CN109760523A - 基于bp神经网络车速预测的复合电源能量管理方法 - Google Patents

基于bp神经网络车速预测的复合电源能量管理方法 Download PDF

Info

Publication number
CN109760523A
CN109760523A CN201910051538.8A CN201910051538A CN109760523A CN 109760523 A CN109760523 A CN 109760523A CN 201910051538 A CN201910051538 A CN 201910051538A CN 109760523 A CN109760523 A CN 109760523A
Authority
CN
China
Prior art keywords
neural network
prediction
speed
soc
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910051538.8A
Other languages
English (en)
Inventor
胡强
付志军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910051538.8A priority Critical patent/CN109760523A/zh
Publication of CN109760523A publication Critical patent/CN109760523A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种基于BP神经网络车速预测的复合电源能量管理方法,首先建立BP神经网络车速预测模型,通过收集处理当前汽车行驶状态以及历时车速信息,作为神经网络模型输入参数,获得未来时段的预测车速;然后根据预测车速信息,结合整车模型求出电机需求功率,并采用模型预测控制算法求出预测时域内的最优控制量,再将最优控制量作用于系统,通过滚动优化与反馈反馈校正,求出整个工况的最优控制量。所述能量管理控制策略能有效地提高复合电源汽车能量使用效率,增加汽车续驶里程。

Description

基于BP神经网络车速预测的复合电源能量管理方法
技术领域
本发明属于新能源汽车领域,具体涉及了一种基于BP神经网络车速预测的复合电源能量管理方法。
背景技术
环境污染和能量紧缺是现如今汽车领域共同面临的问题,新能源汽车能有效地缓解这些问题。单一动力源的纯电动汽车由于电池技术的约束,在动力性能上存在一定的缺陷;混合动力汽车相对于传统内燃机车,虽然减少了燃料的消耗,但是仍然以燃料为主动力源,并没有实际上解决问题;复合电源汽车,采用动力电池和超级电容混合的形式作为动力源,结合了两者之间的优势,有效的改善纯电动汽车的续驶里程,且无有害气体排放,更具有实际意义。本专利以复合电源为研究对象,通过合理分配两个动力源的能量,来提高复合电源汽车的能量利用效率,进而提高汽车续驶里程。
目前,学者对复合电源汽车的能量管理问题的研究主要是两个方面:基于规则的能量管理策略,如逻辑门限控制、模糊规则控制、功率跟随控制等;基于全局优化的能量管理策略,遗传算法、动态规划等。前者主要根据工程经验设定规则,虽然鲁棒性好,但是控制效果一般;后者虽然能取得理想的控制效果,但是需要预先知道整个循环工况,只能离线计算获得,不能在线实施。
发明内容
为了克服现有复合电源汽车的能量使用效率较低的不足,本发明提供一种基于BP神经网络车速预测的能量管理方法,通过神经网络模型对工况的未来车速进行预测,利用模型预测算法进行滚动优化求解,获得最优控制量,提高复合电源系统能量利用效率,实现能量管理优化。
为实现上述目的,本发明采用如下技术方案:
一种基于神经网络车速预测的复合电源能量管理方法,包括以下步骤:
步骤1,根据历史车速信息和当前汽车行驶状态,通过建立神经网络车速预测模型,获得K时刻未来一段时间的预测车速;
步骤2,根据所述步骤1中的获得的预测车速计算出电机需求功率;
步骤3,根据步骤2中的需求功率,采用模型预测控制算法滚动优化求解K时刻起预测时域内最优控制序列;
步骤4,将步骤3中获得的最优控制序列首个控制量作用到整车系统,对下一时刻的预测值进行校正;
步骤5,在k+1时刻重复步骤4的操作过程,直到求出整个系统的最优控制量。
进一步,所述步骤1的过程为:
所述车速预测模型采用BP神经网络预测模型,根据K时刻当前状态和历史车速信息,提取工况特征参数,组成BP神经网络模型的输入:
式中,表示平均车速,vmax表示最大车速,amax表示最大加速度,fv表示车速标准方差,Pi表示怠速时间比例,分别为各时刻的车速;
BP神经网络模型的结构采用三层BP神经网络,其中激活函数采用双曲型正切S型函数,定义如下:
BP神经网络模型的输出Nout为未来一段时间的预测车速:
Nout=vk+1,vk+2,…,vk+P
式中,vk+1,vk+2,…,vk+P分别为未来各时刻的车速。
再进一步,所述步骤2中,电机需求功率根据汽车理论计算公式求取。
更进一步,所述步骤3中,模型预测控制算法计算最优控制序列,过程为:
在采样时刻k,预测时域内的优化目标函数为:
式中,wb和wu分别为对应项的权重系数;SOC0为电池SOC参考值,SOC1为超级电容SOC参考值,P为预测时域;
优化问题的约束不等式方程如下:
式中,Ibmin和Ibmax分别为电池充放电电流极值,Iumin和Iumax分别为超级电容单体充放电电流极值,SOCb为电池的荷电状态,SOCbmax、SOCbmin分别为电池SOC上下限值,SOCu为超级电容的荷电状态,SOCumax和SOCumin分别是超级电容的上下限值,Pbout为电池的输出功率,Puout是超级电容的输出功率,Pbmin、Pbmax分别为电池输出功率的最大最小值,Pumin、Pumax分别为超级电容输出功率的最大最小值。
本发明的有益效果在于:采用模型预测控制能量管理策略代替传统依据经验的基于规则的能量管理策略,控制效果更为理想;采用BP神经网络进行模型预测控制的车速预测,预测精度更好,可以利用matlab神经网络工具箱,大大简化了建模时间,易于实现。
附图说明
图1是复合电源拓扑结构示意图。
图2是神经网络车速预测控制流程图。
图3是神经网络车速预测模型。
具体实施方式
下面结合附图对本发明作进一步的说明。
参照图1~图3,一种基于神经网络车速预测的复合电源能量管理方法,用于实现复合电源系统能量管理最优化,提高复合电源汽车续驶里程与动力性能,如图1所示,是复合电源系统的拓扑结构,其组成部分包括:动力电池、超级电容、DC/DC变换器。
本发明的基于神经网络车速预测的复合电源能量管理方法,如图2所示,包括以下步骤:
步骤1,根据历史车速信息和当前汽车行驶状态,通过建立神经网络车速预测模型,获得K时刻未来一段时间的预测车速;
其中神经网络模型如图3所示,一种三层结构的BP神经网络模型,第一层为输入层,主要承担接收数据输入的任务;第二层为隐藏层,由神经元和激活函数组成,用于描述输入输出映射关系;第三层为输出层,用于生成特定形式的输出数据;
根据K时刻当前状态和历史车速信息,提取工况特征参数,组成BP神经网络模型的输入:
式中,表示平均车速,vmax表示最大车速,amax表示最大加速度,fv表示车速标准方差,Pi表示怠速时间比例,分别为各时刻的车速;
BP神经网络模型隐藏层激活函数采用双曲型正切S型函数,定义如下:
BP神经网络模型的输出Nout为未来一段时间的预测车速:
Nout=vk+1,vk+2,…,vk+P
式中,vk+1,vk+2,…,vk+P分别为未来各时刻的车速。
步骤2,根据获得的预测车速信息计算出电机需求功率;
步骤3,根据需求功率,采用模型预测控制算法滚动优化求解K时刻起预测时域内最优控制序列;
在采样时刻k,预测时域内的优化目标函数为:
式中,wb和wu分别为对应项的权重系数;SOC0为电池SOC参考值,SOC1为超级电容SOC参考值,P为预测时域。
优化问题的约束不等式方程如下:
式中,Ibmin和Ibmax分别为电池充放电电流极值,Iumin和Iumax分别为超级电容单体充放电电流极值,SOCb为电池的荷电状态,SOCbmax、SOCbmin分别为电池SOC上下限值,SOCu为超级电容的荷电状态,SOCumax和SOCumin分别是超级电容的上下限值,Pbout为电池的输出功率,Puout是超级电容的输出功率,Pbmin、Pbmax分别为电池输出功率的最大最小值,Pumin、Pumax分别为超级电容输出功率的最大最小值。
步骤4,将步骤3中获得的最优控制序列首个控制量作用到整车系统,对下一时刻的预测值进行校正;
步骤5,在k+1时刻重复步骤4的操作过程,直到求出整个系统的最优控制量。

Claims (4)

1.一种基于神经网络车速预测的复合电源能量管理方法,其特征在于,所述方法包括以下步骤:
步骤1,根据历史车速信息和当前汽车行驶状态,通过建立神经网络车速预测模型,获得K时刻未来一段时间的预测车速;
步骤2,根据所述步骤1中的获得的预测车速计算出电机需求功率;
步骤3,根据步骤2中的需求功率,采用模型预测控制算法滚动优化求解K时刻起预测时域内最优控制序列;
步骤4,将步骤3中获得的最优控制序列首个控制量作用到整车系统,对下一时刻的预测值进行校正;
步骤5,在k+1时刻重复步骤4的操作过程,直到求出整个系统的最优控制量。
2.如权利要求1所述的基于神经网络车速预测的复合电源能量管理方法,其特征在于,所述步骤1的过程为:
所述车速预测模型采用BP神经网络预测模型,根据K时刻当前状态和历史车速信息,提取工况特征参数,组成BP神经网络模型的输入:
式中,表示平均车速,vmax表示最大车速,amax表示最大加速度,fv表示车速标准方差,Pi表示怠速时间比例,分别为各时刻的车速;
BP神经网络模型的结构采用三层BP神经网络,其中激活函数采用双曲型正切S型函数,定义如下:
BP神经网络模型的输出Nout为未来一段时间的预测车速:
Nout=vk+1,vk+2,···,vk+P
式中,vk+1,vk+2,···,vk+P分别为未来各时刻的车速。
3.如权利要求1或2所述的基于神经网络车速预测的复合电源能量管理方法,其特征在于,所述步骤2中,电机需求功率根据汽车理论计算公式求取。
4.如权利要求1或2所述的基于神经网络车速预测的复合电源能量管理方法,其特征在于,所述步骤3中,模型预测控制算法计算最优控制序列,过程为:
在采样时刻k,预测时域内的优化目标函数为:
式中,wb和wu分别为对应项的权重系数;SOC0为电池SOC参考值,SOC1为超级电容SOC参考值,P为预测时域;
优化问题的约束不等式方程如下:
式中,Ibmin和Ibmax分别为电池充放电电流极值,Iumin和Iumax分别为超级电容单体充放电电流极值,SOCb为电池的荷电状态,SOCbmax、SOCbmin分别为电池SOC上下限值,SOCu为超级电容的荷电状态,SOCumax和SOCumin分别是超级电容的上下限值,Pbout为电池的输出功率,Puout是超级电容的输出功率,Pbmin、Pbmax分别为电池输出功率的最大最小值,Pumin、Pumax分别为超级电容输出功率的最大最小值。
CN201910051538.8A 2019-01-21 2019-01-21 基于bp神经网络车速预测的复合电源能量管理方法 Pending CN109760523A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910051538.8A CN109760523A (zh) 2019-01-21 2019-01-21 基于bp神经网络车速预测的复合电源能量管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910051538.8A CN109760523A (zh) 2019-01-21 2019-01-21 基于bp神经网络车速预测的复合电源能量管理方法

Publications (1)

Publication Number Publication Date
CN109760523A true CN109760523A (zh) 2019-05-17

Family

ID=66454703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910051538.8A Pending CN109760523A (zh) 2019-01-21 2019-01-21 基于bp神经网络车速预测的复合电源能量管理方法

Country Status (1)

Country Link
CN (1) CN109760523A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518847A (zh) * 2019-08-30 2019-11-29 长安大学 基于bp神经网络的表面式永磁同步电机模型预测控制方法
CN110518860A (zh) * 2019-08-30 2019-11-29 长安大学 基于bp神经网络和开关表的永磁同步电机模型预测控制方法
CN110509957A (zh) * 2019-08-29 2019-11-29 交控科技股份有限公司 一种列车速度预测方法及装置
CN110535396A (zh) * 2019-08-30 2019-12-03 长安大学 基于bp神经网络的表面式永磁同步电机模型预测控制方法
CN111597723A (zh) * 2020-05-20 2020-08-28 重庆大学 基于改进的智能模型预测控制的电动汽车空调系统智能控制方法
CN112644344A (zh) * 2020-12-29 2021-04-13 武汉格罗夫氢能汽车有限公司 一种基于bp神经网络功率分配优化系统及优化方法
CN112668799A (zh) * 2021-01-04 2021-04-16 南京航空航天大学 基于行驶大数据的phev的智能能量管理方法和存储介质
CN113002370A (zh) * 2021-04-16 2021-06-22 吉林大学 一种燃料电池汽车实时能量管理控制方法
CN113335125A (zh) * 2021-07-01 2021-09-03 广州锐速智能科技股份有限公司 车辆充电方法、装置、系统、充电模型训练方法
CN116541679A (zh) * 2023-07-04 2023-08-04 杭州宇谷科技股份有限公司 电池续航距离的预估方法、系统、电子设备和存储介质
CN117078030A (zh) * 2023-07-12 2023-11-17 贵州大学 一种基于车速预测的燃料电池公交车能量管理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490494A (zh) * 2013-09-18 2014-01-01 江苏大学 一种应用于混合动力汽车车载复合电源
US20170291594A1 (en) * 2016-04-11 2017-10-12 Hyundai Motor Company Method and apparatus for controlling mild hybrid electric vehicle
CN107516107A (zh) * 2017-08-01 2017-12-26 北京理工大学 一种混合动力车辆的行驶工况分类预测方法
CN109017809A (zh) * 2018-08-27 2018-12-18 北京理工大学 一种基于越野工况预测的能量分配方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490494A (zh) * 2013-09-18 2014-01-01 江苏大学 一种应用于混合动力汽车车载复合电源
US20170291594A1 (en) * 2016-04-11 2017-10-12 Hyundai Motor Company Method and apparatus for controlling mild hybrid electric vehicle
CN107516107A (zh) * 2017-08-01 2017-12-26 北京理工大学 一种混合动力车辆的行驶工况分类预测方法
CN109017809A (zh) * 2018-08-27 2018-12-18 北京理工大学 一种基于越野工况预测的能量分配方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110509957A (zh) * 2019-08-29 2019-11-29 交控科技股份有限公司 一种列车速度预测方法及装置
CN110518860A (zh) * 2019-08-30 2019-11-29 长安大学 基于bp神经网络和开关表的永磁同步电机模型预测控制方法
CN110535396A (zh) * 2019-08-30 2019-12-03 长安大学 基于bp神经网络的表面式永磁同步电机模型预测控制方法
CN110535396B (zh) * 2019-08-30 2021-03-30 长安大学 基于bp神经网络的表面式永磁同步电机模型预测控制方法
CN110518847B (zh) * 2019-08-30 2021-03-30 长安大学 基于bp神经网络的表面式永磁同步电机模型预测控制方法
CN110518847A (zh) * 2019-08-30 2019-11-29 长安大学 基于bp神经网络的表面式永磁同步电机模型预测控制方法
CN110518860B (zh) * 2019-08-30 2021-05-04 长安大学 一种永磁同步电机模型预测控制方法
CN111597723B (zh) * 2020-05-20 2024-03-15 重庆大学 基于改进的智能模型预测控制的电动汽车空调系统智能控制方法
CN111597723A (zh) * 2020-05-20 2020-08-28 重庆大学 基于改进的智能模型预测控制的电动汽车空调系统智能控制方法
CN112644344A (zh) * 2020-12-29 2021-04-13 武汉格罗夫氢能汽车有限公司 一种基于bp神经网络功率分配优化系统及优化方法
CN112668799A (zh) * 2021-01-04 2021-04-16 南京航空航天大学 基于行驶大数据的phev的智能能量管理方法和存储介质
CN113002370B (zh) * 2021-04-16 2022-06-21 吉林大学 一种燃料电池汽车实时能量管理控制方法
CN113002370A (zh) * 2021-04-16 2021-06-22 吉林大学 一种燃料电池汽车实时能量管理控制方法
CN113335125A (zh) * 2021-07-01 2021-09-03 广州锐速智能科技股份有限公司 车辆充电方法、装置、系统、充电模型训练方法
CN113335125B (zh) * 2021-07-01 2024-06-04 广州锐速智能科技股份有限公司 车辆充电方法、装置、系统、充电模型训练方法
CN116541679A (zh) * 2023-07-04 2023-08-04 杭州宇谷科技股份有限公司 电池续航距离的预估方法、系统、电子设备和存储介质
CN116541679B (zh) * 2023-07-04 2023-09-15 杭州宇谷科技股份有限公司 电池续航距离的预估方法、系统、电子设备和存储介质
CN117078030A (zh) * 2023-07-12 2023-11-17 贵州大学 一种基于车速预测的燃料电池公交车能量管理方法
CN117078030B (zh) * 2023-07-12 2024-05-03 贵州大学 一种基于车速预测的燃料电池公交车能量管理方法

Similar Documents

Publication Publication Date Title
CN109760523A (zh) 基于bp神经网络车速预测的复合电源能量管理方法
Lü et al. Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm
Li et al. Acceleration curve optimization for electric vehicle based on energy consumption and battery life
Du et al. Optimization design and performance comparison of different powertrains of electric vehicles
CN112776673A (zh) 智能网联燃料电池汽车实时能量优化管理系统
CN113022385B (zh) 燃料电池锂电池混合动力系统参数匹配方法
CN104071033A (zh) 燃料电池超级电容混合动力机车参数匹配优化方法
CN111547041A (zh) 一种并行混合动力汽车的协同优化能量管理方法
CN109849694B (zh) 一种基于在线凸规划的混合储能式有轨电车能量管理方法
Liu et al. Multi-objective optimization of energy management strategy on hybrid energy storage system based on radau pseudospectral method
Zhang et al. Energy management for parallel HEV based on PMP algorithm
CN114347868B (zh) 基于智能网联信息的燃料电池混合动力汽车能量管理方法
Song et al. Study on the fuel economy of fuel cell electric vehicle based on rule-based energy management strategies
Liu et al. Adaptive energy management for plug-in hybrid electric vehicles considering real-time traffic information
Lian et al. Dynamic programming based optimal control strategy of the hybrid vehicular power system
Zhao et al. Configuration analysis and parameter matching of fuel cell electric vehicle driving system
Xu et al. Equivalent consumption minimization strategies of series hybrid city buses
Li An energy management method of electric vehicles based on stochastic model predictive control
Ma et al. Real‐Time Application Optimization Control Algorithm for Energy Management Strategy of the Hybrid Power System Based on Artificial Intelligence
Jing et al. Research on an Improved equivalent fuel consumption minimization strategy Based on Ant Colony Algorithm
Ma et al. Review on energy management strategies of PHEV
Li et al. Variable horizon MPC for energy management on dual planetary gear hybrid electric vehicle
Xiao et al. An optimized energy management strategy for fuel cell hybrid vehicles
He et al. Research on Control Strategy of Plug-in Hybrid Electric Vehicle Based on Improved Dynamic Programming
Zhang et al. Research on Optimized Energy Management Strategy Based on Micro-trip Recognition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190517

RJ01 Rejection of invention patent application after publication