CN109750188A - Aluminum alloy doors and windows production method - Google Patents

Aluminum alloy doors and windows production method Download PDF

Info

Publication number
CN109750188A
CN109750188A CN201910216596.1A CN201910216596A CN109750188A CN 109750188 A CN109750188 A CN 109750188A CN 201910216596 A CN201910216596 A CN 201910216596A CN 109750188 A CN109750188 A CN 109750188A
Authority
CN
China
Prior art keywords
alloy
prefabricated section
powder
aluminium
furnace body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910216596.1A
Other languages
Chinese (zh)
Other versions
CN109750188B (en
Inventor
孟静
王书杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong great reputation Xingda hardware profile Co., Ltd.
Original Assignee
孟静
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孟静 filed Critical 孟静
Priority to CN201910216596.1A priority Critical patent/CN109750188B/en
Publication of CN109750188A publication Critical patent/CN109750188A/en
Application granted granted Critical
Publication of CN109750188B publication Critical patent/CN109750188B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

The invention discloses a kind of aluminum alloy doors and windows production methods.The method is during preparing aluminium alloy ingots, first by TiH2Powder, aluminium powder and hydroboration titanium valve are uniformly mixed and are pressed into the second alloy prefabricated section;Boron powder, titanium valve and aluminium powder are pressed into the first alloy prefabricated section, after the first alloy prefabricated section that ignites, the second alloy prefabricated section is heated TiH2Powder and hydroboration titanium valve decompose simultaneously further occurrence self-propagating reaction, and final second alloy prefabricated section is interior to form tiny TiB by self-propagating reaction2The formation moment of particle, hydrogeneous titanium aluminum melt and hydrogen, hydrogen generates high pressure, by TiB2Particle and hydrogeneous titanium aluminum melt drop are sprayed into melt melted in advance, form Al-5%Ti-xB intermediate alloy.TiB can be reduced2Particle size improves its disperse effect in intermediate alloy, while reducing the environmental pollution of fining agent preparation, and this improves the intensity of the aluminum alloy doors and windows of preparation, and reduce environmental pollution.

Description

Aluminum alloy doors and windows production method
Technical field
The present invention relates to the preparation method technical fields of aluminum alloy doors and windows.
Background technique
Aluminium alloy is widely used in the industrial circles such as Aeronautics and Astronautics, automobile, ship, door and window manufacture, tiny casting aluminium Alloy structure can obtain excellent mechanical property, and usual casting alloy thinning method has addition fining agent, mechanical oscillation, ultrasound Wave, electromagnetic agitation, rapid cooling etc., addition fining agent and rapid cooling are mainly by improving nucleation rate come refining aluminum alloy group It knits, and mechanical oscillation, ultrasonic wave and electromagnetic agitation are mainly by the dendrite in broken aluminium alloy come thinning microstructure.
It is a kind of most important and most common alloy refinement method in aluminium alloy industrial production that aluminium alloy, which adds fining agent, often It is rare earth element that the aluminium alloy fining agent seen, which has Al-Ti-B, Al-Ti-C, Al-Ti-B-C, Al-Ti-B-R(R) and Al-M-P (M For metallic element) etc. intermediate alloys.Al-Ti-B is that fining agent is a kind of very important Master alloy refiners, is had good Refinement effect, mainly pass through villiaumite reaction method, smelting process, electrolysis method, SHS process etc..Wherein villiaumite reaction method It is most common method, but pollutes big, the TiB of formation2Particle is not easy to control.Smelting process and SHS process product Quantity and the big feature of size Control difficulty.
Summary of the invention
The technical problem to be solved by the present invention is to how provide a kind of entirety of aluminum alloy doors and windows that preparation can be improved Intensity, and the preparation method of the small aluminum alloy doors and windows of environmental pollution.
In order to solve the above technical problems, the technical solution used in the present invention is: a kind of aluminum alloy doors and windows production method, It is characterized in that including the following steps:
Aluminium alloy ingots is prepared by aluminium alloy ingots preparation facilities;
Aluminium alloy ingots fusing is prepared into rods and bars of aluminium alloy;
After rods and bars of aluminium alloy is carried out ultrasonic cleaning, it is put into resistance furnace, makes its softening, can be extruded together machining;
Rods and bars of aluminium alloy after heating is put into the mold of single lead screw ex truding briquetting machine and carries out extrusion forming, obtains aluminum alloy base material;
Cooling Quenching is carried out to obtained aluminum alloy base material;
To the aluminum alloy base material after quenching treatment, using electrostatic spray, successively spraying protective layer, colored paint coating and varnish are applied Layer, after the completion of each coating spraying, aluminum alloy base material is transferred in the baking oven of 170-200 DEG C of temperature, toasts 20 min- 30min is cooled to room temperature the preparation for completing aluminium alloy extrusions after drying;
According to the needs of aluminum alloy doors and windows size, the aluminium alloy extrusions of preparation is cut, uses the aluminium alloy type after cutting Material prepares aluminum alloy doors and windows.
The method for preparing aluminium alloy ingots is as follows:
It weighs boron powder and is mixed uniformly and is dried with titanium valve, it is prefabricated that uniformly mixed powder is pressed into the first alloy Block;
Weigh TiH2Powder, aluminium powder and hydroboration titanium valve are mixed uniformly and are dried, and uniformly mixed powder is pressed into Second alloy prefabricated section;
First alloy prefabricated section is placed into furnace body in the upper cover of synthesising container, the second alloy prefabricated section is put into synthesising container Lower cover in, and separated between the first alloy prefabricated section and the second alloy prefabricated section using heat conduction baffle;By synthesising container upper cover It tightens together, is hung on the ignitor of the intracorporal synthesis elevating lever lower end of furnace, and make to draw with synthesising container lower cover Combustion electrode is directly contacted with the first alloy prefabricated section;
Into the melting kettle of furnace body, it is put into fine aluminium block, starts the heater on the outside of melting kettle and is heated to fine aluminium block, keep it molten Change;
Synthesising container is immersed in the melt in melting kettle by synthesizing elevating lever, utilizes the guarantor on synthesis elevating lever Protecting cover covers melting kettle, while starting the electromagnetic pulse on the elevating lever, and electric pulse device ignites first by ignitor Alloy prefabricated section, the first alloy prefabricated section transfer heat to the second alloy prefabricated section, and in the fast reaction stage, the first alloy is pre- TiH inside clamp dog2Powder and hydroboration titanium valve decompose to give off rapidly hydrogen, form tiny nano titanium powder and boron powder, titanium valve and Boron powder triggers self-propagating reaction at high temperature, forms tiny TiB2Particle and boron particles;
Simultaneously under the instantaneous pressure of hydrogen, titanium aluminum melt carries TiB2Particle and boron particles are sprayed from the jet port on the lower lid It injects in the melt in the crucible melted in advance, while starting synthesis elevating lever rotation and carrying out stirring melt, make Obtain TiB2Particle dispersion enters in melt;
It is vacuumized by the vacuum orifice on furnace body to furnace body, constantly rotating the elevating lever rotates the stirring flabellum, with Convenient for the discharge of hydrogen and the floating of waste residue, to vacustat 10-5After Pa, stops synthesis elevating lever movement, will synthesize Container lifts out melting kettle;
It is powered off to heater, so that melting kettle quickly solidifies, the Al-5%Ti-xB intermediate alloy ingot of preparation is taken out after to be solidified, The dross for removing upper surface, can prepare Al-5%Ti-xB intermediate alloy ingot.
Preferred: the molar ratio of boron powder and titanium valve is 2:1-2 in the first alloy prefabricated section;In the second alloy prefabricated section TiH2The molar ratio of powder and hydroboration titanium valve is 1-2:2, and it is 5%-30% that aluminium powder, which accounts for molar ratio,.
A further technical solution lies in: TiH2The drying temperature of the mixed-powder of powder, aluminium powder and hydroboration titanium valve is less than 200℃。
A further technical solution lies in: the smelting temperature of fine aluminium is 660 DEG C -1000 DEG C.
A further technical solution lies in: the aluminium alloy ingots preparation facilities includes furnace body, and the intracorporal lower part of furnace is set It is equipped with melting kettle, aluminum feedstock is provided in the melting kettle, having heaters is arranged in the outside of the melting kettle, described to add Hot device is provided with synthesis lifting for heating to the aluminum feedstock in melting kettle on the furnace body on the upside of the melting kettle The upper end of bar, the synthesis elevating lever is located at outside the furnace body, and the lower end of the elevating lever is located in the furnace body, and the liter The lower end of drop bar is provided with electric pulse device, and the lower end of the electric pulse device is provided with ignitor, and the synthesising container includes upper Lid and lower cover, the upper cover are fixedly connected with lower cover, and heat conduction baffle are provided between the upper cover and the lower cover, it is thermally conductive every The placement space of the first alloy prefabricated section is formed between plate and the upper cover, is set in the placement space of the first alloy prefabricated section It is equipped with the first alloy prefabricated section, forms the placement space of the second alloy prefabricated section, institute between the heat conduction baffle and the lower cover It states and is provided with the second alloy prefabricated section in the placement space of the second alloy prefabricated section, the lower end of the ignitor extends to first It is contacted in alloy prefabricated section placement space and with the first alloy prefabricated section, several stirring fans is provided on the lower lid Leaf, and jet port is provided on the lower lid of lower part, it is provided with protection cap on the synthesis elevating lever on the upside of the electric pulse device, The protection cap is used to cover the upper cover of the melting kettle.
A further technical solution lies in: circumferentially shape is arranged on the periphery of the lower cover stirring flabellum.
A further technical solution lies in: exhaust outlet is provided on the furnace body.
A further technical solution lies in: vacuum orifice is provided on the furnace body.
A further technical solution lies in: the making material of the heat conduction baffle is tungsten, tantalum or graphite, is arranged thereon several Aperture is for increasing thermal conductivity, and thickness is between 0.1mm-10mm.
A further technical solution lies in: it is provided with elevating lever driving device outside the furnace body, for driving the lifting Bar carries out lifting and rotary motion.
The beneficial effects of adopting the technical scheme are that the method for the invention is in the mistake for preparing aluminium alloy ingots Cheng Zhong, first by TiH2Powder, aluminium powder and hydroboration titanium valve are uniformly mixed and are pressed into the second alloy prefabricated section;By boron powder, titanium valve And aluminium powder is pressed into the first alloy prefabricated section, and two kinds of blocks are placed or compressed together, ignite the first alloy prefabricated section Afterwards, the heated TiH of the second alloy prefabricated section2Powder and hydroboration titanium valve decompose simultaneously further occurrence self-propagating reaction, and final second closes Tiny TiB is formed by self-propagating reaction in golden prefabricated section2The formation moment of particle, hydrogeneous titanium aluminum melt and hydrogen, hydrogen produces Raw high pressure, by TiB2Particle and hydrogeneous titanium aluminum melt drop are sprayed into melted melt in advance, by degassing processing, After slagging-off, Al-5%Ti-xB intermediate alloy is formed.To sum up, the method is during preparing aluminium alloy ingots, it is possible to reduce TiB2Particle size improves its disperse effect in intermediate alloy, while reducing the environmental pollution of fining agent preparation, Jin Erti The high mechanical property of the aluminium alloy of preparation, this improves the intensity of the aluminum alloy doors and windows of preparation, and reduce environment dirt Dye.
Detailed description of the invention
The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
Fig. 1 is the flow chart of the method for the embodiment of the present invention;
Fig. 2 is the structural schematic diagram of device described in the embodiment of the present invention;
Fig. 3 is schematic diagram of the device described in embodiment of the present invention during preparing aluminium alloy;
Wherein: 1: synthesis elevating lever;2: furnace body, 3: protection cap, 4: electric pulse device, 5: ignitor, 6: upper cover, 7: it is thermally conductive every Plate, 8: lower cover;9: stirring flabellum, 10: jet port, 11: heater;12: melt, 13: melting kettle, 14: exhaust outlet, 15: vacuum orifice, 16: the first alloy prefabricated sections, 17: the first alloy prefabricated sections.
Specific embodiment
With reference to the attached drawing in the embodiment of the present invention, technical solution in the embodiment of the present invention carries out clear, complete Ground description, it is clear that described embodiment is only a part of the embodiments of the present invention, instead of all the embodiments.It is based on Embodiment in the present invention, it is obtained by those of ordinary skill in the art without making creative efforts every other Embodiment shall fall within the protection scope of the present invention.
In the following description, numerous specific details are set forth in order to facilitate a full understanding of the present invention, but the present invention can be with Implemented using other than the one described here other way, those skilled in the art can be without prejudice to intension of the present invention In the case of do similar popularization, therefore the present invention is not limited by the specific embodiments disclosed below.
As shown in Figure 1, including the following steps: the embodiment of the invention discloses a kind of aluminum alloy doors and windows production method
Aluminium alloy ingots is prepared by aluminium alloy ingots preparation facilities;
Aluminium alloy ingots fusing is prepared into rods and bars of aluminium alloy;
After rods and bars of aluminium alloy is carried out ultrasonic cleaning, it is put into resistance furnace, makes its softening, can be extruded together machining;
Rods and bars of aluminium alloy after heating is put into the mold of single lead screw ex truding briquetting machine and carries out extrusion forming, obtains aluminum alloy base material;
Cooling Quenching is carried out to obtained aluminum alloy base material;
To the aluminum alloy base material after quenching treatment, using electrostatic spray, successively spraying protective layer, colored paint coating and varnish are applied Layer, after the completion of each coating spraying, aluminum alloy base material is transferred in the baking oven of 170-200 DEG C of temperature, toasts 20 min- 30min is cooled to room temperature the preparation for completing aluminium alloy extrusions after drying;
According to the needs of aluminum alloy doors and windows size, the aluminium alloy extrusions of preparation is cut, uses the aluminium alloy type after cutting Material prepares aluminum alloy doors and windows.
Further, the method for preparing aluminium alloy ingots is as follows:
It weighs boron powder and is mixed uniformly and is dried with titanium valve, uniformly mixed powder is pressed into the first alloy prefabricated section 16;
Weigh TiH2Powder, aluminium powder and hydroboration titanium valve are mixed uniformly and are dried, and uniformly mixed powder is pressed into Second alloy prefabricated section 17;
First alloy prefabricated section 16 is placed into furnace body in the upper cover of synthesising container, the second alloy prefabricated section 17 is put into synthesis In the lower cover 8 of container, and separated between the first alloy prefabricated section 16 and the second alloy prefabricated section 17 using heat conduction baffle 7;It will close It tightens together at container upper cover 6 with synthesising container lower cover 8, is hung to igniting for synthesis 1 lower end of elevating lever in furnace body 2 On electrode, and contact ignitor directly with the first alloy prefabricated section;
Into the melting kettle 13 of furnace body, it is put into fine aluminium block, the heater 11 in 13 outside of starting melting kettle is heated to fine aluminium block, Make its fusing;
Synthesising container is immersed in the melt 12 in melting kettle 13 by synthesizing elevating lever 1, as shown in figure 3, utilizing Protection cap 3 on synthesis elevating lever covers melting kettle 13, while starting the electric pulse device 4 on the elevating lever, electric pulse device 4 It is ignited the first alloy prefabricated section 16 by ignitor 5, the first alloy prefabricated section 16 transfers heat to the second alloy prefabricated section 17, the TiH inside the fast reaction stage, the first alloy prefabricated section 172Powder and hydroboration titanium valve decompose to give off rapidly hydrogen, shape At tiny nano titanium powder and boron powder, titanium valve and boron powder trigger self-propagating reaction at high temperature, form tiny TiB2Particle and Boron particles;
Simultaneously under the instantaneous pressure of hydrogen, titanium aluminum melt carries TiB2Particle and boron particles are sprayed from the jet port on the lower lid It injects in the melt in the crucible melted in advance, while starting the synthesis rotation of elevating lever 1 and carrying out stirring melt, make Obtain TiB2Particle dispersion enters in melt;
It is vacuumized by the vacuum orifice 15 on furnace body to furnace body 2, constantly rotating the elevating lever revolves the stirring flabellum 9 Turn, in order to the discharge of hydrogen and the floating of waste residue, to vacustat 10-5After Pa, stops synthesis elevating lever 1 and moves, Synthesising container is lifted into out melting kettle 13;
It is powered off to heater 11, so that melting kettle 13 quickly solidifies, takes out after to be solidified and closed among the Al-5%Ti-xB of preparation Ingot removes the dross of upper surface, can prepare Al-5%Ti-xB intermediate alloy ingot.
Preferably, the molar ratio of boron powder and titanium valve is 2:1-2 in the first alloy prefabricated section;In the second alloy prefabricated section TiH2The molar ratio of powder and hydroboration titanium valve is 1-2:2, and it is 5%-30% that aluminium powder, which accounts for molar ratio,.
As shown in Fig. 2, the aluminium alloy ingots preparation facilities includes furnace body 2, exhaust outlet 14 is provided on the furnace body 2, side Being vented by exhaust outlet to outside furnace body just, it should be appreciated that be additionally provided with valve on the exhaust outlet;On the furnace body 2 It is provided with vacuum orifice 15, vacuum pumping is carried out to the furnace body by what the vacuum orifice can be convenient.The furnace body 2 Interior lower part is provided with melting kettle 13, and aluminum feedstock is provided in the melting kettle 13, and the outside of the melting kettle 13 is set It is equipped with heater 11, the heater 11 is for heating the aluminum feedstock in melting kettle 13, on the melting kettle 13 Synthesis elevating lever 1 is provided on the furnace body 2 of side, the upper end of the synthesis elevating lever 1 is located at outside the furnace body 2, the elevating lever 1 Lower end be located in the furnace body 2, and the lower end of the elevating lever is provided with electric pulse device 4, is provided with lifting outside the furnace body 2 Rod driving device, for easily driving the elevating lever to carry out lifting and rotary motion as needed.
As shown in Fig. 2, the lower end of the electric pulse device 4 is provided with ignitor 5, the synthesising container includes 6 He of upper cover Lower cover 8, the upper cover 6 is fixedly connected with lower cover 8, and heat conduction baffle 7 is provided between the upper cover 6 and the lower cover 8, thermally conductive The placement space of the first alloy prefabricated section 16, the placement of the first alloy prefabricated section 16 are formed between partition 7 and the upper cover 6 The first alloy prefabricated section 16 is provided in space;The second alloy prefabricated section 17 is formed between the heat conduction baffle 7 and the lower cover 8 Placement space, be provided with the second alloy prefabricated section 17 in the placement space of the second alloy prefabricated section 17;The electricity that ignites The lower end of pole 5 extends in the first alloy prefabricated section placement space and contacts with the first alloy prefabricated section 16, the lower cover 8 On be provided with several stirring flabellums 9, and jet port 10 is provided on the lower cover 8 of lower part, it is preferred that the stirring flabellum 9 circumferentially shape be arranged on the periphery of the lower cover 8;Protection cap is provided on the synthesis elevating lever 1 of 4 upside of electric pulse device 3, the protection cap 3 is used to cover the upper cover of the melting kettle 13.
Further, the making material of the heat conduction baffle 7 is tungsten, tantalum or graphite, and several apertures are arranged thereon for increasing Add thermal conductivity, thickness is between 0.1mm-10mm.
The method of the invention is during preparing aluminium alloy ingots, first by TiH2Powder, aluminium powder and hydroboration titanium valve are mixed It closes uniformly and is pressed into the second alloy prefabricated section;Boron powder, titanium valve and aluminium powder are pressed into the first alloy prefabricated section, and by two kinds of blocks Body is placed or compressed together, and after the first alloy prefabricated section that ignites, the second alloy prefabricated section is heated TiH2Powder and hydroboration titanium Powder decomposes and further occurrence self-propagating reaction, forms tiny TiB by self-propagating reaction in final second alloy prefabricated section2? The formation moment of grain, hydrogeneous titanium aluminum melt and hydrogen, hydrogen generates high pressure, by TiB2Particle and the injection of hydrogeneous titanium aluminum melt drop Into melt melted in advance, by degassing processing, after slagging-off, Al-5%Ti-xB intermediate alloy is formed.To sum up, described Method is during preparing aluminium alloy ingots, it is possible to reduce TiB2Particle size improves its disperse effect in intermediate alloy, The environmental pollution of fining agent preparation is reduced simultaneously, and then improves the mechanical property of the aluminium alloy of preparation, and this improves preparations Aluminum alloy doors and windows intensity, and reduce environmental pollution.

Claims (10)

1. a kind of aluminum alloy doors and windows production method, it is characterised in that include the following steps:
Aluminium alloy ingots is prepared by aluminium alloy ingots preparation facilities;
Aluminium alloy ingots fusing is prepared into rods and bars of aluminium alloy;
After rods and bars of aluminium alloy is carried out ultrasonic cleaning, it is put into resistance furnace, makes its softening, can be extruded together machining;
Rods and bars of aluminium alloy after heating is put into the mold of single lead screw ex truding briquetting machine and carries out extrusion forming, obtains aluminum alloy base material;
Cooling Quenching is carried out to obtained aluminum alloy base material;
To the aluminum alloy base material after quenching treatment, using electrostatic spray, successively spraying protective layer, colored paint coating and varnish are applied Layer, after the completion of each coating spraying, aluminum alloy base material is transferred in the baking oven of 170-200 DEG C of temperature, toasts 20 min- 30min is cooled to room temperature the preparation for completing aluminium alloy extrusions after drying;
According to the needs of aluminum alloy doors and windows size, the aluminium alloy extrusions of preparation is cut, uses the aluminium alloy type after cutting Material prepares aluminum alloy doors and windows.
2. aluminum alloy doors and windows production method as described in claim 1, which is characterized in that the method for preparing aluminium alloy ingots is as follows:
It weighs boron powder and is mixed uniformly and is dried with titanium valve, uniformly mixed powder is pressed into the first alloy prefabricated section (16);
Weigh TiH2Powder, aluminium powder and hydroboration titanium valve are mixed uniformly and are dried, and uniformly mixed powder is pressed into the Two alloy prefabricated sections (17);
First alloy prefabricated section (16) is placed into furnace body in the upper cover of synthesising container, the second alloy prefabricated section (17) is put into In the lower cover (8) of synthesising container, and heat conduction baffle is utilized between the first alloy prefabricated section (16) and the second alloy prefabricated section (17) (7) it separates;Synthesising container upper cover (6) is tightened together with synthesising container lower cover (8), the conjunction being hung in furnace body (2) On ignitor at elevating lever (1) lower end, and contact ignitor directly with the first alloy prefabricated section;
Into the melting kettle (13) of furnace body, it is put into fine aluminium block, the heater (11) on the outside of starting melting kettle (13) gives fine aluminium Block heating, makes its fusing;
Synthesising container is immersed in the melt (12) in melting kettle (13) Nei by synthesizing elevating lever (1), utilizes synthesis Protection cap (3) on elevating lever covers melting kettle (13), while starting the electric pulse device (4) on the elevating lever, electric pulse Device (4) is ignited the first alloy prefabricated section (16) by ignitor (5), and the first alloy prefabricated section (16) transfers heat to second Alloy prefabricated section (17), in the fast reaction stage, the internal TiH of the first alloy prefabricated section (17)2Powder and hydroboration titanium valve are rapid Hydrogen is decomposed to give off, tiny nano titanium powder and boron powder are formed, titanium valve and boron powder trigger self-propagating reaction at high temperature, are formed thin Small TiB2Particle and boron particles;
Simultaneously under the instantaneous pressure of hydrogen, titanium aluminum melt carries TiB2Particle and boron particles are sprayed from the jet port on the lower lid It injects in the melt in the crucible melted in advance, while starting synthesis elevating lever (1) rotation and carrying out stirring melt, So that TiB2Particle dispersion enters in melt;
It is vacuumized by the vacuum orifice (15) on furnace body to furnace body (2), constantly rotating the elevating lever makes the stirring flabellum (9) it rotates, in order to the discharge of hydrogen and the floating of waste residue, to vacustat 10-5After Pa, stop synthesis elevating lever (1) it moves, synthesising container is lifted into out melting kettle (13);
It powers off to heater (11), so that melting kettle (13) quickly solidifies, is taken out in the Al-5%Ti-xB of preparation after to be solidified Between alloy pig, remove the dross of upper surface, Al-5%Ti-xB intermediate alloy ingot can be prepared.
3. aluminum alloy doors and windows production method as claimed in claim 2, it is characterised in that: boron powder and titanium in the first alloy prefabricated section The molar ratio of powder is 2:1-2;TiH in the second alloy prefabricated section2The molar ratio of powder and hydroboration titanium valve is 1-2:2, aluminium powder Accounting for molar ratio is 5%-30%.
4. aluminum alloy doors and windows production method as claimed in claim 2, it is characterised in that: TiH2Powder, aluminium powder and hydroboration titanium valve The drying temperature of mixed-powder is less than 200 DEG C.
5. aluminum alloy doors and windows production method as claimed in claim 2, it is characterised in that: the smelting temperature of fine aluminium be 660 DEG C- 1000℃。
6. aluminum alloy doors and windows production method as claimed in claim 2, it is characterised in that: the aluminium alloy ingots preparation facilities includes Furnace body (2), the lower part in the furnace body (2) are provided with melting kettle (13), are provided with aluminum feedstock in the melting kettle (13), Having heaters (11) are arranged in the outside of the melting kettle (13), and the heater (11) is used for the aluminium in melting kettle (13) Raw material is heated, and synthesis elevating lever (1), the synthesis lifting are provided on the furnace body (2) on the upside of the melting kettle (13) The upper end of bar (1) is located at the furnace body (2) outside, and the lower end of the elevating lever (1) is located in the furnace body (2), and the lifting The lower end of bar is provided with electric pulse device (4), and the lower end of the electric pulse device (4) is provided with ignitor (5), the synthesising container Including upper cover (6) and lower cover (8), the upper cover (6) is fixedly connected with lower cover (8), and the upper cover (6) and the lower cover (8) Between be provided with heat conduction baffle (7), putting for first alloy prefabricated section (16) is formed between heat conduction baffle (7) and the upper cover (6) Between emptying, be provided with the first alloy prefabricated section (16) in the placement space of the first alloy prefabricated section (16), it is described it is thermally conductive every The placement space of the second alloy prefabricated section (17), the second alloy prefabricated section (17) are formed between plate (7) and the lower cover (8) Placement space in be provided with the second alloy prefabricated section (17), it is prefabricated that the lower end of the ignitor (5) extends to the first alloy It is contacted in block placement space and with the first alloy prefabricated section (16), several stirring flabellums is provided on the lower cover (8) (9), it and on the lower cover (8) of lower part is provided with jet port (10), the synthesis elevating lever (1) on the upside of the electric pulse device (4) On be provided with protection cap (3), the protection cap (3) is used to cover the upper covers of the melting kettle (13).
7. aluminum alloy doors and windows production method as claimed in claim 6, it is characterised in that: the stirring flabellum (9) circumferentially shape It is arranged on the periphery of the lower cover (8).
8. aluminum alloy doors and windows production method as claimed in claim 6, it is characterised in that: be provided with exhaust on the furnace body (2) Mouth (14);Vacuum orifice (15) are provided on the furnace body (2).
9. aluminum alloy doors and windows production method as claimed in claim 6, it is characterised in that: the production material of the heat conduction baffle (7) Material is tungsten, tantalum or graphite, several apertures is arranged thereon for increasing thermal conductivity, thickness is between 0.1mm-10mm.
10. aluminum alloy doors and windows production method as claimed in claim 6, it is characterised in that: be provided with lifting outside the furnace body (2) Rod driving device, for driving the elevating lever to carry out lifting and rotary motion.
CN201910216596.1A 2019-03-21 2019-03-21 Production method of aluminum alloy door and window Active CN109750188B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910216596.1A CN109750188B (en) 2019-03-21 2019-03-21 Production method of aluminum alloy door and window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910216596.1A CN109750188B (en) 2019-03-21 2019-03-21 Production method of aluminum alloy door and window

Publications (2)

Publication Number Publication Date
CN109750188A true CN109750188A (en) 2019-05-14
CN109750188B CN109750188B (en) 2020-04-07

Family

ID=66409037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910216596.1A Active CN109750188B (en) 2019-03-21 2019-03-21 Production method of aluminum alloy door and window

Country Status (1)

Country Link
CN (1) CN109750188B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1789448A (en) * 2005-11-28 2006-06-21 大连理工大学 Grain refiner for synthesis of aluminium alloy by laser ignited self-propagation and method for preparing the same
CN101906548A (en) * 2010-07-09 2010-12-08 哈尔滨工业大学 Preparation method of TiB2 particle-reinforced TiAl-based composite material
CN103231741A (en) * 2013-03-27 2013-08-07 成都阳光铝制品有限公司 Large-section aluminium alloy section for car doors/windows and manufacturing process of large-section aluminium alloy section
CN103695674A (en) * 2013-12-25 2014-04-02 昆明冶金研究院 Method for preparing Al-Ti-B (aluminum-titanium-boron intermediate) alloy from titanium hydride and potassium fluoborate
CN107119213A (en) * 2017-07-05 2017-09-01 合肥万之景门窗有限公司 A kind of aluminium alloy extrusions and its preparation technology
CN109022968A (en) * 2018-11-06 2018-12-18 阜阳力佳门业有限公司 A kind of processing method of door and window aluminium alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1789448A (en) * 2005-11-28 2006-06-21 大连理工大学 Grain refiner for synthesis of aluminium alloy by laser ignited self-propagation and method for preparing the same
CN101906548A (en) * 2010-07-09 2010-12-08 哈尔滨工业大学 Preparation method of TiB2 particle-reinforced TiAl-based composite material
CN103231741A (en) * 2013-03-27 2013-08-07 成都阳光铝制品有限公司 Large-section aluminium alloy section for car doors/windows and manufacturing process of large-section aluminium alloy section
CN103695674A (en) * 2013-12-25 2014-04-02 昆明冶金研究院 Method for preparing Al-Ti-B (aluminum-titanium-boron intermediate) alloy from titanium hydride and potassium fluoborate
CN107119213A (en) * 2017-07-05 2017-09-01 合肥万之景门窗有限公司 A kind of aluminium alloy extrusions and its preparation technology
CN109022968A (en) * 2018-11-06 2018-12-18 阜阳力佳门业有限公司 A kind of processing method of door and window aluminium alloy

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
冯瑞香: "《环境友好型阳极燃料研究》", 30 September 2015, 华中科技大学出版社 *
李贺 等: "《高温熔体反应法制备Al-Ti-B细化剂》", 《材料工程》 *
裴立宅: "《高技术陶瓷材料》", 30 June 2015, 合肥工业大学出版社 *

Also Published As

Publication number Publication date
CN109750188B (en) 2020-04-07

Similar Documents

Publication Publication Date Title
CN101269449B (en) Method for manufacturing high-strength magnesium alloy solder wire
CN101244454B (en) Accurate casting method for metal leakage type suction pouring titanium master alloy
CN109576496B (en) Method for preparing powder for selective laser melting by recycling waste aluminum, product and equipment
CN102133629A (en) Light-alloy electromagnetic suspension casting device and method
CN101168810A (en) High-strength high-modulus aluminum-base composite material and preparation method thereof
CN107447141A (en) A kind of electronic product casing high-strength aluminum alloy and preparation method thereof
CN107586977A (en) A kind of preparation method of copper alloy with high strength and high conductivity bar
CN114277270A (en) Manufacturing method and manufacturing device of low-density corrosion-resistant high-strength aluminum alloy
CN1207410C (en) Magnesium alloy waste regenerator
CN109385551A (en) A kind of coated with titanium oxide/graphene oxide enhancing preparation method for material of substrate containing magnalium
CN109777990A (en) Aluminium alloy preparation method
CN106048332A (en) Aluminum alloy material used for aerospace thin wall castings, and preparation method of material
CN109750188A (en) Aluminum alloy doors and windows production method
CN107457408A (en) The sensing atomization of continous way cold crucible prepares titanium valve equipment
CN101705458B (en) Preparation process of modified magnesium borate crystal whisker reinforced magnesium-matrix composite material
CN109852836B (en) Preparation method of aluminum alloy casting
CN108315576A (en) A kind of efficient alterant of A356 aluminium alloys and preparation method
CN105861868A (en) Smelting and die-casting process for aluminum alloy
CN109868387A (en) Aluminium alloy preparation facilities
CN1208152C (en) High-smelting point thixotropic metal bland and composite material intermittent preparing process and apparatus
CN109777982B (en) Aluminum alloy casting preparation facilities
CN109777989A (en) The production method of aluminum alloy doors and windows
CN102899515B (en) Preparation method for alkaline earth heatproof magnesium alloy
CN106756352A (en) Raw Cr in a kind of2B and MgO diphase particles strengthen the preparation method of magnesium base composite material
CN1256448C (en) Method for preparing aluminum-titanium-carbon intermediate alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200317

Address after: 16 No. 526200 Guangdong city of Zhaoqing Province Sihui City Nanjiang Industrial Park Avenue South

Applicant after: Guangdong great reputation Xingda hardware profile Co., Ltd.

Address before: 050000 Unit 602, Building 40, Unit 3, 416 Huaibei Road, Yuhua District, Shijiazhuang City, Hebei Province

Applicant before: Meng Jing

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant