CN109752464A - 一种高次谐波收发分置式超声波探头 - Google Patents

一种高次谐波收发分置式超声波探头 Download PDF

Info

Publication number
CN109752464A
CN109752464A CN201910056735.9A CN201910056735A CN109752464A CN 109752464 A CN109752464 A CN 109752464A CN 201910056735 A CN201910056735 A CN 201910056735A CN 109752464 A CN109752464 A CN 109752464A
Authority
CN
China
Prior art keywords
chip
ultrasonic probe
transmitting
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910056735.9A
Other languages
English (en)
Inventor
陈凝
曹永刚
王月兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201910056735.9A priority Critical patent/CN109752464A/zh
Publication of CN109752464A publication Critical patent/CN109752464A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种高次谐波收发分置式超声波探头,所述超声波探头包括发射晶片(1)、填充树脂材料(2)、接收晶片(3)、背衬(4)和声透镜(5)。所述发射晶片(1)、接收晶片(3)以及填充树脂材料(2)组成64阵元线阵列;所述接收晶片(3)位于发射晶片(1)之间的中心轴线上由填充树脂材料(2)隔离电信号;所述填充树脂材料(2)的一侧是背衬(4),另一侧与发射晶片(1)、接收晶片(2)在同一平面上,其上面覆盖声透镜(5)。该超声波探头能够实现收发分置式超声检测,能够实现高强度发射,宽带接收,并能保证足够的信噪比。

Description

一种高次谐波收发分置式超声波探头
技术领域
本发明属于超声检测技术领域,尤其涉及一种超声波探头及高次谐波的收发分置式测量方法。
背景技术
超声波探头是指将其他形式能量转换为声能的器件。在传统的超声波探头制作中,通常采用PZT压电陶瓷材料作为发射晶片,虽然其发射性能好,发射信号强度高,但是频带窄,无法作为接收晶片顺利采集高次谐波信号。然而若采用PVDF压电薄膜进行自发自收式测量,PVDF压电薄膜虽然频带非常宽,但是其信号弱,发送效率低,采集信号强度弱。因此,难以找到可以实现高强度发射,宽带接收的压电材料同时作为发射晶片和接收晶片实现自发自收式高次谐波的测量。
发明内容
本发明的目的在于克服目前超声波探头存在的上述问题,提供了一种超声波探头,能够实现收发分置式非线性超声检测。
为了实现上述目的,本发明提供了一种超声波探头,所述超声波探头包括发射晶片1、填充树脂材料2、接收晶片3、背衬4和声透镜5。所述发射晶片1、接收晶片3以及填充树脂材料2组成64阵元线阵列;所述接收晶片3位于发射晶片1之间的中心轴线上由填充树脂材料2隔离电信号;所述填充树脂材料2的一侧是背衬4,另一侧与发射晶片1、接收晶片2在同一平面上,其上面覆盖声透镜5。所述接收晶片3的厚度是发射晶片1厚度的1/n(接收n次谐波信号);所述接收晶片3的长度小于发射晶片1。所述超声波探头发射晶片的频率为800kHz,接收晶片的频率为1.6~2.4MHz,即接收二次及三次谐波信号,同理,可调整接收晶片的频率,接收n(n=4,5,6…)次谐波信号。
上述技术方案中,所述背衬与样品通过聚合物填充树脂材料接触,以起到绝缘的作用。
上述技术方案中,所述发射晶片采用压电陶瓷元件—PZT-5A压电陶瓷管,所述接收晶片采用PMN-PT压电单晶,PMN-PT具有宽频带,高灵敏度的特性。
上述技术方案中,该超声波探头用于对样品进行非线性超声测量,能够实现高强度发射,宽带接收。
基于上述超声波探头,本发明还提供了一种高次谐波的收发分置式测量方法,所述方法包括:
步骤1)信号发生器产生单频发射信号激励所述超声波探头发射晶片1;
步骤2)所述发射晶片1产生基频超声波信号;
步骤3)所述超声波信号在样品中传播并发生畸变,产生高次谐波分量;
步骤4)反射回的高次谐波分量由所述超声波探头接收晶片3接收并转化为电信号传入信号处理单元进行处理,提取出信号的频域信息。
本发明的优势在于:本发明的超声波探头能够实现收发分置式非线性超声检测,能够实现高强度发射,宽带接收,并能够保证足够的信噪比。
附图说明
图1为所述超声波探头的示意图。
图2为所述超声波探头内部结构示意图,图中:1、发射晶片,2、填充树脂材料,3、接收晶片,4、背衬,5、声透镜;
图3为本发明的工作模式示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细的说明。
如图1所示,所述超声波探头包括:发射晶片1,填充树脂材料2,接收晶片3,背衬4和声透镜5。所述发射晶片、接收晶片以及填充树脂材料组成64阵元线阵列;所述接收晶片3位于发射晶片1之间的中心轴线上由填充树脂材料2隔离电信号;所述填充树脂材料2的一侧是背衬4,另一侧与发射晶片1、接收晶片2在同一平面上,其上面覆盖声透镜5。在测量过程中,所述背衬4与样品通过聚合物接触,起到对晶片的保护作用。若接收晶片3需要接收样品反射回的n次谐波,则需所述接收晶片3的厚度是发射晶片厚度的1/n(n=2,3,4…)。接收晶片3的长度小于发射晶片1,以减少对发射声波的干扰。所述发射晶片采用压电陶瓷元件—PZT-5A压电陶瓷管,所述接收晶片采用PMN-PT压电单晶,PMN-PT具有宽频带,高灵敏度的特性。能够实现高强度发射,宽带接收。
基于上述超声波探头,本发明还提供了一种高次谐波的收发分置式测量方法,在本实施例中,所用超声波探头的发射晶片1的频率为800kHz,接收晶片3的频率为1.6~2.4MHz,即接收二次及三次谐波信号,同理,可调整接收晶片3的频率,接收n(n=4,5,6…)次谐波信号。
所述方法包括:
步骤1)信号发生器产生800kHz单频发射信号激励所述超声波探头发射晶片1;
步骤2)所述发射晶片1产生800kHz基频超声波信号;
步骤3)所述超声波信号在样品中传播并发生畸变,产生高次谐波分量,频率为1.6~2.4MHz,即二次及三次谐波信号;
步骤4)反射回的高次谐波分量由所述超声波探头接收晶片3接收并转化为电信号传入信号处理单元进行处理,提取出信号的频域信息。
根据以上步骤即可完成样品中二次及三次谐波的收发分置式测量。所述超声波探头可以利用相控扫描技术用于无损检测中硬质试件缺陷的成像。

Claims (5)

1.一种高次谐波收发分置式超声波探头,所述超声波探头包括发射晶片(1)、填充树脂材料(2)、接收晶片(3)、背衬(4)和声透镜(5)。所述发射晶片(1)、接收晶片(3)以及填充树脂材料(2)组成64阵元线阵列;所述接收晶片(3)位于发射晶片(1)之间的中心轴线上由填充树脂材料(2)隔离电信号;所述填充树脂材料(2)的一侧是背衬(4),另一侧与发射晶片(1)、接收晶片(2)在同一平面上,其上面覆盖声透镜(5)。所述接收晶片(3)的厚度是发射晶片(1)厚度的1/n(接收n次谐波信号);所述接收晶片(3)的长度小于发射晶片(1)。所述超声波探头发射晶片的频率为800kHz,接收晶片的频率为1.6~2.4MHz,即接收二次及三次谐波信号,同理,可调整接收晶片的频率,接收n(n=4,5,6…)次谐波信号。
2.根据权利要求1所述的超声波探头,其特征在于,所述背衬与样品通过聚合物填充树脂材料接触,以起到绝缘的作用。
3.根据权利要求1所述的超声波探头,其特征在于,所述发射晶片采用压电陶瓷元件—PZT-5A压电陶瓷管,所述接收晶片采用PMN-PT压电单晶,PMN-PT具有宽频带,高灵敏度的特性。
4.根据权利要求1、3所述的超声波探头,其特征在于,该超声波探头用于对样品进行非线性超声测量,能够实现高强度发射,宽带接收。
5.一种高次谐波的收发分置式测量方法,基于权利要求1-4之一的所述超声波探头实现,所述方法包括:
步骤1)信号发生器产生单频发射信号激励所述超声波探头发射晶片;
步骤2)所述发射晶片产生基频超声波信号;
步骤3)所述超声波信号在样品中传播并发生畸变,产生高次谐波分量;
步骤4)反射回的高次谐波分量由所述超声波探头接收晶片接收并转化为电信号传入信号处理单元进行处理,提取出信号的频域信息。
根据以上步骤即可完成样品中高次谐波的收发分置式测量。
CN201910056735.9A 2019-01-22 2019-01-22 一种高次谐波收发分置式超声波探头 Pending CN109752464A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910056735.9A CN109752464A (zh) 2019-01-22 2019-01-22 一种高次谐波收发分置式超声波探头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910056735.9A CN109752464A (zh) 2019-01-22 2019-01-22 一种高次谐波收发分置式超声波探头

Publications (1)

Publication Number Publication Date
CN109752464A true CN109752464A (zh) 2019-05-14

Family

ID=66406136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910056735.9A Pending CN109752464A (zh) 2019-01-22 2019-01-22 一种高次谐波收发分置式超声波探头

Country Status (1)

Country Link
CN (1) CN109752464A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202453328U (zh) * 2012-02-28 2012-09-26 上海斌瑞检测技术服务有限公司 一种无间隙多探头阵列扫描超声波探伤设备
CN104756521A (zh) * 2012-10-26 2015-07-01 富士胶片戴麦提克斯公司 具有多谐波模式的微机械超声波换能器阵列
CN106473772A (zh) * 2015-08-31 2017-03-08 精工爱普生株式会社 超声波器件、超声波模块以及超声波测量仪
CN107843653A (zh) * 2016-09-19 2018-03-27 中国科学院声学研究所 一种双频超声换能器及高次谐波的自发自收式测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202453328U (zh) * 2012-02-28 2012-09-26 上海斌瑞检测技术服务有限公司 一种无间隙多探头阵列扫描超声波探伤设备
CN104756521A (zh) * 2012-10-26 2015-07-01 富士胶片戴麦提克斯公司 具有多谐波模式的微机械超声波换能器阵列
CN106473772A (zh) * 2015-08-31 2017-03-08 精工爱普生株式会社 超声波器件、超声波模块以及超声波测量仪
CN107843653A (zh) * 2016-09-19 2018-03-27 中国科学院声学研究所 一种双频超声换能器及高次谐波的自发自收式测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吕可佳 等: "PMN-PT单晶Cymbal换能器的有限元分析", 《声学技术》 *

Similar Documents

Publication Publication Date Title
KR100559808B1 (ko) 검사 장치 및 초음파 검사 장치
Gachagan et al. Characterization of air-coupled transducers
CN104034287B (zh) 一种弹性各向异性金属基体热障涂层厚度超声测量方法
Brown et al. Disposable PVDF ultrasonic transducers for nondestructive testing applications
CN113654702B (zh) 一种gis盆式绝缘子残余应力的检测方法
Zhang et al. Fabrication and characterization of a wideband low-frequency CMUT array for air-coupled imaging
Wright et al. Studies of laser‐generated ultrasound using a micromachined silicon electrostatic transducer in air
CN108318579A (zh) 一种蜂窝共固化结构缺陷超声a扫描识别方法及装置
CN106248802A (zh) 一种高分辨率tofd检测超声波探头
Platte PVDF ultrasonic transducers
CN104515808A (zh) 一种汽轮发电机护环超声成像检测方法
Wu et al. Microfabrication and characterization of dual-frequency piezoelectric micromachined ultrasonic transducers
CN107843653B (zh) 一种双频超声换能器及高次谐波的自发自收式测量方法
CN109332141A (zh) 一种基于压电薄膜制作的点聚焦空气耦合超声换能器
Veidt et al. Ultrasonic point‐source/point‐receiver measurements in thin specimensa
Lobkis et al. Three-dimensional transducer voltage in anisotropic materials characterization
CN109752464A (zh) 一种高次谐波收发分置式超声波探头
Boechat et al. Development of a PVDF needle-type hydrophone for measuring ultrasonic fields
CN112285202A (zh) 一种面向变曲率pbx表面裂纹的无损检测方法及传感器
Xiang et al. Materials characterization by a time-resolved and polarization-sensitive ultrasonic technique
CN111887888A (zh) 一种基于透镜回波评估超声探头匹配层阻抗的方法及系统
Brunner et al. Composites from piezoelectric fibers as sensors and emitters for acoustic applications
CN206300927U (zh) 用于燃气轮机部件热障涂层弹性常数无损测量的pvdf探头
JP3667426B2 (ja) センサ
Herzog et al. High-Performance Ultrasonic Transducers based on PMN-PT Single Crystals for NDT of aerospace materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190514