CN109758119A - 一种肿瘤微血管图像处理装置 - Google Patents

一种肿瘤微血管图像处理装置 Download PDF

Info

Publication number
CN109758119A
CN109758119A CN201910080990.7A CN201910080990A CN109758119A CN 109758119 A CN109758119 A CN 109758119A CN 201910080990 A CN201910080990 A CN 201910080990A CN 109758119 A CN109758119 A CN 109758119A
Authority
CN
China
Prior art keywords
image processing
tumor
microvessel
fiber coupler
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910080990.7A
Other languages
English (en)
Other versions
CN109758119B (zh
Inventor
秦嘉
蔡佳龙
易遥
安林
叶新荣
邓卓健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Weiren Medical Technology Co Ltd
Original Assignee
Guangdong Weiren Medical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Weiren Medical Technology Co Ltd filed Critical Guangdong Weiren Medical Technology Co Ltd
Priority to CN201910080990.7A priority Critical patent/CN109758119B/zh
Publication of CN109758119A publication Critical patent/CN109758119A/zh
Application granted granted Critical
Publication of CN109758119B publication Critical patent/CN109758119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供一种肿瘤微血管图像处理装置,包括肿瘤微血管成像系统和图像处理模块,所述图像处理模块采用如下方法对获取的血管图像进行处理,包括步骤:S1,对结构信号进行大血管下阴影补偿;S2,利用Hessian滤波进行三维管状形态物体增强。本发明的图像处理模块对成像观察到的局部血管几何特征对血流信息进行针对性地增强和抑制,使得真实血流部分得到保留,从而可以实现活体提取与量化肿瘤表层微血管的参数,从而可以指导早期肿瘤的筛查及诊断、淋巴结光学活检和术中指导切除范围等。

