CN109772338A - 一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料 - Google Patents

一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料 Download PDF

Info

Publication number
CN109772338A
CN109772338A CN201910229215.3A CN201910229215A CN109772338A CN 109772338 A CN109772338 A CN 109772338A CN 201910229215 A CN201910229215 A CN 201910229215A CN 109772338 A CN109772338 A CN 109772338A
Authority
CN
China
Prior art keywords
nitio
solution
fiber membrane
composite nano
catalysis material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910229215.3A
Other languages
English (en)
Other versions
CN109772338B (zh
Inventor
杨博智
王佳璇
闵鑫
白雪峰
杜朋朋
房明浩
黄朝晖
刘艳改
吴小文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences Beijing
Original Assignee
China University of Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences Beijing filed Critical China University of Geosciences Beijing
Priority to CN201910229215.3A priority Critical patent/CN109772338B/zh
Publication of CN109772338A publication Critical patent/CN109772338A/zh
Application granted granted Critical
Publication of CN109772338B publication Critical patent/CN109772338B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种含缺陷的Ni/NiTiO3‑x/C复合纳米纤维膜光催化材料及其制备方法,属于光催化材料技术领域。本发明采用静电纺丝技术,以乙酸镍、钛酸四丁脂分别作为镍、钛源,将乙酸镍溶于乙酸得到溶液A,在乙醇中加入聚乙烯吡咯烷酮获得溶液B,将A加入到B搅拌均匀后加入钛酸四丁酯,继续搅拌得到前驱体溶液。采用静电纺丝工艺在特定的工作电压、接受距离、泵推进速度下制得复合纤维膜前驱体,在氢气/氩气混合气保护下热处理,制得含缺陷的Ni/NiTiO3‑x/C复合纳米纤维膜光催化材料。该产品具备优异的光催化性能且环境友好,相比于粉体光催化剂而言,多孔、自支撑结构的纳米纤维膜光催化材料更易与降解后的溶液分离,具有更重要的实际应用潜力。

Description

一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料
技术领域
本发明涉及光催化材料技术领域,具体涉及一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料及其制备方法。
背景技术
近年来,环境污染问题愈发严重,尤其是水体环境的污染尤为严重,人们迫切需要寻找一种技术来治理环境污染。半导体光催化技术以其具有无毒、能耗低以及使用周期长等优点引发了人们的广泛关注。
在众多的半导体材料中,TiO2以其具有较高的光催化活性、物理化学性质稳定、无毒副作用及成本低廉等特点,成为光催化领域主要研究对象之一。但TiO2带隙较宽,只在紫外光区响应,无法利用太阳光中可见光,因此利用可见光进行光催化的材料引起了研究者的关注。
钛酸镍的结构为三角晶系,钛、镍两原子成八面体配位间隔排列在阳离子层,钛酸镍具有反铁磁性的结构,其禁带宽度为2.18eV,研究表明制备得到的NiTiO3纳米结构往往具有良好的光催化性能质。由于钛酸镍纳米粉体具备了纳米材料的特性,因此钛酸镍具有更为独特的性能,深受科研工作者的青睐。光源照射和催化剂是光催化氧化必不可少的两个因素,在两者的共同作用下此技术可以降解有机物。在可见光的照射下,钛酸镍可以吸收光子能量而激发产生光生电子和空穴,进而产生活性氧及羟基自由基等,具有很强的氧化和还原能力,能够使大部分有机污染物氧化或分解。尽管钛酸镍对光很稳定,但是其光生电子和空穴的寿命很短,极易重新复合,致使光催化剂的量子效率较低。因此,如何进一步提高钛酸镍的光催化性能成为需要解决的重要课题。
在众多的方法中离子掺杂是最为有效的方法之一。离子掺杂分为非金属离子掺杂和金属离子掺杂两类。其中金属离子掺杂的研究最为广泛,原因在于可供选择的金属元素众多、价态丰富、离子半径迥异、掺杂方式多样等。离子掺杂可能在半导体的晶格中引入缺陷位置或改变结晶度等,从而改变了半导体的带宽或影响了电子与空穴的复合,进而提高了钛酸镍的光催化活性。在催化剂中掺杂非金属、金属离子,改变禁带宽度,也可有效地减小空穴-电子对复合的几率,提高催化剂的光催化效率。此外,还原石墨烯等碳材料具有较高的电子迁移率和大的比表面积,能迅速转移光生电子,促进电子和空穴的分离,显著提高光催化性能,可以作为设计高效复合光催化剂的活性成分。
静电电纺丝技术是一种简单有效的制备具有高比表面积纳米材料的方法,在实际中纤维体在接收端无序堆积时就可直接获得具有多孔形貌的纤维膜结构。近年来,利用静电纺丝技术制备无机氧化物纳米纤维已成为纳米材料研究的新热点,在光催化剂的实际应用中具有重要的理论意义和实际应用价值。
因此本发明创造的采用静电纺丝工艺结合原位热处理一步法制备得到一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜材料,通过原料比例调控和工艺控制调节其性能,通过形成缺陷来改善钛酸镍的禁带宽度,并利用原位生成的碳和金属镍获得较高的电子迁移率和大的比表面积,能迅速转移光生电子,促进电子和空穴的分离,获得更加优异的光催化性能,将有潜力成为一种新型的光催化材料,也具有重要的应用潜力和技术创新意义。
发明内容
本发明一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料的目的在于提供一种新型光催化材料,解决现有光催化剂在降解水污染物时光催化效率低和难以重复利用等技术问题。
为实现上述目的,本发明提出了一种物相组成为原位反应得到的一种含缺陷的Ni/NiTiO3-x/C的复合物,其微观形貌是由Ni//NiTiO3-x/C纳米纤维形成的多孔膜复合纳米纤维膜,其中纳米纤维直径为100-400nm,具有优异的光催化性能且环境友好,能够满足降解污水的条件,且利于回收再利用,具有广阔的应用前景。
本产品的物相组成为原位反应得到的金属Ni、C和含缺陷的NiTiO3-x,其中Ni和NiTiO3-x的摩尔比为0.01:1至0.4:1;C含量为1%-12%。
本发明所述的一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料的制备方法,其特征在于:
(1)以钛酸四丁酯(C16H36O4Ti,纯度99.5%)、乙酸镍(Ni(CH3COO)2,纯度99.5%)分别作为钛、镍源,按NiO和NiTiO3的摩尔比为0.01:1至0.4:1进行配料,将乙酸镍溶于一定量的乙酸中得到溶液A,在乙醇中加入不同量聚乙烯吡咯烷酮(1%-12%)调节其粘度及热处理后生成碳含量,获得溶液B。将溶液A加入溶液B磁力搅拌均匀后再加入钛酸四丁酯,继续搅拌得到前驱体溶液。
(2)取适量的前驱体溶胶于传统单喷丝头静电纺丝装置的玻璃储液器中,在电压(10kv-20kv)、接收距离(10cm-20cm)、纺丝溶液推进速率为(0.4mL/h-2.0mL/h)等条件下进行纺丝,得到具有纳米纤维状的复合纤维膜前驱体。
(3)将复合纳米纤维膜前驱体放置始温度为室温的管式炉中,通以氢气及氩气气氛,在温度400-1200℃的条件下热处理0.5-4.0h,升温速率和降温速率保持1-10℃/min,得到一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜材料。
采用本发明得到了一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料,在模拟太阳光的光源照射下,能在40min以内完全降解罗丹明B等模拟污染物,分离后Ni/NiTiO3-x/C复合纳米纤维膜再利用过程中仍然能保持稳定的光催化性能,具有广阔的应用前景。
本发明一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料具有优异的光催化性能、液固易于分离、再利用性能稳定等突出优势。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
(1)以乙酸镍作为镍源,将1.05mmol乙酸镍溶于2ml乙酸溶解得到溶液A,以10ml乙醇为溶剂并加入聚乙烯吡咯烷酮0.6g调节其粘度以获得符合纺丝要求的溶液B,将溶液A加入溶液B磁力搅拌均匀后加入钛酸四丁酯1.00mmol,继续搅拌得到前驱体溶液。
(2)取适量的前驱体溶胶于传统单喷丝头静电纺丝装置的玻璃储液器中,电压17.5kV、接收距离20cm、纺丝溶液推进速率为1mL/h下进行纺丝,得到具有纳米纤维状的NiO/NiTiO3复合纤维膜前驱体。
(3)将NiO/NiTiO3复合纳米纤维膜前驱体放置始温度为室温的管式炉中,通以氢气及氩气气氛,室温为20℃,1℃/min升温速率到400℃保温0.5h烧掉纤维膜中的有机成分得到碳,(碳含量为6%)再以1℃/min升温速率到800℃保温0.5h进行物相反应,再以1℃/min降温速率降到室温,得到形态结构稳定的一种含缺陷的Ni/NiO/NiTiO3-x/C复合纳米纤维膜复合纳米纤维膜。
(4)以5mg/L的罗丹明B作为有机污染物,采用一套光催化剂和污染物溶液分离并可以循环不间断进行光催化降解反应的设备。设备反应器分为两部分,上下两部分以磨砂口连接,确保罗丹明B溶液不溢出。取含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜复合纳米纤维膜样品30mg放置在反应器中间固定,确保不与污染物溶液混合,避免了反应后需将催化剂与溶液分离的过程;光源采用平行光光源,能够提供稳定的光子能量,使光催化剂产生光生电子和空穴;右侧加一循环水泵,通过流量控制阀控制污染物溶液循环速率,使罗丹明B溶液与反应器中间的催化剂反应。对设备先进行暗处理30min,打开全光谱光源,40min后罗丹明B溶液全部降解。
实施例2
(1)以乙酸镍作为镍源,将1.05mmol乙酸镍溶于2ml乙酸溶解得到溶液A,以10ml乙醇为溶剂并加入聚乙烯吡咯烷酮0.8g调节其粘度以获得符合纺丝要求的溶液B,将溶液A加入溶液B磁力搅拌均匀后加入钛酸四丁酯1.00mmol,继续搅拌得到前驱体溶液。
(2)取适量的前驱体溶胶于传统单喷丝头静电纺丝装置的玻璃储液器中,电压17.5kV、接收距离20cm、纺丝溶液推进速率为1mL/h下进行纺丝,得到具有纳米纤维状的复合纤维膜前驱体。
(3)将复合纳米纤维膜前驱体放置始温度为室温的管式炉中,通以氢气及氩气气氛,室温为20℃,1℃/min升温速率到400℃保温0.5h烧掉纤维膜中的有机成分得到碳,(碳含量为8%)再以1℃/min升温速率到800℃保温0.5h进行物相反应,再以1℃/min降温速率降到室温,得到形态结构稳定的一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜复合纳米纤维膜。
实施例3
(1)以乙酸镍作为镍源,将1.10mmol乙酸镍溶于2ml乙酸溶解得到溶液A,以10ml乙醇为溶剂并加入聚乙烯吡咯烷酮0.6g调节其粘度以获得符合纺丝要求的溶液B,将溶液A加入溶液B磁力搅拌均匀后加入钛酸四丁酯1.00mmol,继续搅拌得到前驱体溶液。
(2)取适量的前驱体溶胶于传统单喷丝头静电纺丝装置的玻璃储液器中,电压17.5kV、接收距离20cm、纺丝溶液推进速率为1mL/h下进行纺丝,得到具有纳米纤维状的复合纤维膜前驱体。
(3)将复合纳米纤维膜前驱体放置始温度为室温的管式炉中,通以氢气及氩气气氛,室温为20℃,1℃/min升温速率到400℃保温0.5h烧掉纤维膜中的有机成分得到碳,(碳含量为6%)再以1℃/min升温速率到800℃保温0.5h进行物相反应,再以1℃/min降温速率降到室温,得到形态结构稳定的一种含缺陷的Ni/NiO /NiTiO3-x/C复合纳米纤维膜复合纳米纤维膜。
实施例4
(1)以乙酸镍作为镍源,将1.10mmol乙酸镍溶于2ml乙酸溶解得到溶液A,以10ml乙醇为溶剂并加入聚乙烯吡咯烷酮0.8g调节其粘度以获得符合纺丝要求的溶液B,将溶液A加入溶液B磁力搅拌均匀后加入钛酸四丁酯1.00mmol,继续搅拌得到前驱体溶液。
(2)取适量的前驱体溶胶于传统单喷丝头静电纺丝装置的玻璃储液器中,电压17.5kV、接收距离20cm、纺丝溶液推进速率为1mL/h下进行纺丝,得到具有纳米纤维状的复合纤维膜前驱体。
(3)将复合纳米纤维膜前驱体放置始温度为室温的管式炉中,通以氢气及氩气气氛,室温为20℃,1℃/min升温速率到400℃保温0.5h烧掉纤维膜中的有机成分得到碳,(碳含量为8%)再以1℃/min升温速率到800℃保温0.5h进行物相反应,再以1℃/min降温速率降到室温,得到形态结构稳定的一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜复合纳米纤维膜。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (3)

1.一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料,特征在于:本产品的物相组成为一种含缺陷的Ni/NiTiO3-x/C的复合物,其中Ni和NiTiO3-x的摩尔比为0.01:1至0.4:1,C含量为1%-12%;其形貌为由Ni/NiTiO3-x/C纳米纤维形成的多孔膜,其中纳米纤维直径为100-400nm。
2.一种权利要求1所述的含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料制备方法,主要包括配置前驱体溶液、静电纺丝成纳米纤维膜前驱体、高温热处理得到含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料等步骤,其特征在于:
(1)以钛酸四丁酯和乙酸镍分别作为钛、镍源,按NiO和NiTiO3的摩尔比为0.01:1至0.4:1进行配料,将乙酸镍溶于一定量的乙酸中得到溶液A,在无水乙醇中加入不同质量的聚乙烯吡咯烷酮(1%-12%)获得溶液B,将溶液A加入到溶液B中并搅拌均匀,随后加入钛酸四丁酯,继续搅拌得到均匀的前驱体溶液;
(2)取适量的前驱体溶液于单喷丝头静电纺丝装置的玻璃储液器中,在一定电压(10kV-20kV)、接收距离(10cm-20cm)、纺丝溶液推进速率(0.4mL/h-2.0mL/h)条件下进行纺丝,得到具有纳米纤维膜形态的前驱体;
(3)将纳米纤维膜前驱体置于管式炉中,以氢气/氩气混合气为保护气氛,在一定温度(400℃-1200℃)下热处理0.5-4.0h,升温速率和降温速率为1-10℃/min,获得一种形态结构稳定的含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜。
3.一种权利要求1所述的含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料,其特征在于:
在模拟太阳光的光源照射下,能在40min以内完全降解罗丹明B等模拟污染物,分离后含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜再利用过程中仍然能保持稳定的光催化性能。
CN201910229215.3A 2019-03-25 2019-03-25 一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料 Active CN109772338B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910229215.3A CN109772338B (zh) 2019-03-25 2019-03-25 一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910229215.3A CN109772338B (zh) 2019-03-25 2019-03-25 一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料

Publications (2)

Publication Number Publication Date
CN109772338A true CN109772338A (zh) 2019-05-21
CN109772338B CN109772338B (zh) 2020-05-08

Family

ID=66490442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910229215.3A Active CN109772338B (zh) 2019-03-25 2019-03-25 一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料

Country Status (1)

Country Link
CN (1) CN109772338B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813298A (zh) * 2019-11-06 2020-02-21 齐鲁工业大学 一种钛酸钴@氧化镍核壳光催化材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775656A (zh) * 2009-10-30 2010-07-14 陕西科技大学 一种NiTiO3纳米薄膜的微波水热制备方法
CN101880870A (zh) * 2010-07-15 2010-11-10 陕西科技大学 一种NiTiO3薄膜的制备方法
CN106328918A (zh) * 2016-11-04 2017-01-11 中南大学 一种用于钠离子电池的NiTiO3/C 复合材料、制备和应用
CN106450255A (zh) * 2016-11-05 2017-02-22 中南大学 一种钠离子电池的NiTiO3/C负极材料、制备及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775656A (zh) * 2009-10-30 2010-07-14 陕西科技大学 一种NiTiO3纳米薄膜的微波水热制备方法
CN101880870A (zh) * 2010-07-15 2010-11-10 陕西科技大学 一种NiTiO3薄膜的制备方法
CN106328918A (zh) * 2016-11-04 2017-01-11 中南大学 一种用于钠离子电池的NiTiO3/C 复合材料、制备和应用
CN106450255A (zh) * 2016-11-05 2017-02-22 中南大学 一种钠离子电池的NiTiO3/C负极材料、制备及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMBANDAM ANANDAN ET AL.: "Sonochemical Synthesis of Mesoporous NiTiO3 Ilmenite Nanorods for the Catalytic Degradation of Tergitol in Water", 《IND. ENG. CHEM. RES.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813298A (zh) * 2019-11-06 2020-02-21 齐鲁工业大学 一种钛酸钴@氧化镍核壳光催化材料及其制备方法和应用
CN110813298B (zh) * 2019-11-06 2023-03-17 齐鲁工业大学 一种钛酸钴@氧化镍核壳光催化材料及其制备方法和应用

Also Published As

Publication number Publication date
CN109772338B (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
Wan et al. Construction of Z-scheme photocatalytic systems using ZnIn2S4, CoOx-loaded Bi2MoO6 and reduced graphene oxide electron mediator and its efficient nonsacrificial water splitting under visible light
Shang et al. 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synthesis and enhanced visible photocatalytic degradation performances
Zeng et al. Enhanced photocatalytic performance of Ag@ TiO2 for the gaseous acetaldehyde photodegradation under fluorescent lamp
Xu et al. Electrospun TiO2‐based photocatalysts
Zhang et al. Engineering nanostructured Bi2WO6–TiO2 toward effective utilization of natural light in photocatalysis
WO2016146070A1 (zh) 一种用于光催化的铋-氧化钛纳米线材料及制备方法
CN109926053A (zh) 一种NiO/NiTiO3复合纳米纤维膜光催化材料
Wang et al. Fabrication of MgTiO3 nanofibers by electrospinning and their photocatalytic water splitting activity
CN101792117B (zh) 钨掺杂锐钛矿型纳米二氧化钛复合粉末的制备方法
Zhu et al. Controllable synthesis of hierarchical MnOx/TiO2 composite nanofibers for complete oxidation of low-concentration acetone
Zhang et al. Fabrication of hierarchical TiO2 nanofibers by microemulsion electrospinning for photocatalysis applications
Xu et al. Synthesis of LaFeO3/Bi3NbO7 pn heterojunction photocatalysts with enhanced visible-light-responsive activity for photocatalytic reduction of Cr (Ⅵ)
CN105664922B (zh) 碳修饰TiO2/WO3复合纳米纤维光催化剂、制备方法及应用
CN111389439B (zh) 一种bn量子点结合型光催化复合纤维的制备方法
Liu et al. Synthesis of monoclinic BiVO 4 microribbons by sol–gel combined with electrospinning process and photocatalytic degradation performances
Zhang et al. Preparation of Ce3+ doped Bi2O3 hollow needle-shape with enhanced visible-light photocatalytic activity
Shi et al. Construction of g-C3N4/Bi4Ti3O12 hollow nanofibers with highly efficient visible-light-driven photocatalytic performance
CN102086045A (zh) TiO2二级纳米棒阵列及其制备方法与应用
Du et al. ZIF-67/CoOOH cocatalyst modified g-C3N4 for promoting photocatalytic deep oxidation of NO
Lin et al. Synthesis of a carbon-loaded Bi2O2CO3/TiO2 photocatalyst with improved photocatalytic degradation of methyl orange dye
Gong et al. Electrochemical synthesis of perovskite LaFeO 3 nanoparticle-modified TiO 2 nanotube arrays for enhanced visible-light photocatalytic activity
CN107986380A (zh) 一种N掺杂包裹型TiO2光催化剂降解废水的工艺
Li et al. Hollow cavity engineering of MOFs-derived hierarchical MnOx structure for highly efficient photothermal degradation of ethyl acetate under light irradiation
Gao et al. 3D heterogeneous CTF@ TiO 2/Bi 2 WO 6/Au hybrid supported by hollow carbon tubes and its efficient photocatalytic performance in the UV-vis range
Xiao et al. Fabrication of In2O3/TiO2 nanotube arrays hybrids with homogeneously developed nanostructure for photocatalytic degradation of Rhodamine B

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant