CN109754015B - 用于画作多标签识别的神经网络及相关方法、介质和设备 - Google Patents
用于画作多标签识别的神经网络及相关方法、介质和设备 Download PDFInfo
- Publication number
- CN109754015B CN109754015B CN201910001380.3A CN201910001380A CN109754015B CN 109754015 B CN109754015 B CN 109754015B CN 201910001380 A CN201910001380 A CN 201910001380A CN 109754015 B CN109754015 B CN 109754015B
- Authority
- CN
- China
- Prior art keywords
- label
- network
- feature map
- convolution layers
- outputting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 28
- 238000012549 training Methods 0.000 claims description 56
- 238000010586 diagram Methods 0.000 claims description 31
- 238000011176 pooling Methods 0.000 claims description 19
- 238000010422 painting Methods 0.000 claims description 11
- 238000004590 computer program Methods 0.000 claims description 10
- 239000013598 vector Substances 0.000 claims description 7
- 230000002829 reductive effect Effects 0.000 claims description 4
- 230000006870 function Effects 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010428 oil painting Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/5866—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using information manually generated, e.g. tags, keywords, comments, manually generated location and time information
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
- G06F18/2148—Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the process organisation or structure, e.g. boosting cascade
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/2431—Multiple classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/70—Labelling scene content, e.g. deriving syntactic or semantic representations
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Library & Information Science (AREA)
- Databases & Information Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (16)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910001380.3A CN109754015B (zh) | 2019-01-02 | 2019-01-02 | 用于画作多标签识别的神经网络及相关方法、介质和设备 |
PCT/CN2019/097089 WO2020140422A1 (en) | 2019-01-02 | 2019-07-22 | Neural network for automatically tagging input image, computer-implemented method for automatically tagging input image, apparatus for automatically tagging input image, and computer-program product |
US16/626,560 US20210295089A1 (en) | 2019-01-02 | 2019-07-22 | Neural network for automatically tagging input image, computer-implemented method for automatically tagging input image, apparatus for automatically tagging input image, and computer-program product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910001380.3A CN109754015B (zh) | 2019-01-02 | 2019-01-02 | 用于画作多标签识别的神经网络及相关方法、介质和设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109754015A CN109754015A (zh) | 2019-05-14 |
CN109754015B true CN109754015B (zh) | 2021-01-26 |
Family
ID=66405133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910001380.3A Active CN109754015B (zh) | 2019-01-02 | 2019-01-02 | 用于画作多标签识别的神经网络及相关方法、介质和设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210295089A1 (zh) |
CN (1) | CN109754015B (zh) |
WO (1) | WO2020140422A1 (zh) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109754015B (zh) * | 2019-01-02 | 2021-01-26 | 京东方科技集团股份有限公司 | 用于画作多标签识别的神经网络及相关方法、介质和设备 |
US11494616B2 (en) * | 2019-05-09 | 2022-11-08 | Shenzhen Malong Technologies Co., Ltd. | Decoupling category-wise independence and relevance with self-attention for multi-label image classification |
CN110210572B (zh) * | 2019-06-10 | 2023-02-07 | 腾讯科技(深圳)有限公司 | 图像分类方法、装置、存储介质及设备 |
CN110427867B (zh) * | 2019-07-30 | 2021-11-19 | 华中科技大学 | 基于残差注意力机制的面部表情识别方法及系统 |
CN112348045B (zh) * | 2019-08-09 | 2024-08-09 | 北京地平线机器人技术研发有限公司 | 神经网络的训练方法、训练装置和电子设备 |
CN110704650B (zh) * | 2019-09-29 | 2023-04-25 | 携程计算机技术(上海)有限公司 | Ota图片标签的识别方法、电子设备和介质 |
CN111091045B (zh) * | 2019-10-25 | 2022-08-23 | 重庆邮电大学 | 一种基于时空注意力机制的手语识别方法 |
CN111243729B (zh) * | 2020-01-07 | 2022-03-08 | 同济大学 | 一种肺部x线胸片检查报告自动生成方法 |
US11537818B2 (en) * | 2020-01-17 | 2022-12-27 | Optum, Inc. | Apparatus, computer program product, and method for predictive data labelling using a dual-prediction model system |
CN111667468A (zh) * | 2020-05-28 | 2020-09-15 | 平安科技(深圳)有限公司 | 基于神经网络的oct图像病灶检测方法、装置及介质 |
US11664090B2 (en) * | 2020-06-11 | 2023-05-30 | Life Technologies Corporation | Basecaller with dilated convolutional neural network |
CN111582409B (zh) * | 2020-06-29 | 2023-12-26 | 腾讯科技(深圳)有限公司 | 图像标签分类网络的训练方法、图像标签分类方法及设备 |
CN111797763A (zh) * | 2020-07-02 | 2020-10-20 | 北京灵汐科技有限公司 | 一种场景识别方法和系统 |
CN112232479B (zh) * | 2020-09-11 | 2024-06-14 | 湖北大学 | 基于深度级联神经网络的建筑能耗时空因子表征方法及相关产品 |
CN112232232B (zh) * | 2020-10-20 | 2022-09-27 | 城云科技(中国)有限公司 | 一种目标检测方法 |
CN112257601B (zh) * | 2020-10-22 | 2023-02-21 | 福州大学 | 基于弱监督学习的数据增强网络的细粒度车辆识别方法 |
CN112562819B (zh) * | 2020-12-10 | 2022-06-17 | 清华大学 | 一种针对先心病的超声多切面数据的报告生成方法 |
CN112732871B (zh) * | 2021-01-12 | 2023-04-28 | 上海畅圣计算机科技有限公司 | 一种机器人催收获取客户意向标签的多标签分类方法 |
CN112836076B (zh) * | 2021-01-27 | 2024-07-19 | 京东方科技集团股份有限公司 | 一种图像标签生成方法、装置及设备 |
CN112494063B (zh) * | 2021-02-08 | 2021-06-01 | 四川大学 | 一种基于注意力机制神经网络的腹部淋巴结分区方法 |
CN113470001B (zh) * | 2021-07-22 | 2024-01-09 | 西北工业大学 | 一种用于红外图像的目标搜索方法 |
CN117893839B (zh) * | 2024-03-15 | 2024-06-07 | 华东交通大学 | 一种基于图注意力机制的多标记分类方法及系统 |
CN118378178B (zh) * | 2024-06-24 | 2024-08-23 | 三峡金沙江川云水电开发有限公司 | 基于残差图卷积神经网络的变压器故障识别方法及系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107316042A (zh) * | 2017-07-18 | 2017-11-03 | 盛世贞观(北京)科技有限公司 | 一种绘画图像检索方法及装置 |
CN108171254A (zh) * | 2017-11-22 | 2018-06-15 | 北京达佳互联信息技术有限公司 | 图像标签确定方法、装置及终端 |
CN108509775B (zh) * | 2018-02-08 | 2020-11-13 | 暨南大学 | 一种基于机器学习的恶意png图像识别方法 |
CN108985314A (zh) * | 2018-05-24 | 2018-12-11 | 北京飞搜科技有限公司 | 目标检测方法及设备 |
CN109754015B (zh) * | 2019-01-02 | 2021-01-26 | 京东方科技集团股份有限公司 | 用于画作多标签识别的神经网络及相关方法、介质和设备 |
-
2019
- 2019-01-02 CN CN201910001380.3A patent/CN109754015B/zh active Active
- 2019-07-22 US US16/626,560 patent/US20210295089A1/en not_active Abandoned
- 2019-07-22 WO PCT/CN2019/097089 patent/WO2020140422A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20210295089A1 (en) | 2021-09-23 |
WO2020140422A1 (en) | 2020-07-09 |
CN109754015A (zh) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109754015B (zh) | 用于画作多标签识别的神经网络及相关方法、介质和设备 | |
CN109711481B (zh) | 用于画作多标签识别的神经网络、相关方法、介质和设备 | |
CN111178183B (zh) | 人脸检测方法及相关装置 | |
CN108229519B (zh) | 图像分类的方法、装置及系统 | |
CN110309856A (zh) | 图像分类方法、神经网络的训练方法及装置 | |
WO2020077940A1 (en) | Method and device for automatic identification of labels of image | |
CN109033107A (zh) | 图像检索方法和装置、计算机设备和存储介质 | |
CN112308862A (zh) | 图像语义分割模型训练、分割方法、装置以及存储介质 | |
CN109657715B (zh) | 一种语义分割方法、装置、设备及介质 | |
Wang et al. | Deep learning-based visual detection of marine organisms: A survey | |
CN113011357A (zh) | 基于时空融合的深度伪造人脸视频定位方法 | |
CN111310766A (zh) | 基于编解码和二维注意力机制的车牌识别方法 | |
CN112132145B (zh) | 一种基于模型扩展卷积神经网络的图像分类方法及系统 | |
Li et al. | Image manipulation localization using attentional cross-domain CNN features | |
CN111680757A (zh) | 一种基于自编码器的零样本图像识别算法及系统 | |
CN112149526B (zh) | 一种基于长距离信息融合的车道线检测方法及系统 | |
Malav et al. | DHSGAN: An end to end dehazing network for fog and smoke | |
CN115563327A (zh) | 基于Transformer网络选择性蒸馏的零样本跨模态检索方法 | |
CN116844032A (zh) | 一种海洋环境下目标检测识别方法、装置、设备及介质 | |
CN116977633A (zh) | 地物要素分割模型训练方法、地物要素分割方法及装置 | |
CN115358952A (zh) | 一种基于元学习的图像增强方法、系统、设备和存储介质 | |
CN112750128B (zh) | 图像语义分割方法、装置、终端及可读存储介质 | |
CN116912484A (zh) | 图像语义分割方法、装置、电子设备和可读存储介质 | |
CN116416212A (zh) | 路面破损检测神经网络训练方法及路面破损检测神经网络 | |
CN115205624A (zh) | 一种跨维度注意力聚合的云雪辩识方法、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210519 Address after: Room 2305, luguyuyuan venture building, 27 Wenxuan Road, high tech Development Zone, Changsha City, Hunan Province, 410005 Patentee after: BOE Yiyun Technology Co.,Ltd. Address before: 100015 No. 10, Jiuxianqiao Road, Beijing, Chaoyang District Patentee before: BOE TECHNOLOGY GROUP Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210823 Address after: 215200 No. 501, Bixiang South Road, Taihu Lake ecotourism Resort (Taihu new town), Wujiang District, Suzhou City, Jiangsu Province Patentee after: BOE Yiyun (Suzhou) Technology Co.,Ltd. Patentee after: BOE Yiyun Technology Co.,Ltd. Address before: Room 2305, luguyuyuan venture building, 27 Wenxuan Road, high tech Development Zone, Changsha City, Hunan Province, 410005 Patentee before: BOE Yiyun Technology Co.,Ltd. |