CN109780988A - 多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器及设计方法 - Google Patents

多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器及设计方法 Download PDF

Info

Publication number
CN109780988A
CN109780988A CN201910008243.2A CN201910008243A CN109780988A CN 109780988 A CN109780988 A CN 109780988A CN 201910008243 A CN201910008243 A CN 201910008243A CN 109780988 A CN109780988 A CN 109780988A
Authority
CN
China
Prior art keywords
strain
cantilever
multiplier
machine
star
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910008243.2A
Other languages
English (en)
Other versions
CN109780988B (zh
Inventor
霍军周
张伟
张占葛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910008243.2A priority Critical patent/CN109780988B/zh
Publication of CN109780988A publication Critical patent/CN109780988A/zh
Application granted granted Critical
Publication of CN109780988B publication Critical patent/CN109780988B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供了一种多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器及设计方法,能够搭配疲劳寿命计实现机械零部件的剩余寿命预测,属于机械零部件疲劳寿命预测技术领域。通过布置在机械零件表面的星型悬臂式应变倍增器每个悬臂固定约束端获取机械零部件表面的多轴加载情况,通过星型悬臂式倍增器各个弹性体实现对该方向上的机械零部件表面应变高倍率的放大,从而保证搭配的疲劳寿命片能够有效的应变幅值范围内工作,准确地对机械结构的剩余疲劳寿命进行预测,确保机械零部件安全可靠地工作。

Description

多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增 器及设计方法
技术领域
本发明涉及一种机械零部件表面应变实时放大方法,具体涉及一种多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器及设计方法,能够搭配疲劳寿命计实现机械零部件的剩余寿命预测,属于机械零部件疲劳寿命预测技术领域。
背景技术
疲劳寿命片是一种具有电阻累积功能的特殊应变片,能够通过电阻的累积值反映机械结构的循环加载历程,从而实现构件的剩余疲劳寿命预测,但目前疲劳寿命片由于其存在很高的应变门槛值,在应变幅值较低时无法正常工作,需要搭配应变倍增器将机械结构待测部位的应变进行机械地放大后进行工作。但目前国内外关于应变倍增器的研究大多局限于单轴放大,对于受多轴复杂应力的机械零件无法使用。另外,目前国内外关于应变倍增器的研究大多采用应力集中的方式,只适合结构表面应变的低倍率放大,在需要高倍率应变放大的场所难以应用。
基于以上情况,本发明提出了一种星型悬臂式应变倍增器,基于应变转移的技术进行机械结构表面的应变倍增,可以实现应变的高倍率放大;同时能够将多轴载荷下机械零件表面各个方向的应变进行实时放大,解决疲劳寿命计无法对承受多轴应力的机械零件剩余疲劳寿命监测的问题,提高了疲劳寿命计的应用范围,确保机械设备安全可靠地运行;机械零部件在多轴加载下,关键部位的应变情况复杂,若将某一位置处沿各个方向的应变同比例放大,会对疲劳寿命计产生较大的横向效应,严重影响测量精度,本发明提出的悬臂式倍增器选用单轴放大、多轴复合的方法进行多轴应变的倍增,可以很好地解决目前疲劳寿命计或应变片的横向效应问题,提高测量精度。
发明内容
本发明的目的在于提供一种多轴加载条件下机械结构表面应变实时高倍率放大方法,利用星型悬臂式应变倍增器的安装脚承受机械结构表面的应力,通过星型悬臂式倍增器每个悬臂分支的悬臂端与中心连接体之间的橡胶体对该方向上的机械零部件表面应变进行高倍率的放大,从而保证疲劳寿命片在有效的应变幅值范围内工作,准确地对机械结构的剩余疲劳寿命进行预测,确保机械零部件安全可靠地工作。
本发明的技术方案:
一种多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器,包括弹簧A、悬臂B、中心连接块C及橡胶体D;
所述的悬臂B固定约束端设有一体结构的联接板E,自由端设有悬臂安装脚F和螺栓孔M;
所述的中心连接块C与悬臂B之间连接有弹簧A和橡胶体D,橡胶体D位于两弹簧A之间,确保橡胶体D与中心连接块C的接触面相互垂直;
所述的橡胶体D的连接处粘贴有应变片P。
一种多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器的设计方法,星型悬臂式应变倍增器S通过单轴应变提取、应变转移的原理对机械零部件表面沿各个方向的应变进行等比例放大,在被测机械零部件G表面安装星型悬臂式应变倍增器S,利用每个悬臂B的安装脚F承受被测机械零部件G表面应力,通过悬臂B的拉伸与压缩将悬臂B长度内被测机械零部件G表面应变等效到橡胶体D上,从而实现被测机械零部件G表面每个方向上应变的放大。星型悬臂式应变倍增器S整体结构(如图1)。
从总体来看,星型悬臂式应变倍增器S包括三部分:将被测机械零部件G表面应力进行传递的悬臂B;将各个悬臂B进行连接的中心连接块C;将被测机械零部件G表面应变反映为一定倍数应变的橡胶体D;星型悬臂式应变倍增器S具体的设计方法如下:
(Ⅰ)构建悬臂倍增器倍率设计模型
根据被测机械零部件G表面环境,悬臂B通过胶水粘贴方式或螺栓联接方式安装在被测机械零部件G表面,在悬臂安装脚F处设计螺栓孔M;悬臂B的固定约束端设计有一体结构的联接板E,用于悬臂B与弹簧A的联接,悬臂B设计模型(如图2)。
(Ⅱ)建立悬臂倍增器倍率设计模型
1)单轴加载情况下,被测机械零部件G表面应变实时放大,悬臂B数目m=1,橡胶体D顶面上产生的应变为一定倍率下,单条悬臂B覆盖的被测机械零部件G沿悬臂B长度方向的平均应变,单条悬臂倍增器倍率设计模型(如图3)。设计公式如下:
其中:n—单条悬臂时倍增器对应变的放大倍率;
l1—安装角距离弹簧的长度;
l2—弹簧和橡胶体的原长;
Kt—弹簧刚度;
Kx—橡胶体刚度;
Eg—悬臂材料弹性模量;
A—悬臂截面面积;
2)多轴加载情况下,被测机械零部件G表面应变实时放大,为使星型悬臂式应变倍增器能够对被测机械零部件G表面更多方向的应变进行实时放大,设计悬臂数目大于2,且悬臂数目为奇数;多条悬臂倍增器倍率设计模型(如图4)。其对被测机械零部件G表面每个方向上应变的放大倍率公式如下:
其中:n—多条悬臂时倍增器每条分支对应变的放大倍率;
l1—安装角距离弹簧的长度;
l2—弹簧和橡胶体的原长;
Kt—弹簧刚度;
Kx—橡胶体刚度;
Eg—悬臂材料弹性模量;
A—橡胶体截面面积;
模型说明:当被测机械零部件G表面应变较复杂时,星型悬臂式应变倍增器S的悬臂B数目尽可能选多。
本发明的有益效果:针对目前疲劳寿命计无法在低应变幅值范围内有效工作情况提出了一种星型悬臂式应变倍增器设计方法,解决了当前国内外应变倍增器无法对机械零件表面多轴应变进行等比例放大问题,拓宽了疲劳寿命计的应用领域;同时提出的星型悬臂式应变倍增器可以对零件表面应变进行高倍率放大,解决了疲劳寿命计在小应变机械零件上的应用问题,使疲劳寿命计能够准确的进行机械零部件剩余疲劳寿命监测,确保机械设备安全可靠工作。另外,本发明提出的星型悬臂式应变倍增器通过单轴放大、多轴复合的方法进行多轴应变独立放大,可以很好地解决目前疲劳寿命计或应变片的横向效应问题,提高其测量精度。
附图说明
图1是星型悬臂式应变倍增器整体结构模型。
图2是悬臂分支模型剖面图。
图3是单条悬臂分支倍增器倍率设计模型。
图4是多条悬臂分支情况倍增器倍率设计模型。
图5是星型悬臂式应变倍增器具体工作示意图。
图中:A弹簧;B悬臂;C中心连接块;D橡胶体;E联接板;H悬臂拉伸梁;M螺栓孔;F悬臂安装脚;P应变片;S星型悬臂式应变倍增器;T紧固螺栓;G被测机械零部件。
具体实施方式
下面结合附图及技术方案,详细说明本发明的具体实施方式。
图5为星型悬臂式应变倍增器具体工作示意图。星型悬臂式应变倍增器S通过紧固螺栓T安装在被测机械零部件G表面,利用每个悬臂B的安装脚F承受被测机械零部件G表面应力,通过悬臂B的拉伸与压缩将悬臂B长度内被测机械零部件G表面应变等效到橡胶体D上,从而实现被测机械零部件G表面每个方向上应变的放大。
(Ⅰ)悬臂分支模型
根据被测机械零部件G表面环境,悬臂B通过胶水粘贴方式或螺栓联接方式安装在被测机械零部件G表面,在悬臂安装脚F处设计螺栓孔M;悬臂B的固定约束端设计有一体结构的联接板E,用于悬臂B与弹簧A的联接,悬臂B设计模型(如图2)。
模型说明:当机械零部件G表面环境较好且表面不平度较低时,选择胶水安装形式将悬臂B安装在机械零部件表面,当被测机械零部件G表面环境较差不适合胶水粘贴时选用螺栓联接方式对悬臂B进行安装。
(Ⅱ)倍率设计模型
1)针对单轴加载情况下的机械零部件G表面应变实时放大,设计悬臂B数目m=1,弹性体D顶面上产生的应变为一定倍率下,单条悬臂B覆盖的被测机械零部件G沿悬臂B长度方向的平均应变,单条悬臂分支倍增器倍率设计模型(如图3)。倍率设计公式如下:
其中:n—单条悬臂分支时倍增器对应变的放大倍率;
l1—安装角距离弹簧的长度;
l2—弹簧和橡胶体的原长;
Kt—弹簧刚度;
Kx—橡胶体刚度;
Eg—悬臂材料弹性模量;
A—悬臂截面面积;
2)针对多轴加载情况下,被测机械零部件G表面应变实时放大,为使星型悬臂式应变倍增器S能够对被测机械零部件G表面更多方向的应变进行实时放大,设计悬臂B数目大于2,且悬臂数目为奇数;多条悬臂倍增器倍率设计模型(如图4)。其对被测机械零部件G表面每个方向上应变的放大倍率公式如下:
其中:n—多条悬臂分支时倍增器每条分支对应变的放大倍率;
l1—安装角距离弹簧的长度;
l2—弹簧和橡胶体的原长;
Kt—弹簧刚度;
Kx—橡胶体刚度;
Eg—悬臂材料弹性模量;
A—悬臂分支截面面积;
模型说明:
(1)由于星型悬臂式应变倍增器S需要长时间承受交变载荷,在材料选择时悬臂B与中心连接体C采用合金钢材料。
(2)在结构及环境允许情况下,适当增加悬臂B数目可以有效提高粘贴在橡胶体D上面的疲劳寿命计(应变片)P的测量精度。
(3)由于星型悬臂式应变倍增器S实际安装的被测机械零件G表面结构及环境可能复杂多变,在进行表面应变放大时星型悬臂式应变倍增器S倍率在合理的范围内可能存在一定的误差。
(4)由于星型悬臂式应变倍增器S的橡胶体D反映的是悬臂B长度范围的平均应变,在进行倍率设计时需要考虑星型悬臂式应变倍增器S安装位置的应力梯度,在疲劳寿命计(应变片)P工作需要的应变幅值区间内,尽量使悬臂B长度较小,提高测量精度。

Claims (3)

1.一种多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器,其特征在于,所述的星型悬臂式应变倍增器(S)包括弹簧(A)、悬臂(B)、中心连接块(C)及橡胶体(D);
所述的悬臂(B)固定约束端设有一体结构的联接板E,自由端设有悬臂安装脚F和螺栓孔M;
所述的中心连接块(C)与悬臂(B)之间连接有弹簧(A)和橡胶体(D),橡胶体(D)位于两弹簧(A)之间,确保橡胶体(D)与中心连接块(C)的接触面相互垂直;
所述的橡胶体(D)的连接处粘贴有应变片(P)。
2.一种多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器的设计方法,其特征在于,步骤如下:
星型悬臂式应变倍增器(S)包括三部分:将被测机械零部件(G)表面应力进行传递的悬臂(B);将各个悬臂(B)进行连接的中心连接块(C);将被测机械零部件(G)表面应变反映为一定倍数应变的橡胶体(D);星型悬臂式应变倍增器(S)具体的设计方法如下:
(Ⅰ)构建悬臂倍增器倍率设计模型
根据被测机械零部件(G)表面环境,悬臂(B)通过择胶水粘贴方式或螺栓联接方式安装在被测机械零部件(G)表面,在悬臂安装脚F处设计螺栓孔M;悬臂(B)的固定约束端设计有一体结构的联接板E,用于悬臂(B)与弹簧(A)的联接;
(Ⅱ)建立悬臂倍增器倍率设计模型
1)单轴加载情况下,被测机械零部件(G)表面应变实时放大,悬臂(B)数目m=1,橡胶体(D)顶面上产生的应变为一定倍率下,单条悬臂(B)覆盖的被测机械零部件(G)沿悬臂(B)长度方向的平均应变,单条悬臂倍增器倍率设计模型设计如下:
其中:n—单条悬臂时倍增器对应变的放大倍率;
l1—安装角距离弹簧的长度;
l2—弹簧和橡胶体的原长;
Kt—弹簧刚度;
Kx—橡胶体刚度;
Eg—悬臂材料弹性模量;
A—悬臂截面面积;
2)多轴加载情况下,被测机械零部件(G)表面应变实时放大,为使星型悬臂式应变倍增器能够对被测机械零部件(G)表面更多方向的应变进行实时放大,设计悬臂数目大于2,且悬臂数目为奇数;多条悬臂倍增器倍率设计模型,其对被测机械零部件(G)表面每个方向上应变的放大倍率公式如下:
其中:n—多条悬臂时倍增器每条分支对应变的放大倍率;
l1—安装脚距离弹簧的长度;
l2—弹簧和橡胶体的原长;
Kt—弹簧刚度;
Kx—橡胶体刚度;
Eg—悬臂材料弹性模量;
A—橡胶体截面面积。
3.根据权利要求1所述的设计方法,其特征在于,当被测机械零部件(G)表面应变较复杂时,星型悬臂式应变倍增器(S)的悬臂(B)数目尽可能选多。
CN201910008243.2A 2019-01-04 2019-01-04 多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器及设计方法 Active CN109780988B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910008243.2A CN109780988B (zh) 2019-01-04 2019-01-04 多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器及设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910008243.2A CN109780988B (zh) 2019-01-04 2019-01-04 多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器及设计方法

Publications (2)

Publication Number Publication Date
CN109780988A true CN109780988A (zh) 2019-05-21
CN109780988B CN109780988B (zh) 2020-04-28

Family

ID=66499900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910008243.2A Active CN109780988B (zh) 2019-01-04 2019-01-04 多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器及设计方法

Country Status (1)

Country Link
CN (1) CN109780988B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426461A (zh) * 2020-04-14 2020-07-17 大连理工大学 机械零部件关键部位剩余疲劳寿命智能监测传感系统及设计方法
CN111551456A (zh) * 2020-04-14 2020-08-18 大连理工大学 一种多轴载荷下机械零部件局部剩余疲劳寿命监测传感器及设计方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005611A (ja) * 2000-06-22 2002-01-09 Akira Sugano 歪み検知装置及び歪み検知システム
US20020050174A1 (en) * 2000-08-29 2002-05-02 Antonio Valdevit Displacement transducer
CN1544900A (zh) * 2003-11-17 2004-11-10 南京航空航天大学 三维微载荷测力阵列系统
CN102252595A (zh) * 2011-04-14 2011-11-23 中国神华能源股份有限公司 应变倍增器
CN203148625U (zh) * 2013-04-15 2013-08-21 中国人民解放军空军第一航空学院 一种用于大应变传感器标定的装置
CN203744916U (zh) * 2014-01-25 2014-07-30 重庆大唐科技股份有限公司 测量结构挠度的应变式传感器
CN203744917U (zh) * 2014-01-25 2014-07-30 重庆大唐科技股份有限公司 用于测量结构挠度的应变式传感器
CN104019759A (zh) * 2014-06-17 2014-09-03 中国航空工业集团公司北京长城计量测试技术研究所 一种基于光纤光栅的超大应变传感器
CN204405306U (zh) * 2015-01-09 2015-06-17 南京中盛铁路车辆配件有限公司 疲劳寿命计标定装置
CN105806210A (zh) * 2016-05-23 2016-07-27 广西交通科学研究院 高分辨率应变测试方法
CN106767486A (zh) * 2017-02-28 2017-05-31 武汉理工大学 一种光纤光栅二维应变增敏传感器及其封装方法
CN206208190U (zh) * 2016-11-25 2017-05-31 中机生产力促进中心 一种应变测量装置
CN207163396U (zh) * 2017-09-18 2018-03-30 山东科技大学 钻孔截面变形多点同步测试装置
CN108827521A (zh) * 2017-04-26 2018-11-16 三美电机株式会社 力传感器装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005611A (ja) * 2000-06-22 2002-01-09 Akira Sugano 歪み検知装置及び歪み検知システム
US20020050174A1 (en) * 2000-08-29 2002-05-02 Antonio Valdevit Displacement transducer
CN1544900A (zh) * 2003-11-17 2004-11-10 南京航空航天大学 三维微载荷测力阵列系统
CN102252595A (zh) * 2011-04-14 2011-11-23 中国神华能源股份有限公司 应变倍增器
CN203148625U (zh) * 2013-04-15 2013-08-21 中国人民解放军空军第一航空学院 一种用于大应变传感器标定的装置
CN203744917U (zh) * 2014-01-25 2014-07-30 重庆大唐科技股份有限公司 用于测量结构挠度的应变式传感器
CN203744916U (zh) * 2014-01-25 2014-07-30 重庆大唐科技股份有限公司 测量结构挠度的应变式传感器
CN104019759A (zh) * 2014-06-17 2014-09-03 中国航空工业集团公司北京长城计量测试技术研究所 一种基于光纤光栅的超大应变传感器
CN204405306U (zh) * 2015-01-09 2015-06-17 南京中盛铁路车辆配件有限公司 疲劳寿命计标定装置
CN105806210A (zh) * 2016-05-23 2016-07-27 广西交通科学研究院 高分辨率应变测试方法
CN206208190U (zh) * 2016-11-25 2017-05-31 中机生产力促进中心 一种应变测量装置
CN106767486A (zh) * 2017-02-28 2017-05-31 武汉理工大学 一种光纤光栅二维应变增敏传感器及其封装方法
CN108827521A (zh) * 2017-04-26 2018-11-16 三美电机株式会社 力传感器装置
CN207163396U (zh) * 2017-09-18 2018-03-30 山东科技大学 钻孔截面变形多点同步测试装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
胡明敏等: "应变倍增器研制及应用", 《实验力学》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426461A (zh) * 2020-04-14 2020-07-17 大连理工大学 机械零部件关键部位剩余疲劳寿命智能监测传感系统及设计方法
CN111551456A (zh) * 2020-04-14 2020-08-18 大连理工大学 一种多轴载荷下机械零部件局部剩余疲劳寿命监测传感器及设计方法
CN111551456B (zh) * 2020-04-14 2021-06-08 大连理工大学 多轴载荷下机械零部件疲劳寿命监测传感器及设计方法

Also Published As

Publication number Publication date
CN109780988B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN104792611B (zh) 混凝土受压破坏应力‑应变全曲线测试装置
CN102914427B (zh) 一种多轴随机载荷下疲劳损伤评估方法
CN104344993B (zh) 一种构件承载力和材料性能参数的试验测量方法
CN109780988A (zh) 多轴加载机械零件表面应变实时放大的星型悬臂式应变倍增器及设计方法
CN107843422B (zh) 一种可施加轴向预张力的疲劳试验装置及方法
CN103776767A (zh) 一种便携式钢筋与砼粘结性能的拉拔式测试装置与方法
CN103837279A (zh) 基于单自由度系统预应力锚固结构张拉力的检测系统
CN107643218B (zh) 一种井口连接器大载荷拉压弯测试实验装置及实验方法
CN105806203B (zh) 一种三维相对位移传感器
CN106289622A (zh) 一种测量高强螺栓连接副扭矩系数的装置及方法
CN108534927A (zh) 一种建筑结构、施工临时结构及建筑施工设备整体牢固性的监测方法
CN105954101A (zh) 一种混凝土电杆移动式试验平台
CN203908754U (zh) 一种用于模拟沉管隧道柔性接头的构件
CN101762423B (zh) 预应力锚索锚具试验台
CN101701882B (zh) 塔式结构刚度的快速识别方法
Li et al. Damage detection of flange bolts in wind turbine towers using dynamic strain responses
CN111412951B (zh) 冲击载荷下机械零件振动疲劳载荷实时监测传感器及设计方法
CN105355015B (zh) 一种基于无线传输的接触式无损伤钢拉杆应力监测方法
CN111551456B (zh) 多轴载荷下机械零部件疲劳寿命监测传感器及设计方法
CN203965078U (zh) 一种高强螺栓预紧力测量装置
CN205642774U (zh) 钻机井架及底座系统的振动试验模拟装置
CN204142578U (zh) 一种用于三轴试验的被动式约束加载装置
CN204373997U (zh) 一种橡胶材料剪切替代实验专用夹具
CN103645133A (zh) 一种测定钢筋与砼粘结性能的液压固定装置
CN105081881A (zh) 一种测量高转速/超高转速三维切削力的装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant