2018-11-06 | 医科达有限公司 | It is generated according to the pseudo- CT of MR data using feature regression model |
CN108778416A (en) * | 2015-10-13 | 2018-11-09 | 医科达有限公司 | It is generated according to the pseudo- CT of MR data using organizational parameter estimation |
CN109272486A (en) * | 2018-08-14 | 2019-01-25 | 中国科学院深圳先进技术研究院 | Training method, device, device and storage medium for MR image prediction model |
-
2019
- 2019-01-29 CN CN201910087064.2A patent/CN109785405A/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104794739A (en) * | 2015-05-03 | 2015-07-22 | 南方医科大学 | Method for predicting CT (computerized tomography) image from MR (magnetic resonance) image on the basis of combination of corresponding partial sparse points |
CN108770373A (en) * | 2015-10-13 | 2018-11-06 | 医科达有限公司 | It is generated according to the pseudo- CT of MR data using feature regression model |
CN108778416A (en) * | 2015-10-13 | 2018-11-09 | 医科达有限公司 | It is generated according to the pseudo- CT of MR data using organizational parameter estimation |
CN108351395A (en) * | 2015-10-27 | 2018-07-31 | 皇家飞利浦有限公司 | Virtual CT images from magnetic resonance image |
CN109272486A (en) * | 2018-08-14 | 2019-01-25 | 中国科学院深圳先进技术研究院 | Training method, device, device and storage medium for MR image prediction model |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Spadea et al. | Deep convolution neural network (DCNN) multiplane approach to synthetic CT generation from MR images—application in brain proton therapy | |
Dinkla et al. | Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch‐based three‐dimensional convolutional neural network | |
Arabi et al. | Comparative study of algorithms for synthetic CT generation from MRI: consequences for MRI‐guided radiation planning in the pelvic region | |
Liu et al. | MRI-based treatment planning for liver stereotactic body radiotherapy: validation of a deep learning-based synthetic CT generation method | |
Johnstone et al. | Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging–only radiation therapy | |
US11234654B2 (en) | Pseudo-CT generation from MR data using a feature regression model | |
US11455732B2 (en) | Knowledge-based automatic image segmentation | |
US10149987B2 (en) | Method and system for generating synthetic electron density information for dose calculations based on MRI | |
US8787648B2 (en) | CT surrogate by auto-segmentation of magnetic resonance images | |
Bezrukov et al. | MR-based PET attenuation correction for PET/MR imaging | |
EP3268931B1 (en) | Method and apparatus for assessing image registration | |
Kang et al. | Synthetic CT generation from weakly paired MR images using cycle-consistent GAN for MR-guided radiotherapy | |
US9727975B2 (en) | Knowledge-based automatic image segmentation | |
Vaassen et al. | Real-world analysis of manual editing of deep learning contouring in the thorax region | |
Riegel et al. | Deformable image registration and interobserver variation in contour propagation for radiation therapy planning | |
Chen et al. | Combining registration and active shape models for the automatic segmentation of the lymph node regions in head and neck CT images | |
Geraghty et al. | Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial | |
US10453224B1 (en) | Pseudo-CT generation with multi-variable regression of multiple MRI scans | |
Martin et al. | A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI | |
Dossun et al. | Evaluation of DIR algorithm performance in real patients for radiotherapy treatments: A systematic review of operator-dependent strategies | |
Wynne et al. | Rapid unpaired CBCT‐based synthetic CT for CBCT‐guided adaptive radiotherapy | |
CN109785405A (en) | A method for generating quasi-CT images using multivariate regression of multiple sets of magnetic resonance images | |
Opposits et al. | Population based ranking of frameless CT-MRI registration methods | |
Dowling et al. | MR-only methodology | |
Chen et al. | Evaluation of multi atlas-based approaches for the segmentation of the thyroid gland in IMRT head-and-neck CT images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20190521 |