Description

一种肿瘤微血管图像处理装置
技术领域
本发明属于图像处理装置,具体涉及一种肿瘤微血管的图像处理装置。
背景技术
血管生成在肿瘤生长和扩散过程中至关重要,肿瘤细胞诱导血管生成往往发生在肿瘤形成初期到中期阶段。因此,肿瘤血管形态学的可视化有助于提高诊断的准确性。
当前的肿瘤成像技术,如X线计算机断层摄影(CT),正电子发射断层摄(PET)和磁共振成像(MRI)等,往往分辨率低,达不到可靠检测<2mm的肿瘤沉积物的作用;同时神经外科医生或许也有这样的困扰:在清除肿瘤时,该如何精确地界定肿瘤的切除区域?清除不彻底,肿瘤会复发,切除了正常的生理组织,可能给病人造成终身伤害。因此需要一种先进的技术,即时、非侵入性、精准评估肿瘤的发生与分布情况。
扫频源光学相干层析成像系统(Swept-source optical coherence tomography,SS-OCT),集光学、超灵敏探测及计算机图像处理技术于一体,是一种可以快速提供拥有微米级分辨率的活体组织形态的断面图像的辅助诊疗工具,对人体无创无损。通过与内镜、细针、导管、腹腔镜等装置结合,在肿瘤外科中拥有巨大的成像潜力。
发明内容
本发明的目的是,提供一种肿瘤微血管的图像处理装置,从而便于获得准确的肿瘤微血管图像信息,为临床诊断和治疗提供更好的支持。
为了达到上述技术目的,本发明的技术方案如下:
一种肿瘤微血管图像处理装置,包括肿瘤微血管成像系统和图像处理模块,所述图像处理模块用于接收和处理所述肿瘤微血管成像系统产生的图像信号并进行处理,所述图像处理模块采用如下方法对获取的血管图像进行处理,包括步骤:
S1,对结构信号进行大血管下阴影补偿;
S2,利用Hessian滤波进行三维管状形态物体增强。
本发明提供的处理装置具备如下有益效果:
本发明的图像处理模块对成像观察到的局部血管几何特征对血流信息进行针对性地增强和抑制,通过该处理,血管下方非血流伪影信号得到抑制而对应的真实血流部分得到保留,从而可以实现活体提取与量化肿瘤表层微血管的参数,如肿瘤微血管半径、密度,微血管血流量与血氧含量等,揭示在健康人和癌症患者肿瘤形态学和血管疾病学的差异,从而可以指导早期肿瘤的筛查及诊断、淋巴结光学活检和术中指导切除范围等。
优选地,所述图像处理模块的图像处理速率为40-215fps。
优选地,所述处理装置的灵敏度>120dB,成像系统的成像范围2mm×2mm,成像深度3mm。
优选地,所述成像系统的横向分辨率为16.0μm,轴向分辨率为6μm。
作为优选方式,所述肿瘤微血管成像系统为SS-OTC成像系统。
进一步地,所述SS-OCT成像系统包括扫频光源,第一光纤耦合器,主成像干涉系统,标定干涉系统,探测臂;其中主成像干涉系统包括第二光纤耦合器、参考臂、样品臂、探测臂、第三光纤耦合器及第一平衡探测器;标定干涉系统包括马赫-曾德尔干涉仪、第四光纤耦合器及第二平衡探测器;
所述扫频光源提供的光束,经光纤传输入第一光纤耦合器后,分为两部分,分别进入主成像干涉系统和标定干涉系统;
进入主成像干涉系统的光束首先被第二光纤耦合器分为两部分,分别进入参考臂和样品臂,进入参考臂的光经反射后原路返回;进入样品臂的光,最后到达探测臂对样品进行扫描,然后原路返回;参考臂和样品臂向后返回的光进入第三光纤耦合器,最后经第一平衡探测器进行光电转化形成成像干涉信号;
进入标定干涉系统的光束,先进入马赫-曾德尔干涉仪,然后进入第四光纤耦合器,最后经第二平衡探测器进行光电转化形成标定干涉信号;
所述干涉信号和标定干涉信号被所述图像处理模块接收成像。
优选地,所述扫频光源,波长为1310nm,带宽长度为110nm,输出功率15mW,扫描速度为40-220kHz(40000-220000A-lines/s)。
优选地,所述第一光纤耦合器为95/5光纤耦合器,95%的光进入主成像干涉系统,5%的光进入标定干涉系统。
优选地,所述第二光纤耦合器为75/25光纤耦合器,75%的光进入样品臂,25%的光进入参考臂。
优选地,所述探测臂内设置有x-y扫描式振镜,直径12mm。
附图说明
图1为本发明实施例1提供的SS-OTC成像系统的肿瘤微血管图像处理装置结构示意图。
具体实施方式
下面结合附图和具体实施例详细说明本发明的技术方案。
血管生成在肿瘤生长和扩散过程中至关重要,肿瘤细胞诱导血管生成往往发生在肿瘤形成初期到中期阶段。因此,肿瘤血管形态学的可视化有助于提高诊断的准确性。现有的肿瘤血管成像技术,由于各种各样的限制,采集到的图像总存在一定的噪音,因此需要进行处理,才能使信息更准确。
本发明旨在提供一种肿瘤微血管图像处理装置,包括肿瘤微血管成像系统和图像处理模块,所述图像处理模块用于接收和处理所述肿瘤微血管成像系统产生的图像信号并进行处理,所述图像处理模块采用如下方法对获取的血管图像进行处理,包括步骤:
S1,对结构信号进行大血管下阴影补偿;
通过对结构信号进行大血管下阴影补偿可以恢复大血管下结构信号跟周围组织的一致性,具体可以通过提高横断面的成像分辨率和改进系统的成像深度进行补偿。
S2,利用Hessian滤波进行三维管状形态物体增强。
Hessian矩阵的特征值能够很好地描述眼底图像的血管信息,利用Hessian滤波进行三维管状形态物体增强,可以得到每个体素点对应的血管指数V(r)(0~1)。V(r)接近于1表示体素点处属于血管的可能性较大,接近于0表示血管的可能性小。对归一化的血流信号进行对应的加权:
Fnew(r)=Fnorm(r)Vl(r)
其中l是一个非线性指数加权因子。通过该方法,血管下方非血流伪影信号得到抑制而对应的真实血流部分得到保留,从而使图像更准确。
本发明的图像处理模块对成像观察到的局部血管几何特征对血流信息进行针对性地增强和抑制,通过该处理,血管下方非血流伪影信号得到抑制而对应的真实血流部分得到保留,从而可以实现活体提取与量化肿瘤表层微血管的参数,如肿瘤微血管半径、密度,微血管血流量与血氧含量等,揭示在健康人和癌症患者肿瘤形态学和血管疾病学的差异,从而可以指导早期肿瘤的筛查及诊断、淋巴结光学活检手术中指导切除范围等。
优选地,所述图像处理模块的图像处理速率为40-215fps。
优选地,所述处理装置的灵敏度>120dB,成像系统的成像范围2mm×2mm,成像深度3mm。
优选地,所述成像系统的横向分辨率为16.0μm,轴向分辨率为6μm。
本发明的微肿瘤成像系统可以采用X线计算机断层摄影(CT),正电子发射断层摄(PET)和磁共振成像(MRI),或者光线相干层成像技术(OCT)等,优选地,采用OCT成像系统,成像过程友好,无创无损,耗时短,成像分辨率高,而且费用便宜,OCT成像又包括光谱域OCT(SD-OCT)、频域OCT(FD-OCT)或扫频源OCT(SS-OCT),鉴于SS-OCT具有更长波长、更快速度的扫频光源以及能够精确逐点探测的平衡探测器,因此进一步优选地,所述肿瘤微血管成像系统为SS-OTC成像系统。
下面结合实施例说明本发明优选的实施方式。
实施例1
参照图1所示,一种肿瘤微血管图像处理装置,包括肿瘤微血管成像系统和图像处理模块12。
其中肿瘤微血管成像系统为SS-OTC成像系统;包括:
扫频光源1,其波长为1310nm,带宽长度为110nm,输出功率15mW,扫描速度为40-220kHz(40000-220000A-lines/s);
第一光纤耦合器2,第一光纤耦合器2为95/5光纤耦合器;
主成像干涉系统,主成像干涉系统包括第二光纤耦合器3、参考臂、样品臂、探测臂4、第三光纤耦合器7及第一平衡探测器8;其中第二光纤耦合器3为75/25光纤耦合器,参考臂内设有一环形器13,聚焦透镜5和平面镜6;样品臂内设有一环形器13,探测臂4内设置有x-y扫描式振镜,直径12mm。
标定干涉系统包括马赫-曾德尔干涉仪9、第四光纤耦合器10及第二平衡探测器11。
扫频光源1提供的光束,经光纤传输入第一光纤耦合器2后,分为两部分,95%的光进入主成像干涉系统,5%的光进入标定干涉系统;进入主成像干涉系统的光束首先被第二光纤耦合器3分为两部分,75%的光进入样品臂,25%的光进入参考臂,进入参考臂的光经环形器13后通过透镜5聚焦到平面镜6反射后原路返回;进入样品臂的光,经过环形器13后最后到达探测臂4对样品进行扫描,然后原路返回;参考臂和样品臂向后返回的光分别经过对应的环形器13导向,然后汇入第三光纤耦合器7,分为两束等强度的干涉光谱,最后经第一平衡探测器8进行光电转化形成成像干涉信号;
进入标定干涉系统的光束,先进入马赫-曾德尔干涉仪9,然后进入第四光纤耦合器10,分为两束等强度的干涉光谱,最后经第二平衡探测器11进行光电转化形成标定干涉信号;
成像干涉信号和标定干涉信号被图像处理模块12接收成像。图像处理模块对获取的血管图像进行处理,包括步骤:
S1,对结构信号进行大血管下阴影补偿;
通过对结构信号进行大血管下阴影补偿可以恢复大血管下结构信号跟周围组织的一致性,具体可以通过提高横断面的成像分辨率和改进系统的成像深度进行补偿。
S2,利用Hessian滤波进行三维管状形态物体增强。
利用Hessian滤波进行三维管状形态物体增强,可以得到每个体素点对应的血管指数V(r)(0~1)。V(r)接近于1表示体素点处属于血管的可能性较大,接近于0表示血管的可能性小。对归一化的血流信号进行对应的加权:
Fnew(r)=Fnorm(r)Vl(r)
其中l是一个非线性指数加权因子。通过该方法,血管下方非血流伪影信号得到抑制而对应的真实血流部分得到保留,从而使图像更准确。
图像处理模块12可以包括图像采集卡和图像处理卡,可以选用NI PCIe-1433型号的产品。
实施例1提供的图像处理装置具备如下有益效果:
1、与光谱域OCT(SD-OCT)、频域OCT(FD-OCT),SS-OCT具有更长波长、更快速度的扫频光源以及能够精确逐点探测的平衡探测器,因此它具有更快的成像速度、更深的成像深度、更高的信噪比、更强的灵敏度。
2、SS-OCT系统成像过程友好,无创无损,耗时短,成像分辨率高,且费用便宜。
3、对肿瘤微血管实现成像和量化,可以指导早期肿瘤的筛查及诊断、淋巴结光学活检和术中指导切除范围。
本发明图像处置装置与其他不同的成像技术结合起来,还可以实现检测更为细小的微血管网络,从而将发明应用到其他人体如胃癌、乳腺癌、前列腺癌等各类肿瘤的检测。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

1.一种肿瘤微血管图像处理装置,包括肿瘤微血管成像系统和图像处理模块,所述图像处理模块用于接收和处理所述肿瘤微血管成像系统产生的图像信号并进行处理,其特征在于,所述图像处理模块采用如下方法对获取的血管图像进行处理,包括步骤:
S1,对结构信号进行大血管下阴影补偿;
S2,利用Hessian滤波进行三维管状形态物体增强。
2.根据权利要求1所述的肿瘤微血管图像处理装置,其特征在于,所述图像处理模块的图像处理速率为40-215fps。
3.根据权利要求1所述的肿瘤微血管图像处理装置,其特征在于,所述处理装置的灵敏度>120dB,成像系统的成像范围2mm×2mm,成像深度3mm。
4.根据权利要求1所述的肿瘤微血管图像处理装置,其特征在于,所述成像系统的横向分辨率为16.0μm,轴向分辨率为6μm。
5.根据权利要求1所述的肿瘤微血管图像处理装置,其特征在于,所述肿瘤微血管成像系统为SS-OTC成像系统。
6.根据权利要求5所述的肿瘤微血管图像处理装置,其特征在于,所述SS-OCT成像系统包括扫频光源,第一光纤耦合器,主成像干涉系统,标定干涉系统,探测臂;其中
主成像干涉系统包括第二光纤耦合器、参考臂、样品臂、探测臂、第三光纤耦合器及第一平衡探测器;
标定干涉系统包括马赫-曾德尔干涉仪、第四光纤耦合器及第二平衡探测器;
所述扫频光源提供的光束,经光纤传输入第一光纤耦合器后,分为两部分,分别进入主成像干涉系统和标定干涉系统;
进入主成像干涉系统的光束首先被第二光纤耦合器分为两部分,分别进入参考臂和样品臂,进入参考臂的光经反射后原路返回;进入样品臂的光,最后到达探测臂对样品进行扫描,然后原路返回;参考臂和样品臂向后返回的光进入第三光纤耦合器,最后经第一平衡探测器进行光电转化形成成像干涉信号;
进入标定干涉系统的光束,先进入马赫-曾德尔干涉仪,然后进入第四光纤耦合器,最后经第二平衡探测器进行光电转化形成标定干涉信号;
所述干涉信号和标定干涉信号被所述图像处理模块接收成像。
7.根据权利要求6所述的肿瘤微血管图像处理装置,其特征在于,所述扫频光源波长为1310nm,带宽长度为110nm,输出功率15mW,扫描速度为40-220kHz。
8.根据权利要求6所述的肿瘤微血管图像处理装置,其特征在于,所述第一光纤耦合器为95/5光纤耦合器,95%的光进入主成像干涉系统,5%的光进入标定干涉系统。
9.根据权利要求6所述的肿瘤微血管图像处理装置,其特征在于,所述第二光纤耦合器为75/25光纤耦合器,75%的光进入样品臂,25%的光进入参考臂。
10.根据权利要求6所述的肿瘤微血管图像处理装置,其特征在于,所述探测臂内设置有x-y扫描式振镜,直径12mm。
CN201910080990.7A 2019-01-28 2019-01-28 一种肿瘤微血管图像处理装置 Active CN109758119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910080990.7A CN109758119B (zh) 2019-01-28 2019-01-28 一种肿瘤微血管图像处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910080990.7A CN109758119B (zh) 2019-01-28 2019-01-28 一种肿瘤微血管图像处理装置

Publications (2)

Publication Number Publication Date
CN109758119A true CN109758119A (zh) 2019-05-17
CN109758119B CN109758119B (zh) 2022-03-08

Family

ID=66454448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910080990.7A Active CN109758119B (zh) 2019-01-28 2019-01-28 一种肿瘤微血管图像处理装置

Country Status (1)

Country Link
CN (1) CN109758119B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110403576A (zh) * 2019-08-01 2019-11-05 中国医学科学院北京协和医院 三维光声成像在乳腺肿瘤评分系统中的应用
CN110793941A (zh) * 2019-10-10 2020-02-14 成都贝瑞光电科技股份有限公司 一种智能分辨激光光学层析成像方法的系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200970231Y (zh) * 2006-11-27 2007-11-07 浙江大学 一种扩展光学相干层析成像动态范围的系统
CN101803908A (zh) * 2010-03-01 2010-08-18 浙江大学 基于色散调制的无镜像光学频域成像系统及方法
CN102151121A (zh) * 2011-01-28 2011-08-17 浙江大学 基于干涉光谱相位信息的光谱标定方法及系统
CN102657519A (zh) * 2012-05-11 2012-09-12 浙江大学 基于oct的大动态范围流速的高灵敏度测量系统及方法
CN104239874A (zh) * 2014-09-29 2014-12-24 青岛海信医疗设备股份有限公司 一种器官血管识别方法及装置
CN105030201A (zh) * 2015-07-27 2015-11-11 浙江大学 基于静态区域信息的扫频oct数字相位矫正方法与系统
CN105989598A (zh) * 2015-02-13 2016-10-05 中国科学院沈阳自动化研究所 基于局部强化主动轮廓模型的眼底图像血管分割方法
CN108245130A (zh) * 2016-12-28 2018-07-06 南京理工大学 一种光学相干断层血管造影装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200970231Y (zh) * 2006-11-27 2007-11-07 浙江大学 一种扩展光学相干层析成像动态范围的系统
CN101803908A (zh) * 2010-03-01 2010-08-18 浙江大学 基于色散调制的无镜像光学频域成像系统及方法
CN102151121A (zh) * 2011-01-28 2011-08-17 浙江大学 基于干涉光谱相位信息的光谱标定方法及系统
CN102657519A (zh) * 2012-05-11 2012-09-12 浙江大学 基于oct的大动态范围流速的高灵敏度测量系统及方法
CN104239874A (zh) * 2014-09-29 2014-12-24 青岛海信医疗设备股份有限公司 一种器官血管识别方法及装置
CN105989598A (zh) * 2015-02-13 2016-10-05 中国科学院沈阳自动化研究所 基于局部强化主动轮廓模型的眼底图像血管分割方法
CN105030201A (zh) * 2015-07-27 2015-11-11 浙江大学 基于静态区域信息的扫频oct数字相位矫正方法与系统
CN108245130A (zh) * 2016-12-28 2018-07-06 南京理工大学 一种光学相干断层血管造影装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICBAEL J.A.GIRARD ET AL: "Shadow removal and contrast enhancement in optial coherence tomography images of the human optical nerve head", 《INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE》 *
刘雪晴: "基于稀疏性的视频降噪算法研究及应用", 《中国优秀硕士学位论文全文数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110403576A (zh) * 2019-08-01 2019-11-05 中国医学科学院北京协和医院 三维光声成像在乳腺肿瘤评分系统中的应用
CN110403576B (zh) * 2019-08-01 2024-01-30 中国医学科学院北京协和医院 三维光声成像在乳腺肿瘤评分系统中的应用
CN110793941A (zh) * 2019-10-10 2020-02-14 成都贝瑞光电科技股份有限公司 一种智能分辨激光光学层析成像方法的系统

Also Published As

Publication number Publication date
CN109758119B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
Yates et al. Optical tomography of the breast using a multi-channel time-resolved imager
JP4733264B2 (ja) 胸部腫瘍の検出、画像形成および特徴表示
Pogue et al. Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast
Choi et al. Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask
CN103163111B (zh) 一种荧光介观成像和oct联合的早期宫颈癌检测系统
US9678007B2 (en) Biological tissue analysis by inverse spectroscopic optical coherence tomography
US9858668B2 (en) Guidewire artifact removal in images
CN108095704B (zh) 一种单光源双波段oct成像系统
TWI359007B (en) Method for analyzing a mucosa sample with optical
CN105748040B (zh) 立体结构功能成像系统
USRE41949E1 (en) System and method for tomographic imaging of dynamic properties of a scattering medium
CN107822600A (zh) 应用于血管性皮肤病检测、定位的装置和系统及工作方法
Muller et al. Needle-based optical coherence tomography for the detection of prostate cancer: a visual and quantitative analysis in 20 patients
CN109758119A (zh) 一种肿瘤微血管图像处理装置
CN114209278A (zh) 一种基于光学相干层析成像的深度学习皮肤病诊断系统
Wang et al. Compact fiber-free parallel-plane multi-wavelength diffuse optical tomography system for breast imaging
Kosik et al. Intraoperative photoacoustic screening of breast cancer: a new perspective on malignancy visualization and surgical guidance
Lee et al. Optical coherence tomography confirms non‐malignant pigmented lesions in phacomatosis pigmentokeratotica using a support vector machine learning algorithm
CN106880339A (zh) 一种呼吸道oct系统
EP4132351A1 (en) System and method of dynamic micro-optical coherence tomography for mapping cellular functions
CN210130817U (zh) 一种基于ss-oct肿瘤微血管成像装置
CN111436909A (zh) 一种活体组织的光学相干层析成像系统及方法
Luo et al. Classification of gastric cancerous tissues by a residual network based on optical coherence tomography images
Nioka et al. Optical tecnology developments in biomedicine: history, current and future
CN111493832A (zh) 一种基于En face-OCT的内窥成像方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A tumor microvascular image processing device

Effective date of registration: 20230227

Granted publication date: 20220308

Pledgee: Foshan rural commercial bank Limited by Share Ltd.

Pledgor: GUANGDONG WEIREN MEDICAL TECHNOLOGY Co.,Ltd.

Registration number: Y2023980033570