CN109768248A - Coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material and preparation method thereof and battery - Google Patents

Coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material and preparation method thereof and battery Download PDF

Info

Publication number
CN109768248A
CN109768248A CN201811655380.7A CN201811655380A CN109768248A CN 109768248 A CN109768248 A CN 109768248A CN 201811655380 A CN201811655380 A CN 201811655380A CN 109768248 A CN109768248 A CN 109768248A
Authority
CN
China
Prior art keywords
complexing agent
reaction
lini
tertiary cathode
cathode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811655380.7A
Other languages
Chinese (zh)
Inventor
赵霞妍
朱凌云
王振宇
何旻雁
杨志伟
罗加悦
刘鑫雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin Electrical Equipment Scientific Research Institute Co Ltd
Original Assignee
Guilin Electrical Equipment Scientific Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin Electrical Equipment Scientific Research Institute Co Ltd filed Critical Guilin Electrical Equipment Scientific Research Institute Co Ltd
Priority to CN201811655380.7A priority Critical patent/CN109768248A/en
Publication of CN109768248A publication Critical patent/CN109768248A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The invention discloses a kind of coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material and preparation method thereof and battery.The preparation method of the tertiary cathode material includes: first to introduce magnesium elements when preparing nickel cobalt manganese hydroxide precursor, then ammonium molybdate aqueous solution is used instead as complexing agent in the coprecipitation reaction later period, occur after being hydrolyzed in water using ammonium molybdate with ammonium ion and molybdenum acid ion, ammonium ion is served as complexing agent to be used to compensate coprecipitation reaction, and it is partially deposited on the nickel cobalt manganese hydroxide precursor surface that molybdenum acid ion is formed in precipitation reaction, it realizes that the in situ of molybdenum element introduces, is handled again through lithiumation later to obtain tertiary cathode powder of the surface containing molybdenum element.The present invention adulterates molybdenum element by addition magnesium elements and surface element in situ, is effectively improved charge-discharge performance, the cycle performance etc. of the modified tertiary cathode powder of gained.

Description

Coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material and preparation method thereof and Battery
Technical field
The present invention relates to a kind of nickel-cobalt-manganternary ternary anode materials of high nickel content, and in particular to a kind of coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material and preparation method thereof and battery.
Background technique
Lithium ion battery is able to carry out positive electrode and cathode material of the reversible embedding de- material as battery using lithium ion Material, constitutes lithium ion secondary battery system in conjunction with electrolyte appropriate or solid electrolyte powder film.Because of the energy of battery Amount depends on the product of its voltage and capacity, so the means for improving the energy density of battery are using high voltage and high capacity Positive and negative pole material.For same negative electrode material, the capacity and current potential of positive electrode are higher, then the energy density of battery is higher. The energy density of lithium ion battery is promoted, the high nickel content tertiary cathode powder of exploitation more height ratio capacity is the main of battery research and development Direction.
LiFePO4 (the theoretical specific capacity of the spinel structure LiMn2O4 and olivine-type structure low compared to theoretical specific capacity For 170mAh/g), theoretical specific capacity is the layer structure ternary composite cathode material (LiNi of 280mAh/gxCoyMnzO2) have Apparent advantage, and actual capacity of the layer structure tertiary cathode in lithium ion battery can rise with the raising of Ni content Height, thus ternary composite cathode material of the nickel ratio in three kinds of elements of nickel cobalt manganese higher than 60% be current high-energy density lithium from The first choice anode of sub- battery.
High nickel content tertiary cathode powder is usually to be synthesized by co-precipitation-high temperature solid state reaction, that is, is first passed through coprecipitated Shallow lake method prepares nickel cobalt manganese hydroxide precursor, adds the mixed sinterings such as lithium source such as lithium hydroxide or lithium carbonate and nickel cobalt is made Lithium manganate cathode powder.It is well known that the precursor powder pattern and granularity etc. in co-precipitation-high temperature solid state reaction technique influence Many performances of the positive pole powder in lithium ion battery, high nickel content nickel-cobalt-manganese ternary positive pole powder surface doping and be overmolding to For the effective ways for improving positive pole powder performance.Existing research shows that clad can alleviate electrolyte to high nickel content nickel The corrosion on cobalt-manganese ternary positive pole powder surface, doped chemical can also inhibit the crystal structure of tertiary cathode powder surface portion to become Change, improves the cyclical stability and thermal stability of ternary material.
The research of its electrochemical stability is improved using metal oxide cladding nickle cobalt lithium manganate tertiary cathode powder expectation There are many, such as the patent of invention of Publication No. CN104393277A, disclose the lithium of surface clad oxide a kind of from The preparation method of sub- battery tertiary cathode material, this method includes: high polymer polyacrylamide 1. is added in soluble metal salt and is made Be it is evenly dispersed in the solution of dispersing agent, 2. tertiary cathode material powder is added in above-mentioned solution and is stirred;3. mixed The aqueous solution that alkali metal hydroxide is added in solution is closed, the pH value of solution is adjusted to 9-12, is filtered after precipitating, dry, obtain table Bread covers the positive electrode of hydroxide;4. hot at 400-700 DEG C again by the positive electrode of above-mentioned surface cladding hydroxide Processing, obtains the tertiary cathode material of surface clad oxide.The for another example patent of invention of Publication No. CN108777296A, A kind of nickelic tertiary cathode material surface reforming layer forming method is disclosed, coats two on the kernel of nickelic tertiary cathode material Kind of surface modifying species, one of which are yttria-stabilized zirconia, another be selected from metal oxide, metal fluoride, Metal phosphate or C, surface modifying species are coated on bulk material surface, reduce nickelic tertiary cathode material and electrolyte Side reaction, it is suppressed that the irreversible capacity loss of tertiary cathode material.For another example the invention of Publication No. CN105576233A is special Benefit discloses a kind of Ni-based tertiary cathode material surface modifying method, mixed in nickel cobalt manganese hydroxide precursor powder and lithium salts The Ni-based tertiary cathode material surface obtained after calcining is closed, using titanate coupling agent, aluminate coupling agent and silane coupling agent It is one or more react in organic solvent it is compound, through calcining heat treatment obtained titanium, aluminium or Si oxide coating modification Ni-based tertiary cathode material.Although similar metal oxide coating modification processing can improve positive powder to a certain extent The cycle performance and thermal stability at end, but counter productive is also brought along, because the metal oxide of cladding is inert material, inhibit The transmission of lithium ion and electronics.
On the other hand, also there are the method for improving tertiary cathode material powdered conductive performance using carbon coating, such as Publication No. The patent of invention of CN103474628A, it includes: 1. with nickel salt, cobalt salt that disclosed carbon coating, which improves tertiary cathode material powder method, It is raw material with manganese salt, prepares ternary anode material precursor;2. dispersing preparation in the water containing organic carbon source for conductive carbon to lead Electrical carbon dispersion liquid;3. ternary anode material precursor and lithium compound are added in conductive carbon dispersion liquid, uniformly mixing is obtained Object;4. mixture is dried under vacuum conditions;5. in confined conditions or inert gas shielding by the mixture of drying Atmosphere high temperature processing, obtain carbon coating tertiary cathode material.The invention is pointed out conductive carbon powder and tertiary cathode material is same When be coated on in network-like conductive media amorphous carbon, the high rate performance of tertiary cathode material can be improved.Publication number For CN104733721A patent of invention then disclose liquid phase sugar coat spray drying prepare nickle cobalt lithium manganate tertiary cathode material Method, specifically will Ni, Co, Mn sulfate liquor mix after under alkaline condition be co-precipitated be made tri compound presoma (NixCoyMnz)(OH)2, after filtration, washing and drying, it is added to jointly with soluble metal lithium compound, rare earth compound It has dissolved in the solvent of sugar and has been uniformly mixed, then the spray-dried ternary precursor for obtaining sugar and coating and being doped with rare earth element, The ternary material LiNi of carbon-containing bed and rare earth doped element is most obtained through high-temperature calcination afterwardsxCoyMnzRnO2Powder.
In addition, the patent of invention of Publication No. CN107895793A discloses a kind of lithium of surface cladding witch culture boride Tungsten source is specifically dissolved in water by the preparation method of cell positive material, is sprayed onto ternary precursor and lithium in spraying mode Dried material is stirred to get in the mixed raw material of source, then roasting obtains the tertiary cathode material of witch culture;Again by metal boride It is added in above-mentioned witch culture tertiary cathode material and stirs evenly, then sintering at a certain temperature obtains witch culture boride cladding Anode material of lithium battery.
In spite of a variety of tertiary cathode powder surface cladding as described above or doping treatment method, but they are all in ternary The clad of positive pole powder surface superposition is not based on the crystal structure that doped metallic elements replace tertiary cathode powder surface portion Nickel, cobalt, manganese atom in making, that is to say, that using metallic element high chemical valence reduce layered crystal structure in nickel, The valence mumber variation of cobalt, manganese element in charge and discharge process, while also not accounting for and adulterating high chemical combination in layered crystal structure Valence metallic element causes vacancy concentration to increase, and is conducive to the diffusion of lithium ion and improves tertiary cathode powdery by doping to reach The purpose of energy.On the other hand, well known to those skilled in the art, high nickel content tertiary cathode powder surface is in alkalinity, if directly It is applied to during subsequent size mixing, will lead to slurry when (- 30 DEG C of dew point) progress slurrying under normal conditions and become solidifying The problem of glue (g., jelly-like colloid);If removing tertiary cathode powder surface alkalinty, although the operation of washing can be used, This can make the lithium ion on surface lose and the discharge capacity of tertiary cathode material is caused to reduce.Therefore, it is necessary to provide one kind both Charge/discharge capacity with higher, and be not in slurry when by its (- 30 DEG C of dew point) progress slurrying under normal condition Become the LiNi of gel problem0.8Co0.1Mn0.1O2Tertiary cathode material and preparation method thereof.
Summary of the invention
The technical problem to be solved in the present invention is to provide a kind of coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material And preparation method thereof and battery, LiNi obtained by this method0.8Co0.1Mn0.1O2Tertiary cathode material is not only with higher to be filled Discharge capacity, and be not in that slurry becomes asking for gel when by its (- 30 DEG C of dew point) progress slurrying under normal condition Topic.
In order to solve the above technical problems, coating modification LiNi of the present invention0.8Co0.1Mn0.1O2Tertiary cathode material Preparation method, comprising the following steps:
1) nickel cobalt manganese hydroxide precursor is prepared:
1.1) take nickel salt, cobalt salt and manganese salt soluble in water, obtain the first mixed liquor, control in the first mixed liquor total metal from The concentration of son is 2mol/L, and the molar ratio of nickel ion, cobalt ions and manganese ion is 8: 1: 1;
1.2) magnesium sulfate is added into mixed liquor, dissolves, obtains the second mixed liquor;Wherein the additional amount of magnesium sulfate be nickel from The 0.08-0.25% of son, cobalt ions and manganese ion integral molar quantity;
1.3) precipitating reagent is added into the second mixed liquor and complexing agent carries out coprecipitation reaction, in which:
The coprecipitation reaction process includes two stages, respectively first stage of reaction and second stage of reaction, wherein The reaction time of second stage of reaction accounts for the 12-20% of coprecipitation reaction total reaction time;
The complexing agent includes the first complexing agent and the second complexing agent, wherein the first complexing agent is ammonium hydroxide, the second complexing agent For ammonium molybdate aqueous solution;
What is be added in first stage of reaction of coprecipitation reaction is the first complexing agent, and the first complexing agent reacts rank first Duan Quancheng is uniformly added into;When the first complexing agent is the ammonium hydroxide that concentration is 25%, additional amount is added by every liter of first mixed liquor The first complexing agent of 5-50mL calculates;
What second stage of reaction was added is the second complexing agent, and the second complexing agent uniformly adds in second stage of reaction whole process Enter;When the concentration of the second complexing agent is 0.1-0.5mol/L, 30-50mL second is added by every liter of first mixed liquor in additional amount Complexing agent calculates;
During entire coprecipitation reaction, the dosage of precipitating reagent is the pH=10-13 of control system, after the reaction was completed, institute Reaction mass filtering is obtained, precipitating is collected and is dried, obtain nickel cobalt manganese hydroxide precursor of the surface containing molybdenum;
2) the nickel cobalt manganese hydroxide precursor by surface containing molybdenum and lithium source are uniformly mixed, and hot place is carried out in oxidizing atmosphere Reason, obtains LiNi of the surface containing molybdenum0.8Co0.1Mn0.1O2Powder;
3) polyacrylic acid solution is obtained;
4) LiNi by surface containing molybdenum0.8Co0.1Mn0.1O2Powder is placed in polyacrylic acid solution, is stirred a timing Between, it takes out, it is dry, obtain the LiNi of polyacrylic acid cladding0.8Co0.1Mn0.1O2Powder;
5) LiNi of gained polyacrylic acid cladding0.8Co0.1Mn0.1O2Powder be placed in oxidizing atmosphere be heat-treated to get To the coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material.
In the step 1.1) of above-mentioned preparation method, the selection of the nickel salt, cobalt salt and manganese salt is same as the prior art, specifically , nickel salt can be the combination of one or more of nickel sulfate, nickel nitrate and nickel chloride, cobalt salt can be cobaltous sulfate, The combination of one or more of cobalt nitrate and cobalt chloride, manganese salt can be one in manganese sulfate, manganese nitrate and manganese chloride Kind or two or more combinations.
In the step 1.2) of above-mentioned preparation method, the additional amount of magnesium sulfate is preferably that nickel ion, cobalt ions and manganese ion are total The 0.1-0.2% of mole.
In the step 1.3) of above-mentioned preparation method, during entire coprecipitation reaction, the dosage of precipitating reagent is control volume The pH=11-13 of system;The selection of the precipitating reagent is same as the prior art, specifically can be the hydroxide that concentration is 1-5mol/L Sodium solution or potassium hydroxide solution etc..In the step, the total time of coprecipitation reaction can be designed as needed, and applicant is testing Middle discovery, it is more appropriate when the total time of coprecipitation reaction being designed as 6h, with this condition, further preferred second reaction rank The reaction time of section accounts for 15-20% (the i.e. 0.9-1.2h, and remaining 4.8-5.1h is then the of coprecipitation reaction total reaction time The reaction time of one stage of reaction).
In the step 2) of above-mentioned preparation method, the lithium source is conventional selection in the prior art, specifically can be hydrogen Lithia and/or lithium carbonate etc., the amount of lithium source are by LiNi to be prepared0.8Co0.1Mn0.1O2Required theory dosage, 1.01-1.1 times of theoretical amount is usually weighed in the actual operation process.Realize that surface contains using existing conventional mechanical hybrid mode The nickel cobalt manganese hydroxide precursor of molybdenum and being uniformly mixed for lithium source, such as carried out using drum type high-speed blender or ball mill Mixing.Heat treatment after mixing is to complete lithiation, and technique is identical as existing conventional techniques, is usually existed 6-8h is kept the temperature under the conditions of 720-800 DEG C to complete lithiation.
In the step 3) of above-mentioned preparation method, the polyacrylic acid solution is to be dissolved in polarity by macromolecule polyacrylic acid The polyacrylic acid solution that aprotic solvent gained, preferably solid content are 0.001-0.005% (quality, similarly hereinafter).The pole Property aprotic solvent is same as the prior art, specifically can be selected from n,N-dimethylacetamide (DMAC), N, N- dimethyl methyl Amide (DMF), n-methyl-2-pyrrolidone (NMP), N, one of N- diethyl acetamide and N, N- diethylformamide or Any two or more combination.
In the step 4) of above-mentioned preparation method, under the conditions of low moisture (such as -30 DEG C of dew point) by surface containing molybdenum LiNi0.8Co0.1Mn0.1O2Powder, which is placed in polyacrylic acid solution, is stirred certain time so that the two comes into full contact with, due to poly- Acrylic acid solution itself has certain viscosity, on the one hand being stirred makes weakly acidic polyacrylic acid solution and surface in alkalinity LiNi containing molybdenum0.8Co0.1Mn0.1O2Powder reacts to each other, and on the other hand also realizes that polyacrylic acid solution contains surface in alkalinity The LiNi of molybdenum0.8Co0.1Mn0.1O2The cladding of powder.LiNi of the surface containing molybdenum0.8Co0.1Mn0.1O2Powder and polyacrylic acid are molten The solid-liquid ratio of liquid can be designed as needed, when polyacrylic acid solution is the polyacrylic acid that solid content is 0.001-0.005% When solution, LiNi of the surface containing molybdenum0.8Co0.1Mn0.1O2Powder and the solid-liquid ratio of polyacrylic acid solution can be 1: 1-10, More preferably 1: 1-3.The time being stirred preferably >=0.1h, usually 0.5-3h.In the step, the drying is logical Often carried out at 120-200 DEG C.
In the step 5) of above-mentioned preparation method, the heat treatment is to keep the temperature 3-8h under the conditions of 600-700 DEG C.
The invention also includes coating modification LiNi prepared by the above method0.8Co0.1Mn0.1O2Tertiary cathode material.
The present invention also provides a kind of lithium ion battery, including positive plate, the positive electrode used on the positive plate is by upper The coating modification LiNi that the method for stating is prepared0.8Co0.1Mn0.1O2Tertiary cathode material.
Compared with prior art, present invention is characterized in that
1, ammonium molybdate aqueous solution is used instead as complexing agent in the coprecipitation reaction later period (i.e. second stage of reaction), ammonium molybdate exists Occur after being hydrolyzed in water with ammonium ion and molybdenum acid ion, wherein ammonium ion serves as complexing agent for compensating coprecipitation reaction, and Molybdenum acid ion partially deposits on established nickel cobalt manganese hydroxide precursor early period surface, realizes that the original position of molybdenum element is drawn Enter, is handled again through lithiumation later with the LiNi containing molybdenum element that obtains surface0.8Co0.1Mn0.1O2Tertiary cathode powder.The present invention is logical Addition magnesium elements and surface element doping molybdenum element in situ are crossed, can be while stablizing nickel cobalt manganese layered crystal construction, increase is conducive to The vacancy of lithium ion diffusion makes the modified LiNi of gained0.8Co0.1Mn0.1O2Charge-discharge performance, the cycle performance of tertiary cathode powder Etc. being effectively improved.
2, the LiNi using polyacrylic acid solution to surface containing molybdenum0.8Co0.1Mn0.1O2Tertiary cathode powder is coated, and is led to The alkali compounds that surface reaction removes high nickel content tertiary cathode material surface is crossed, to eliminate high nickel content tertiary cathode material Material carries out the problem of slurry becomes gel occur when slurrying under normal conditions.
3, further to the LiNi of polyacrylic acid cladding0.8Co0.1Mn0.1O2Tertiary cathode powder carries out medium temperature carbonization, thus Obtain the LiNi of surface carbon (indefinite form carbon) layer cladding0.8Co0.1Mn0.1O2Tertiary cathode material.
4, using the modified LiNi in surface made from the method for the invention0.8Co0.1Mn0.1O2Tertiary cathode material keeps three First original layered crystal structure of positive electrode, the not generation of impurity phase.The electricity of the positive electrode is tested using button cell Chemical property, not occurring being similar to after the processing of metal oxide cladding leads to anode since the diffusional resistance of lithium ion rises The problem of capacity declines, charge/discharge capacity is high and stablizes, under conditions of 0.2C, first discharge specific capacity > 200mAh/g, and Good cycle;Also there is not the problem of slurry becomes gel and fails in subsequent size mixing technology.
Detailed description of the invention
Fig. 1 is coating modification LiNi made from the embodiment of the present invention 10.8Co0.1Mn0.1O2The XRD diagram of tertiary cathode material Spectrum;
Fig. 2 is coating modification LiNi made from the embodiment of the present invention 10.8Co0.1Mn0.1O2The SEM of tertiary cathode material schemes;
Fig. 3 is coating modification LiNi made from the embodiment of the present invention 10.8Co0.1Mn0.1O2Tertiary cathode material is in 0.2C item Charging and discharging curve figure under part;
Fig. 4 is coating modification LiNi made from the embodiment of the present invention 10.8Co0.1Mn0.1O2Tertiary cathode material is in 1C condition Under charging and discharging curve figure;
Fig. 5 is LiNi made from comparative example 1 of the present invention0.8Co0.1Mn0.1O2The XRD spectrum of tertiary cathode material;
Fig. 6 is LiNi made from comparative example 1 of the present invention0.8Co0.1Mn0.1O2The SEM of tertiary cathode material schemes;
Fig. 7 is using LiNi made from comparative example 10.8Co0.1Mn0.1O2What tertiary cathode material was formed during sizing mixing The picture of gel.
Specific embodiment
The present invention is described in further detail combined with specific embodiments below, content to better understand the invention, but The present invention is not limited to following embodiments.
Embodiment 1
1) nickel cobalt manganese hydroxide precursor is prepared:
1.1) it takes nickel sulfate, cobaltous sulfate and manganese sulfate soluble in water, obtains the first mixed liquor, control total in the first mixed liquor The concentration of metal ion is 2mol/L, and the molar ratio of nickel ion, cobalt ions and manganese ion is 8: 1: 1;
1.2) magnesium sulfate is added into mixed liquor, dissolves, obtains the second mixed liquor;Wherein the additional amount of magnesium sulfate be nickel from The 0.1% of sub, cobalt ions and manganese ion integral molar quantity;
1.3) precipitating reagent is added into the second mixed liquor and complexing agent carries out coprecipitation reaction, in which:
Design coprecipitation reaction total time is 6h, and institute's coprecipitation reaction process includes two stages, the respectively first reaction Stage and second stage of reaction, wherein the reaction time of first stage of reaction is 5h, the reaction time of second stage of reaction is 1h (account for coprecipitation reaction total reaction time 16.7%);
The precipitating reagent is the sodium hydroxide solution that concentration is 2mol/L, and dosage is to control entire coprecipitation reaction process The pH=11.0-11.5 of middle system is added dropwise and runs through entire coprecipitation reaction process;The complexing agent includes the first complexing agent With the second complexing agent, wherein the first complexing agent is the ammonium hydroxide that concentration is 25%, the second complexing agent is the molybdenum that concentration is 0.3mol/L Sour aqueous ammonium;
What is be added in first stage of reaction of coprecipitation reaction is the first complexing agent, and additional amount presses every liter of first mixed liquor The first complexing agent of 20mL is added to calculate;The first complexing agent control has dropped evenly in 5h;
What is be added in second stage of reaction of coprecipitation reaction is the second complexing agent, and additional amount presses every liter of first mixed liquor The second complexing agent of 50mL is added to calculate, the second complexing agent control has dropped evenly in 1.5h;
After the completion of coprecipitation reaction, precipitating is collected in the filtering of gained reactant material, dry under the conditions of 80 DEG C after washing, is obtained Nickel cobalt manganese hydroxide precursor to surface containing molybdenum;
2) the nickel cobalt manganese hydroxide precursor by surface containing molybdenum and lithium hydroxide are placed in drum type high-speed blender and mix It closes uniformly, wherein the dosage of lithium hydroxide is according to LiNi0.8Co0.1Mn0.1O21.05 times of theoretical lithium content, gained mixing Object, which is placed in oxidizing atmosphere, keeps the temperature 6h under the conditions of 760 DEG C, obtains LiNi of the surface containing molybdenum0.8Co0.1Mn0.1O2Powder;
3) polyacrylic acid solution that solid content is 0.002% is obtained;
4) LiNi of the surface containing molybdenum is weighed by 1: 1 mass ratio0.8Co0.1Mn0.1O2Powder and solid content are 0.002% Polyacrylic acid solution, the later LiNi by surface containing molybdenum0.8Co0.1Mn0.1O2Powder is placed in the polypropylene that solid content is 0.002% In acid solution, it is stirred 3h, is taken out, it is dry under the conditions of 150 DEG C, obtain the LiNi of polyacrylic acid cladding0.8Co0.1Mn0.1O2 Powder;
5) LiNi of gained polyacrylic acid cladding0.8Co0.1Mn0.1O2Powder, which is placed in vacuum condition, is warming up to 650 DEG C of (liters Warm rate is 5 DEG C/min), it is passed through oxidizing atmosphere later, keeps the temperature 5h to get the LiNi of coating modification is arrived0.8Co0.1Mn0.1O2Ternary Positive electrode.
To coating modification LiNi made from the present embodiment0.8Co0.1Mn0.1O2Tertiary cathode material carries out X-ray diffraction analysis And electron-microscope scanning, gained XRD spectrum and SEM figure are as depicted in figs. 1 and 2 respectively.
(- 30 DEG C of dew point) is prepared under environment in traditional lithium-ion battery slurry, by coating modification made from the present embodiment LiNi0.8Co0.1Mn0.1O2Tertiary cathode material, superconduction carbon black (SP) and PVDF binder are mixed by 94: 3: 3 weight ratio, with NMP breaks into slurry by existing common process for solvent, the case where slurry becomes gel (g., jelly-like colloid) does not occur.
Slurry obtained above is coated on aluminium foil and obtains positive plate after drying.It is surveyed using 2032 type button half-cells The chemical property of positive plate is tried, the cathode of 2032 type button half-cells is metal lithium sheet, and electrolyte uses LiPF6Concentration is EC/DMC (volume ratio 1: 1) solution of 1.0M, diaphragm use business polyolefin.Positive electric discharge for the first time is held under the conditions of 0.2C Amount is 206.7mAh/g, and capacity is 196.1mAh/g after 50 circle of circulation, and capacity retention ratio 94.9%, charging and discharging curve is as schemed Shown in 3;Capacity is 192.3mAh/g after 50 circle of circulation under the conditions of 1C, and capacity retention ratio 94.3%, charging and discharging curve is such as Shown in Fig. 4.As it can be seen that the LiNi of preparation of the present invention0.8Co0.1Mn0.1O2High discharge capacity that tertiary cathode material has, height The characteristics of electrochemical stability.
Comparative example 1
1) nickel cobalt manganese hydroxide precursor is prepared:
1.1) it takes nickel sulfate, cobaltous sulfate and manganese sulfate soluble in water, obtains mixed liquor, control total metal ion in mixed liquor Concentration be 2mol/L, and the molar ratio of nickel ion, cobalt ions and manganese ion be 8: 1: 1;
1.2) precipitating reagent is added into mixed liquor and complexing agent carries out coprecipitation reaction, in which:
Design coprecipitation reaction total time is 6h;
The precipitating reagent is the sodium hydroxide solution that concentration is 2mol/L, and dosage is to control entire coprecipitation reaction process The pH=11.0-11.5 of middle system is added dropwise and runs through entire coprecipitation reaction process;The complexing agent is that concentration is 25% Ammonium hydroxide;
The complexing agent control has dropped evenly in 6h;
After the completion of coprecipitation reaction, precipitating is collected in the filtering of gained reactant material, dry under the conditions of 80 DEG C after washing, is obtained To nickel cobalt manganese hydroxide precursor;
2) that nickel cobalt manganese hydroxide precursor and lithium hydroxide are placed in drum type high-speed stirrer for mixing is uniform, wherein The dosage of lithium hydroxide is according to LiNi0.8Co0.1Mn0.1O21.05 times of theoretical lithium content, gained mixture is placed in oxic gas 6h is kept the temperature under the conditions of 760 DEG C in atmosphere, obtains LiNi0.8Co0.1Mn0.1O2Tertiary cathode material.
To LiNi made from this comparative example0.8Co0.1Mn0.1O2Tertiary cathode material carries out X-ray diffraction analysis and Electronic Speculum is swept It retouches, gained XRD spectrum and SEM figure are as shown in Figure 5 and Figure 6 respectively.
It, will be made from this comparative example in the case where pulp of lithium ion battery in the same manner as in Example 1 prepares environment LiNi0.8Co0.1Mn0.1O2Tertiary cathode material, SP and PVDF binder are mixed by 94: 3: 3 weight ratio, are pressed by solvent of NMP The identical technique of embodiment 1 prepares slurry, and slurry fails because forming gel (g., jelly-like colloid) during sizing mixing, such as Fig. 7 institute Show.
By LiNi made from this comparative example0.8Co0.1Mn0.1O2Tertiary cathode material washed, dried after by 1 phase of embodiment Slurrying is carried out with Pulping conditions, anode sizing agent can be made.Press the identical pole piece preparation condition of embodiment 1 and battery pack again later Condition test is filled, positive discharge capacity for the first time only has 171.4mAh/g under the conditions of 0.2C.
Comparative example 1 and comparative example 1, modified LiNi made from the method for the invention0.8Co0.1Mn0.1O2Tertiary cathode The crystal structure of material does not change, and also generates without impurity phase;And its specific discharge capacity is high, is keeping stablizing chemical property While, it eliminates during high nickel content tertiary cathode powder prepares cell size under normal conditions and is also easy to produce g., jelly-like glue Body and the problem of fail.
Embodiment 2
1) nickel cobalt manganese hydroxide precursor is prepared:
1.1) it takes nickel sulfate, cobaltous sulfate and manganese sulfate soluble in water, obtains the first mixed liquor, control total in the first mixed liquor The concentration of metal ion is 2mol/L, and the molar ratio of nickel ion, cobalt ions and manganese ion is 8: 1: 1;
1.2) magnesium sulfate is added into mixed liquor, dissolves, obtains the second mixed liquor;Wherein the additional amount of magnesium sulfate be nickel from The 0.2% of sub, cobalt ions and manganese ion integral molar quantity;
1.3) precipitating reagent is added into the second mixed liquor and complexing agent carries out coprecipitation reaction, in which:
Design coprecipitation reaction total time is 6h, and institute's coprecipitation reaction process includes two stages, the respectively first reaction Stage and second stage of reaction, wherein the reaction time of first stage of reaction is 4.8h, the reaction time of second stage of reaction is 1.2h (account for coprecipitation reaction total reaction time 20%);
The precipitating reagent is the sodium hydroxide solution that concentration is 1mol/L, and dosage is to control entire coprecipitation reaction process The pH=10-11 of middle system is added dropwise and runs through entire coprecipitation reaction process;The complexing agent includes the first complexing agent and the Two complexing agents, wherein the first complexing agent is the ammonium hydroxide that concentration is 25%, the second complexing agent is the ammonium molybdate that concentration is 0.2mol/L Aqueous solution;
What is be added in first stage of reaction of coprecipitation reaction is the first complexing agent, and additional amount presses every liter of first mixed liquor The first complexing agent of 8mL is added to calculate;The first complexing agent control has dropped evenly in 4.8h;
What is be added in second stage of reaction of coprecipitation reaction is the second complexing agent, and additional amount presses every liter of first mixed liquor The second complexing agent of 35mL is added to calculate, the second complexing agent control has dropped evenly in 1.2h;
After the completion of coprecipitation reaction, precipitating is collected in the filtering of gained reactant material, dry under the conditions of 60 DEG C after washing, is obtained Nickel cobalt manganese hydroxide precursor to surface containing molybdenum;
2) the nickel cobalt manganese hydroxide precursor by surface containing molybdenum and lithium hydroxide are placed in drum type high-speed blender and mix It closes uniformly, wherein the dosage of lithium hydroxide is according to LiNi0.8Co0.1Mn0.1O21.01 times of theoretical lithium content, gained mixing Object, which is placed in oxidizing atmosphere, keeps the temperature 7h under the conditions of 720 DEG C, obtains LiNi of the surface containing molybdenum0.8Co0.1Mn0.1O2Powder;
3) polyacrylic acid solution that solid content is 0.005% is obtained;
4) LiNi of the surface containing molybdenum is weighed by 1: 1 mass ratio0.8Co0.1Mn0.1O2Powder and solid content are 0.005% Polyacrylic acid solution, the later LiNi by surface containing molybdenum0.8Co0.1Mn0.1O2Powder is placed in the polypropylene that solid content is 0.005% In acid solution, it is stirred 2h, is taken out, it is dry under the conditions of 120 DEG C, obtain the LiNi of polyacrylic acid cladding0.8Co0.1Mn0.1O2 Powder;
5) LiNi of gained polyacrylic acid cladding0.8Co0.1Mn0.1O2Powder is placed under vacuum condition, is warming up to 680 DEG C and (is risen Warm rate is 5 DEG C/min) heat preservation 1h, it is passed through oxidizing atmosphere later to get coating modification LiNi is arrived0.8Co0.1Mn0.1O2Ternary is just Pole material.
(- 30 DEG C of dew point) is prepared under environment in traditional lithium-ion battery slurry, by coating modification made from the present embodiment LiNi0.8Co0.1Mn0.1O2Tertiary cathode material, superconduction carbon black (SP) and PVDF binder are mixed by 94: 3: 3 weight ratio, with NMP breaks into slurry by existing common process for solvent, the case where slurry becomes gel (g., jelly-like colloid) does not occur.
Embodiment 3
1) nickel cobalt manganese hydroxide precursor is prepared:
1.1) it takes nickel sulfate, cobaltous sulfate and manganese sulfate soluble in water, obtains the first mixed liquor, control total in the first mixed liquor The concentration of metal ion is 2mol/L, and the molar ratio of nickel ion, cobalt ions and manganese ion is 8: 1: 1;
1.2) magnesium sulfate is added into mixed liquor, dissolves, obtains the second mixed liquor;Wherein the additional amount of magnesium sulfate be nickel from The 0.08% of sub, cobalt ions and manganese ion integral molar quantity;
1.3) precipitating reagent is added into the second mixed liquor and complexing agent carries out coprecipitation reaction, in which:
Design coprecipitation reaction total time is 6h, and institute's coprecipitation reaction process includes two stages, the respectively first reaction Stage and second stage of reaction, wherein the reaction time of first stage of reaction is 5.28h, the reaction time of second stage of reaction is 0.72h (account for coprecipitation reaction total reaction time 12%);
The precipitating reagent is the sodium hydroxide solution that concentration is 5mol/L, and dosage is to control entire coprecipitation reaction process The pH=12-13 of middle system is added dropwise and runs through entire coprecipitation reaction process;The complexing agent includes the first complexing agent and the Two complexing agents, wherein the first complexing agent is the ammonium hydroxide that concentration is 25%, the second complexing agent is the ammonium molybdate that concentration is 0.5mol/L Aqueous solution;
What is be added in first stage of reaction of coprecipitation reaction is the first complexing agent, and additional amount presses every liter of first mixed liquor The first complexing agent of 25mL is added to calculate;The first complexing agent control has dropped evenly in 5.28h;
What is be added in second stage of reaction of coprecipitation reaction is the second complexing agent, and additional amount presses every liter of first mixed liquor The second complexing agent of 40mL is added to calculate, the second complexing agent control has dropped evenly in 0.72h;
After the completion of coprecipitation reaction, precipitating is collected in the filtering of gained reactant material, dry under the conditions of 80 DEG C after washing, is obtained Nickel cobalt manganese hydroxide precursor to surface containing molybdenum;
2) the nickel cobalt manganese hydroxide precursor by surface containing molybdenum and lithium hydroxide are placed in drum type high-speed blender and mix It closes uniformly, wherein the dosage of lithium hydroxide is according to LiNi0.8Co0.1Mn0.1O21.03 times of theoretical lithium content, gained mixing Object, which is placed in oxidizing atmosphere, keeps the temperature 6h under the conditions of 780 DEG C, obtains LiNi of the surface containing molybdenum0.8Co0.1Mn0.1O2Powder;
3) polyacrylic acid solution that solid content is 0.001% is obtained;
4) LiNi of the surface containing molybdenum is weighed by 1: 1 mass ratio0.8Co0.1Mn0.1O2Powder and solid content are 0.001% Polyacrylic acid solution, the later LiNi by surface containing molybdenum0.8Co0.1Mn0.1O2Powder is placed in the polypropylene that solid content is 0.001% In acid solution, it is stirred 1h, is taken out, it is dry under the conditions of 200 DEG C, obtain the LiNi of polyacrylic acid cladding0.8Co0.1Mn0.1O2 Powder;
5) LiNi of gained polyacrylic acid cladding0.8Co0.1Mn0.1O2Powder is placed under vacuum condition, is warming up to 600 DEG C and (is risen Warm rate is 5 DEG C/min) heat preservation 3h, it is passed through oxidizing atmosphere later to get coating modification LiNi is arrived0.8Co0.1Mn0.1O2Ternary is just Pole material.
(- 30 DEG C of dew point) is prepared under environment in traditional lithium-ion battery slurry, by coating modification made from the present embodiment LiNi0.8Co0.1Mn0.1O2Tertiary cathode material, superconduction carbon black (SP) and PVDF binder are mixed by 94: 3: 3 weight ratio, with NMP breaks into slurry by existing common process for solvent, the case where slurry becomes gel (g., jelly-like colloid) does not occur.

Claims (8)

1. a kind of coating modification LiNi0.8Co0.1Mn0.1O2The preparation method of tertiary cathode material, comprising the following steps:
1) nickel cobalt manganese hydroxide precursor is prepared:
1.1) it takes nickel salt, cobalt salt and manganese salt soluble in water, obtains the first mixed liquor, control total metal ion in the first mixed liquor Concentration is 2mol/L, and the molar ratio of nickel ion, cobalt ions and manganese ion is 8: 1: 1;
1.2) magnesium sulfate is added into mixed liquor, dissolves, obtains the second mixed liquor;Wherein the additional amount of magnesium sulfate be nickel ion, The 0.08-0.25% of cobalt ions and manganese ion integral molar quantity;
1.3) precipitating reagent is added into the second mixed liquor and complexing agent carries out coprecipitation reaction, in which:
The coprecipitation reaction process includes two stages, respectively first stage of reaction and second stage of reaction, wherein second The reaction time of the stage of reaction accounts for the 12-20% of coprecipitation reaction total reaction time;
The complexing agent includes the first complexing agent and the second complexing agent, wherein the first complexing agent is ammonium hydroxide, the second complexing agent is molybdenum Sour aqueous ammonium;
What is be added in first stage of reaction of coprecipitation reaction is the first complexing agent, and the first complexing agent is complete in first stage of reaction Journey is uniformly added into;When the first complexing agent is the ammonium hydroxide that concentration is 25%, 5- is added by every liter of first mixed liquor in additional amount The first complexing agent of 50mL calculates;
What second stage of reaction was added is the second complexing agent, and the second complexing agent is uniformly added into the second stage of reaction whole process;When When the concentration of second complexing agent is 0.1-0.5mol/L, additional amount is added 30-50mL second by every liter of first mixed liquor and is complexed Agent calculates;
During entire coprecipitation reaction, the dosage of precipitating reagent is the pH=10-13 of control system, and after the reaction was completed, gained is anti- Material filtering is answered, precipitating is collected and is dried, obtain nickel cobalt manganese hydroxide precursor of the surface containing molybdenum;
2) the nickel cobalt manganese hydroxide precursor by surface containing molybdenum and lithium source are uniformly mixed, and are heat-treated in oxidizing atmosphere, Obtain LiNi of the surface containing molybdenum0.8Co0.1Mn0.1O2Powder;
3) polyacrylic acid solution is obtained;
4) LiNi by surface containing molybdenum0.8Co0.1Mn0.1O2Powder is placed in polyacrylic acid solution, is stirred certain time, is taken Out, dry, obtain the LiNi of polyacrylic acid cladding0.8Co0.1Mn0.1O2Powder;
5) LiNi of gained polyacrylic acid cladding0.8Co0.1Mn0.1O2Powder, which is placed in oxidizing atmosphere, to be heat-treated to get to institute The coating modification LiNi stated0.8Co0.1Mn0.1O2Tertiary cathode material.
2. preparation method according to claim 1, it is characterised in that: in step 1.3), in entire coprecipitation reaction process In, the dosage of precipitating reagent is the pH=11-13 of control system.
3. preparation method according to claim 1, it is characterised in that: in step 1.3), the precipitating reagent is that concentration is The sodium hydroxide solution or potassium hydroxide solution of 1-5mol/L.
4. preparation method according to claim 1, it is characterised in that: in step 3), the polyacrylic acid solution is solid Content is the polyacrylic acid solution of 0.001-0.005%.
5. preparation method according to claim 1, it is characterised in that: in step 4), time >=0.1h for being stirred.
6. preparation method according to claim 1, it is characterised in that: in step 5), the heat treatment is in 600-700 3-8h is kept the temperature under the conditions of DEG C.
7. the coating modification LiNi that any one of claim 1-6 the method is prepared0.8Co0.1Mn0.1O2Tertiary cathode material Material.
8. a kind of lithium ion battery, including positive plate, it is characterised in that: the positive electrode used on the positive plate is wanted for right Coating modification LiNi described in asking 70.8Co0.1Mn0.1O2Tertiary cathode material.
CN201811655380.7A 2018-12-29 2018-12-29 Coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material and preparation method thereof and battery Pending CN109768248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811655380.7A CN109768248A (en) 2018-12-29 2018-12-29 Coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material and preparation method thereof and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811655380.7A CN109768248A (en) 2018-12-29 2018-12-29 Coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material and preparation method thereof and battery

Publications (1)

Publication Number Publication Date
CN109768248A true CN109768248A (en) 2019-05-17

Family

ID=66453322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811655380.7A Pending CN109768248A (en) 2018-12-29 2018-12-29 Coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material and preparation method thereof and battery

Country Status (1)

Country Link
CN (1) CN109768248A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307310A (en) * 2021-04-08 2021-08-27 桂林理工大学 Preparation method of molybdenum-doped titanium dioxide-coated high-nickel ternary cathode material with high cycle performance
CN114665088A (en) * 2022-03-08 2022-06-24 三峡大学 Preparation method of zinc-cobalt-nickel battery positive electrode composite material
CN114975932A (en) * 2022-06-01 2022-08-30 长沙理工大学 Conductive oxide coated high-nickel ternary lithium ion battery positive electrode material and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577096A (en) * 2013-10-17 2015-04-29 奇瑞汽车股份有限公司 Cathode material for lithium-ion battery, preparation method of cathode material and battery
CN104701530A (en) * 2015-01-30 2015-06-10 天津巴莫科技股份有限公司 Preparation method of in-situ doped and modified nickel cobalt manganese lithium oxide positive material
CN104916837A (en) * 2015-05-11 2015-09-16 田东 Preparation method of aluminum element doped ternary positive electrode material
CN106532038A (en) * 2017-01-18 2017-03-22 宁波金和锂电材料有限公司 Lithium nickel and cobalt aluminate anode material and preparation method and lithium ion battery thereof
CN106935828A (en) * 2017-03-29 2017-07-07 山东玉皇新能源科技有限公司 A kind of modified height ratio capacity positive electrode and preparation method thereof
CN107342398A (en) * 2017-04-25 2017-11-10 山东玉皇新能源科技有限公司 A kind of anode active material of lithium ion battery and preparation method thereof
CN107359335A (en) * 2017-07-12 2017-11-17 湖南金富力新能源股份有限公司 Nickel-cobalt lithium manganate cathode material and its preparation method and application
US20180183046A1 (en) * 2016-12-28 2018-06-28 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577096A (en) * 2013-10-17 2015-04-29 奇瑞汽车股份有限公司 Cathode material for lithium-ion battery, preparation method of cathode material and battery
CN104701530A (en) * 2015-01-30 2015-06-10 天津巴莫科技股份有限公司 Preparation method of in-situ doped and modified nickel cobalt manganese lithium oxide positive material
CN104916837A (en) * 2015-05-11 2015-09-16 田东 Preparation method of aluminum element doped ternary positive electrode material
US20180183046A1 (en) * 2016-12-28 2018-06-28 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
CN106532038A (en) * 2017-01-18 2017-03-22 宁波金和锂电材料有限公司 Lithium nickel and cobalt aluminate anode material and preparation method and lithium ion battery thereof
CN106935828A (en) * 2017-03-29 2017-07-07 山东玉皇新能源科技有限公司 A kind of modified height ratio capacity positive electrode and preparation method thereof
CN107342398A (en) * 2017-04-25 2017-11-10 山东玉皇新能源科技有限公司 A kind of anode active material of lithium ion battery and preparation method thereof
CN107359335A (en) * 2017-07-12 2017-11-17 湖南金富力新能源股份有限公司 Nickel-cobalt lithium manganate cathode material and its preparation method and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马祥志等: "《有机化学》", 31 December 2002, 中国医药科技出版 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307310A (en) * 2021-04-08 2021-08-27 桂林理工大学 Preparation method of molybdenum-doped titanium dioxide-coated high-nickel ternary cathode material with high cycle performance
CN114665088A (en) * 2022-03-08 2022-06-24 三峡大学 Preparation method of zinc-cobalt-nickel battery positive electrode composite material
CN114665088B (en) * 2022-03-08 2024-03-12 三峡大学 Preparation method of zinc cobalt nickel battery positive electrode composite material
CN114975932A (en) * 2022-06-01 2022-08-30 长沙理工大学 Conductive oxide coated high-nickel ternary lithium ion battery positive electrode material and preparation method thereof
CN114975932B (en) * 2022-06-01 2024-03-08 长沙理工大学 Conductive oxide coated high-nickel ternary lithium ion battery positive electrode material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN112750999B (en) Cathode material, preparation method thereof and lithium ion battery
CN108878818B (en) Core-shell structure nickel-cobalt-manganternary ternary anode material presoma and preparation method thereof
CN114843498B (en) Sodium oxide-containing positive electrode material, preparation method and application thereof, positive electrode plate and application thereof
CN109671924B (en) Preparation method of nickel-cobalt-manganese ternary cathode material
CN111081987B (en) Lithium cobaltate cathode material of lithium ion battery with voltage of more than 4.45V and preparation method thereof
CN114790013A (en) Sodium ion battery positive electrode active material capable of self-supplementing sodium, and preparation method and application thereof
CN109786701A (en) Modified LiNi0.8Co0.1Mn0.1O2The preparation method and product and battery of tertiary cathode material
TWI452758B (en) Cathode material of lithium ion battery, method for making the same, and lithium ion battery using the same
CN108777295A (en) A kind of nickel cobalt lithium manganate and preparation method thereof, lithium ion battery
CN109461928A (en) A kind of high-energy density polynary positive pole material and preparation method thereof
WO2014104466A1 (en) Anode active material coated with manganese potassium oxide for lithium secondary battery and method for manufacturing same
CN109728277A (en) The method and product and battery be surface-treated to nickelic tertiary cathode material
CN110034274B (en) Modified ternary cathode material, preparation method thereof and lithium ion battery
CN110649230B (en) Nanometer rivet core-shell structure anode material and preparation method thereof
CN111403729A (en) Sodium ion battery positive electrode material, preparation method thereof and sodium ion battery
CN108807928B (en) Synthesis of metal oxide and lithium ion battery
WO2015027826A1 (en) Positive electrode material for lithium-ion battery and method for preparing same
CN111115713A (en) LaMnO3Coated lithium-rich manganese-based positive electrode material and preparation method thereof
CN111180689A (en) Micron hollow porous composite spherical sodium ion battery positive electrode material and preparation method thereof
CN109768248A (en) Coating modification LiNi0.8Co0.1Mn0.1O2Tertiary cathode material and preparation method thereof and battery
CN104091943A (en) High-power lithium-ion positive electrode material and preparation method thereof
CN109755523A (en) Coating modification LiNi0.6Co0.2Mn0.2O2Tertiary cathode material and preparation method thereof and battery
CN115064670B (en) Preparation method of doped coated modified sodium nickel manganese oxide positive electrode material
CN109950497A (en) A kind of nickelic positive electrode and preparation method thereof with uniform clad
CN109728279A (en) The surface treatment method and product and battery of a kind of nickelic tertiary cathode material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190517